Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84746
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴亮全(Liang-Chuan Lai)
dc.contributor.authorChiao-Yi Linen
dc.contributor.author林巧宜zh_TW
dc.date.accessioned2023-03-19T22:23:32Z-
dc.date.copyright2022-10-13
dc.date.issued2022
dc.date.submitted2022-09-04
dc.identifier.citation1. Cizmarikova, R., Cizmarik, J., Valentova, J. et al. Chiral aspects of local anesthetics. Molecules 25, 2738, doi:10.3390/molecules25122738 (2020). 2. Taqi, A., Hong, X., Mistraletti, G. et al. Thoracic epidural analgesia facilitates the restoration of bowel function and dietary intake in patients undergoing laparoscopic colon resection using a traditional, nonaccelerated, perioperative care program. Surg Endosc 21, 247, doi:10.1007/s00464-006-0069-5 (2007). 3. Weibel, S., Jokinen, J., Pace, N. L. et al. Efficacy and safety of intravenous lidocaine for postoperative analgesia and recovery after surgery: A systematic review with trial sequential analysis. Br J Anaesth 116, 770, doi:10.1093/bja/aew101 (2016). 4. Becker, D. E. & Reed, K. L. Local anesthetics: Review of pharmacological considerations. Anesth Prog 59, 90, doi:10.2344/0003-3006-59.2.90 (2012). 5. Tedore, T. Regional anaesthesia and analgesia: Relationship to cancer recurrence and survival. Br J Anaesth 115 Suppl 2, ii34, doi:10.1093/bja/aev375 (2015). 6. Honemann, C. W., Heyse, T. J., Mollhoff, T. et al. The inhibitory effect of bupivacaine on prostaglandin e(2) (ep(1)) receptor functioning: Mechanism of action. Anesth Analg 93, 628, doi:10.1097/00000539-200109000-00019 (2001). 7. Hollmann, M. W. & Durieux, M. E. Local anesthetics and the inflammatory response: A new therapeutic indication? Anesthesiology 93, 858, doi:10.1097/00000542-200009000-00038 (2000). 8. Hollmann, M. W., Wieczorek, K. S., Berger, A. et al. Local anesthetic inhibition of g protein-coupled receptor signaling by interference with galpha(q) protein function. Mol Pharmacol 59, 294, doi:10.1124/mol.59.2.294 (2001). 9. Sessler, D. I., Pei, L., Huang, Y. et al. Recurrence of breast cancer after regional or general anaesthesia: A randomised controlled trial. Lancet 394, 1807, doi:10.1016/S0140-6736(19)32313-X (2019). 10. Wall, T., Sherwin, A., Ma, D. et al. Influence of perioperative anaesthetic and analgesic interventions on oncological outcomes: A narrative review. Br J Anaesth 123, 135, doi:10.1016/j.bja.2019.04.062 (2019). 11. Connolly, C. & Buggy, D. J. Opioids and tumour metastasis: Does the choice of the anesthetic-analgesic technique influence outcome after cancer surgery? Curr Opin Anaesthesiol 29, 468, doi:10.1097/ACO.0000000000000360 (2016). 12. Dockrell, L. & Buggy, D. J. The role of regional anaesthesia in the emerging subspecialty of onco-anaesthesia: A state-of-the-art review. Anaesthesia 76 Suppl 1, 148, doi:10.1111/anae.15243 (2021). 13. FitzGerald, S., Odor, P. M., Barron, A. et al. Breast surgery and regional anaesthesia. Best Pract Res Clin Anaesthesiol 33, 95, doi:10.1016/j.bpa.2019.03.003 (2019). 14. Blanco, R. The 'pecs block': A novel technique for providing analgesia after breast surgery. Anaesthesia 66, 847, doi:10.1111/j.1365-2044.2011.06838.x (2011). 15. Blanco, R., Fajardo, M. & Parras Maldonado, T. Ultrasound description of pecs ii (modified pecs i): A novel approach to breast surgery. Rev Esp Anestesiol Reanim 59, 470, doi:10.1016/j.redar.2012.07.003 (2012). 16. Blanco, R., Parras, T., McDonnell, J. G. et al. Serratus plane block: A novel ultrasound-guided thoracic wall nerve block. Anaesthesia 68, 1107, doi:10.1111/anae.12344 (2013). 17. Forero, M., Adhikary, S. D., Lopez, H. et al. The erector spinae plane block: A novel analgesic technique in thoracic neuropathic pain. Reg Anesth Pain Med 41, 621, doi:10.1097/AAP.0000000000000451 (2016). 18. Exadaktylos, A. K., Buggy, D. J., Moriarty, D. C. et al. Can anesthetic technique for primary breast cancer surgery affect recurrence or metastasis? Anesthesiology 105, 660, doi:10.1097/00000542-200610000-00008 (2006). 19. Starnes-Ott, K., Goravanchi, F. & Meininger, J. C. Anesthetic choices and breast cancer recurrence: A retrospective pilot study of patient, disease, and treatment factors. Crit Care Nurs Q 38, 200, doi:10.1097/CNQ.0000000000000062 (2015). 20. Kairaluoma, P., Mattson, J., Heikkila, P. et al. Perioperative paravertebral regional anaesthesia and breast cancer recurrence. Anticancer Res 36, 415 (2016). 21. Tsigonis, A. M., Al-Hamadani, M., Linebarger, J. H. et al. Are cure rates for breast cancer improved by local and regional anesthesia? Reg Anesth Pain Med 41, 339, doi:10.1097/AAP.0000000000000379 (2016). 22. Cata, J. P., Chavez-MacGregor, M., Valero, V. et al. The impact of paravertebral block analgesia on breast cancer survival after surgery. Reg Anesth Pain Med 41, 696, doi:10.1097/AAP.0000000000000479 (2016). 23. Li, R., Xiao, C., Liu, H. et al. Effects of local anesthetics on breast cancer cell viability and migration. BMC Cancer 18, 666, doi:10.1186/s12885-018-4576-2 (2018). 24. Xuan, W., Zhao, H., Hankin, J. et al. Local anesthetic bupivacaine induced ovarian and prostate cancer apoptotic cell death and underlying mechanisms in vitro. Sci Rep 6, 26277, doi:10.1038/srep26277 (2016). 25. Yu, B., Gao, W., Zhou, H. et al. Propofol induces apoptosis of breast cancer cells by downregulation of mir-24 signal pathway. Cancer Biomark 21, 513, doi:10.3233/CBM-170234 (2018). 26. Liu, J., Yang, L., Guo, X. et al. Sevoflurane suppresses proliferation by upregulating microrna-203 in breast cancer cells. Mol Med Rep 18, 455, doi:10.3892/mmr.2018.8949 (2018). 27. Deegan, C. A., Murray, D., Doran, P. et al. Anesthetic technique and the cytokine and matrix metalloproteinase response to primary breast cancer surgery. Reg Anesth Pain Med 35, 490, doi:10.1097/AAP.0b013e3181ef4d05 (2010). 28. Buckley, A., McQuaid, S., Johnson, P. et al. Effect of anaesthetic technique on the natural killer cell anti-tumour activity of serum from women undergoing breast cancer surgery: A pilot study. Br J Anaesth 113 Suppl 1, i56, doi:10.1093/bja/aeu200 (2014). 29. Matzner, P., Sandbank, E., Neeman, E. et al. Harnessing cancer immunotherapy during the unexploited immediate perioperative period. Nat Rev Clin Oncol 17, 313, doi:10.1038/s41571-019-0319-9 (2020). 30. Kyrou, I. & Tsigos, C. Stress hormones: Physiological stress and regulation of metabolism. Curr Opin Pharmacol 9, 787, doi:10.1016/j.coph.2009.08.007 (2009). 31. Gillis, C. & Carli, F. Promoting perioperative metabolic and nutritional care. Anesthesiology 123, 1455, doi:10.1097/ALN.0000000000000795 (2015). 32. Wang, Y., Qu, M., Qiu, Z. et al. Surgical stress and cancer progression: New findings and future perspectives. Curr Oncol Rep, doi:10.1007/s11912-022-01298-w (2022). 33. Tsuchiya, Y., Sawada, S., Yoshioka, I. et al. Increased surgical stress promotes tumor metastasis. Surgery 133, 547, doi:10.1067/msy.2003.141 (2003). 34. Lacy, A. M., Garcia-Valdecasas, J. C., Delgado, S. et al. Laparoscopy-assisted colectomy versus open colectomy for treatment of non-metastatic colon cancer: A randomised trial. Lancet 359, 2224, doi:10.1016/S0140-6736(02)09290-5 (2002). 35. Vittimberga, F. J., Jr., Foley, D. P., Meyers, W. C. et al. Laparoscopic surgery and the systemic immune response. Ann Surg 227, 326, doi:10.1097/00000658-199803000-00003 (1998). 36. Hager, P., Permert, J., Wikstrom, A. C. et al. Preoperative glucocorticoid administration attenuates the systemic stress response and hyperglycemia after surgical trauma in the rat. Metabolism 58, 449, doi:10.1016/j.metabol.2008.10.021 (2009). 37. Obradovic, M. M. S., Hamelin, B., Manevski, N. et al. Glucocorticoids promote breast cancer metastasis. Nature 567, 540, doi:10.1038/s41586-019-1019-4 (2019). 38. Wu, W., Pew, T., Zou, M. et al. Glucocorticoid receptor-induced mapk phosphatase-1 (mpk-1) expression inhibits paclitaxel-associated mapk activation and contributes to breast cancer cell survival. J Biol Chem 280, 4117, doi:10.1074/jbc.M411200200 (2005). 39. Wu, W., Chaudhuri, S., Brickley, D. R. et al. Microarray analysis reveals glucocorticoid-regulated survival genes that are associated with inhibition of apoptosis in breast epithelial cells. Cancer Res 64, 1757, doi:10.1158/0008-5472.can-03-2546 (2004). 40. Cui, B., Luo, Y., Tian, P. et al. Stress-induced epinephrine enhances lactate dehydrogenase a and promotes breast cancer stem-like cells. J Clin Invest 129, 1030, doi:10.1172/JCI121685 (2019). 41. Dwivedi, S., Bautista, M., Shrestha, S. et al. Sympathetic signaling facilitates progression of neuroendocrine prostate cancer. Cell Death Discov 7, 364, doi:10.1038/s41420-021-00752-1 (2021). 42. Han, J., Jiang, Q., Ma, R. et al. Norepinephrine-creb1-mir-373 axis promotes progression of colon cancer. Mol Oncol 14, 1059, doi:10.1002/1878-0261.12657 (2020). 43. Chen, S., Du, C., Shen, M. et al. Sympathetic stimulation facilitates thrombopoiesis by promoting megakaryocyte adhesion, migration, and proplatelet formation. Blood 127, 1024, doi:10.1182/blood-2015-07-660746 (2016). 44. Labelle, M., Begum, S. & Hynes, R. O. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20, 576, doi:10.1016/j.ccr.2011.09.009 (2011). 45. Gorrini, C., Harris, I. S. & Mak, T. W. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12, 931, doi:10.1038/nrd4002 (2013). 46. Kim, R. Effects of surgery and anesthetic choice on immunosuppression and cancer recurrence. J Transl Med 16, 8, doi:10.1186/s12967-018-1389-7 (2018). 47. Iwasaki, M., Zhao, H., Jaffer, T. et al. Volatile anaesthetics enhance the metastasis related cellular signalling including cxcr2 of ovarian cancer cells. Oncotarget 7, 26042, doi:10.18632/oncotarget.8304 (2016). 48. Mitsuhata, H., Shimizu, R. & Yokoyama, M. M. Suppressive effects of volatile anesthetics on cytokine release in human peripheral blood mononuclear cells. Int J Immunopharmacol 17, 529, doi:10.1016/0192-0561(95)00026-x (1995). 49. Kushida, A., Inada, T. & Shingu, K. Enhancement of antitumor immunity after propofol treatment in mice. Immunopharmacol Immunotoxicol 29, 477, doi:10.1080/08923970701675085 (2007). 50. Fang, P., Zhou, J., Xia, Z. et al. Effects of propofol versus sevoflurane on postoperative breast cancer prognosis: A narrative review. Front Oncol 11, 793093, doi:10.3389/fonc.2021.793093 (2021). 51. Xuan, W., Hankin, J., Zhao, H. et al. The potential benefits of the use of regional anesthesia in cancer patients. Int J Cancer 137, 2774, doi:10.1002/ijc.29306 (2015). 52. Tegeder, I. & Geisslinger, G. Opioids as modulators of cell death and survival--unraveling mechanisms and revealing new indications. Pharmacol Rev 56, 351, doi:10.1124/pr.56.3.2 (2004). 53. D'Agostino, G., Saporito, A., Cecchinato, V. et al. Lidocaine inhibits cytoskeletal remodelling and human breast cancer cell migration. Br J Anaesth 121, 962, doi:10.1016/j.bja.2018.07.015 (2018). 54. Lucchinetti, E., Awad, A. E., Rahman, M. et al. Antiproliferative effects of local anesthetics on mesenchymal stem cells: Potential implications for tumor spreading and wound healing. Anesthesiology 116, 841, doi:10.1097/ALN.0b013e31824babfe (2012). 55. Baptista-Hon, D. T., Robertson, F. M., Robertson, G. B. et al. Potent inhibition by ropivacaine of metastatic colon cancer sw620 cell invasion and nav1.5 channel function. Br J Anaesth 113 Suppl 1, i39, doi:10.1093/bja/aeu104 (2014). 56. Grandhi, R. K. & Perona, B. Mechanisms of action by which local anesthetics reduce cancer recurrence: A systematic review. Pain Med 21, 401, doi:10.1093/pm/pnz139 (2020). 57. Sakaguchi, M., Kuroda, Y. & Hirose, M. The antiproliferative effect of lidocaine on human tongue cancer cells with inhibition of the activity of epidermal growth factor receptor. Anesth Analg 102, 1103, doi:10.1213/01.ane.0000198330.84341.35 (2006). 58. Dan, J., Gong, X., Li, D. et al. Inhibition of gastric cancer by local anesthetic bupivacaine through multiple mechanisms independent of sodium channel blockade. Biomed Pharmacother 103, 823, doi:10.1016/j.biopha.2018.04.106 (2018). 59. Castelli, V., Piroli, A., Marinangeli, F. et al. Local anesthetics counteract cell proliferation and migration of human triple-negative breast cancer and melanoma cells. J Cell Physiol 235, 3474, doi:10.1002/jcp.29236 (2020). 60. Piegeler, T., Votta-Velis, E. G., Liu, G. et al. Antimetastatic potential of amide-linked local anesthetics: Inhibition of lung adenocarcinoma cell migration and inflammatory src signaling independent of sodium channel blockade. Anesthesiology 117, 548, doi:10.1097/ALN.0b013e3182661977 (2012). 61. Gong, X., Dan, J., Li, F. et al. Suppression of mitochondrial respiration with local anesthetic ropivacaine targets breast cancer cells. J Thorac Dis 10, 2804, doi:10.21037/jtd.2018.05.21 (2018). 62. Chang, Y. C., Hsu, Y. C., Liu, C. L. et al. Local anesthetics induce apoptosis in human thyroid cancer cells through the mitogen-activated protein kinase pathway. PLoS One 9, e89563, doi:10.1371/journal.pone.0089563 (2014). 63. Leng, T., Lin, S., Xiong, Z. et al. Lidocaine suppresses glioma cell proliferation by inhibiting trpm7 channels. Int J Physiol Pathophysiol Pharmacol 9, 8 (2017). 64. Liu, H., Dilger, J. P. & Lin, J. Lidocaine suppresses viability and migration of human breast cancer cells: Trpm7 as a target for some breast cancer cell lines. Cancers (Basel) 13, 234, doi:10.3390/cancers13020234 (2021). 65. Chamaraux-Tran, T. N. & Piegeler, T. The amide local anesthetic lidocaine in cancer surgery-potential antimetastatic effects and preservation of immune cell function? A narrative review. Front Med (Lausanne) 4, 235, doi:10.3389/fmed.2017.00235 (2017). 66. Lirk, P., Hollmann, M. W., Fleischer, M. et al. Lidocaine and ropivacaine, but not bupivacaine, demethylate deoxyribonucleic acid in breast cancer cells in vitro. Br J Anaesth 113 Suppl 1, i32, doi:10.1093/bja/aeu201 (2014). 67. Chang, Y. C., Liu, C. L., Chen, M. J. et al. Local anesthetics induce apoptosis in human breast tumor cells. Anesth Analg 118, 116, doi:10.1213/ANE.0b013e3182a94479 (2014). 68. Sui, H., Lou, A., Li, Z. et al. Lidocaine inhibits growth, migration and invasion of gastric carcinoma cells by up-regulation of mir-145. BMC Cancer 19, 233, doi:10.1186/s12885-019-5431-9 (2019). 69. Qu, X., Yang, L., Shi, Q. et al. Lidocaine inhibits proliferation and induces apoptosis in colorectal cancer cells by upregulating mir-520a-3p and targeting egfr. Pathol Res Pract 214, 1974, doi:10.1016/j.prp.2018.09.012 (2018). 70. Van Der Wal, S., Vaneker, M., Steegers, M. et al. Lidocaine increases the anti-inflammatory cytokine il-10 following mechanical ventilation in healthy mice. Acta Anaesthesiol Scand 59, 47, doi:10.1111/aas.12417 (2015). 71. Yang, X., Zhao, L., Li, M. et al. Lidocaine enhances the effects of chemotherapeutic drugs against bladder cancer. Sci Rep 8, 598, doi:10.1038/s41598-017-19026-x (2018). 72. Johnson, M. Z., Crowley, P. D., Foley, A. G. et al. Effect of perioperative lidocaine on metastasis after sevoflurane or ketamine-xylazine anaesthesia for breast tumour resection in a murine model. Br J Anaesth 121, 76, doi:10.1016/j.bja.2017.12.043 (2018). 73. Yardeni, I. Z., Beilin, B., Mayburd, E. et al. The effect of perioperative intravenous lidocaine on postoperative pain and immune function. Anesth Analg 109, 1464, doi:10.1213/ANE.0b013e3181bab1bd (2009). 74. Zhang, H., Yang, L., Zhu, X. et al. Association between intraoperative intravenous lidocaine infusion and survival in patients undergoing pancreatectomy for pancreatic cancer: A retrospective study. Br J Anaesth 125, 141, doi:10.1016/j.bja.2020.03.034 (2020). 75. Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463, doi:10.1073/pnas.74.12.5463 (1977). 76. Maxam, A. M. & Gilbert, W. A new method for sequencing DNA. Proc Natl Acad Sci U S A 74, 560, doi:10.1073/pnas.74.2.560 (1977). 77. van Dijk, E. L., Auger, H., Jaszczyszyn, Y. et al. Ten years of next-generation sequencing technology. Trends Genet 30, 418, doi:10.1016/j.tig.2014.07.001 (2014). 78. International Human Genome Sequencing, C. Finishing the euchromatic sequence of the human genome. Nature 431, 931, doi:10.1038/nature03001 (2004). 79. Holtzman, N. A. & Watson, M. S. Promoting safe and effective genetic testing in the united states. Final report of the task force on genetic testing. J Child Fam Nurs 2, 388 (1999). 80. Hatem, A., Bozdag, D., Toland, A. E. et al. Benchmarking short sequence mapping tools. BMC Bioinformatics 14, 184, doi:10.1186/1471-2105-14-184 (2013). 81. Li, Y., Chen, W., Liu, E. Y. et al. Single nucleotide polymorphism (snp) detection and genotype calling from massively parallel sequencing (mps) data. Stat Biosci 5, 3, doi:10.1007/s12561-012-9067-4 (2013). 82. Rougemont, J. & Naef, F. Computational analysis of protein-DNA interactions from chip-seq data. Methods Mol Biol 786, 263, doi:10.1007/978-1-61779-292-2_16 (2012). 83. Kvam, V. M., Liu, P. & Si, Y. A comparison of statistical methods for detecting differentially expressed genes from rna-seq data. Am J Bot 99, 248, doi:10.3732/ajb.1100340 (2012). 84. Esteller, M. Non-coding rnas in human disease. Nat Rev Genet 12, 861, doi:10.1038/nrg3074 (2011). 85. Ohno, S. So much 'junk' DNA in our genome. Brookhaven Symp Biol 23, 366 (1972). 86. Alexander, R. P., Fang, G., Rozowsky, J. et al. Annotating non-coding regions of the genome. Nat Rev Genet 11, 559, doi:10.1038/nrg2814 (2010). 87. Visel, A., Rubin, E. M. & Pennacchio, L. A. Genomic views of distant-acting enhancers. Nature 461, 199, doi:10.1038/nature08451 (2009). 88. Dinger, M. E., Pang, K. C., Mercer, T. R. et al. Differentiating protein-coding and noncoding rna: Challenges and ambiguities. PLoS Comput Biol 4, e1000176, doi:10.1371/journal.pcbi.1000176 (2008). 89. Kapranov, P., Cheng, J., Dike, S. et al. Rna maps reveal new rna classes and a possible function for pervasive transcription. Science 316, 1484, doi:10.1126/science.1138341 (2007). 90. Ponting, C. P., Oliver, P. L. & Reik, W. Evolution and functions of long noncoding rnas. Cell 136, 629, doi:10.1016/j.cell.2009.02.006 (2009). 91. Consortium, E. P. The encode (encyclopedia of DNA elements) project. Science 306, 636, doi:10.1126/science.1105136 (2004). 92. Bernstein, E., Caudy, A. A., Hammond, S. M. et al. Role for a bidentate ribonuclease in the initiation step of rna interference. Nature 409, 363, doi:10.1038/35053110 (2001). 93. Song, J. J., Smith, S. K., Hannon, G. J. et al. Crystal structure of argonaute and its implications for risc slicer activity. Science 305, 1434, doi:10.1126/science.1102514 (2004). 94. Schwarz, D. S., Hutvagner, G., Du, T. et al. Asymmetry in the assembly of the rnai enzyme complex. Cell 115, 199, doi:10.1016/s0092-8674(03)00759-1 (2003). 95. Hammond, S. M. Micrornas as tumor suppressors. Nat Genet 39, 582, doi:10.1038/ng0507-582 (2007). 96. Michael, M. Z., SM, O. C., van Holst Pellekaan, N. G. et al. Reduced accumulation of specific micrornas in colorectal neoplasia. Mol Cancer Res 1, 882 (2003). 97. Iorio, M. V., Ferracin, M., Liu, C. G. et al. Microrna gene expression deregulation in human breast cancer. Cancer Res 65, 7065, doi:10.1158/0008-5472.CAN-05-1783 (2005). 98. Chan, J. A., Krichevsky, A. M. & Kosik, K. S. Microrna-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65, 6029, doi:10.1158/0008-5472.CAN-05-0137 (2005). 99. Gebert, L. F. R. & MacRae, I. J. Regulation of microrna function in animals. Nat Rev Mol Cell Biol 20, 21, doi:10.1038/s41580-018-0045-7 (2019). 100. Ulitsky, I. Interactions between short and long noncoding rnas. FEBS Lett 592, 2874, doi:10.1002/1873-3468.13085 (2018). 101. Goodall, G. J. & Wickramasinghe, V. O. Rna in cancer. Nat Rev Cancer 21, 22, doi:10.1038/s41568-020-00306-0 (2021). 102. Barbieri, I. & Kouzarides, T. Role of rna modifications in cancer. Nat Rev Cancer 20, 303, doi:10.1038/s41568-020-0253-2 (2020). 103. Bracken, C. P., Scott, H. S. & Goodall, G. J. A network-biology perspective of microrna function and dysfunction in cancer. Nat Rev Genet 17, 719, doi:10.1038/nrg.2016.134 (2016). 104. Han Li, C. & Chen, Y. Small and long non-coding rnas: Novel targets in perspective cancer therapy. Curr Genomics 16, 319, doi:10.2174/1389202916666150707155851 (2015). 105. Chan, S. H. & Wang, L. H. Regulation of cancer metastasis by micrornas. J Biomed Sci 22, 9, doi:10.1186/s12929-015-0113-7 (2015). 106. Salmena, L., Poliseno, L., Tay, Y. et al. A cerna hypothesis: The rosetta stone of a hidden rna language? Cell 146, 353, doi:10.1016/j.cell.2011.07.014 (2011). 107. Matamala, N., Vargas, M. T., Gonzalez-Campora, R. et al. Microrna deregulation in triple negative breast cancer reveals a role of mir-498 in regulating brca1 expression. Oncotarget 7, 20068, doi:10.18632/oncotarget.7705 (2016). 108. Lou, Y., Liu, L., Zhan, L. et al. Mir-187-5p regulates cell growth and apoptosis in acute lymphoblastic leukemia via dkk2. Oncol Res 24, 89, doi:10.3727/096504016X14597766487753 (2016). 109. Gudas, J. M., Klein, R. C., Oka, M. et al. Posttranscriptional regulation of the c-myb proto-oncogene in estrogen receptor-positive breast cancer cells. Clin Cancer Res 1, 235 (1995). 110. Collyn-d'Hooghe, M., Vandewalle, B., Hornez, L. et al. C-myc overexpression, c-mil, c-myb expression in a breast tumor cell line. Effects of estrogen and antiestrogen. Anticancer Res 11, 2175 (1991). 111. Li, Y., Jin, K., van Pelt, G. W. et al. C-myb enhances breast cancer invasion and metastasis through the wnt/beta-catenin/axin2 pathway. Cancer Res 76, 3364, doi:10.1158/0008-5472.CAN-15-2302 (2016). 112. Fry, E. A. & Inoue, K. C-myb and dmtf1 in cancer. Cancer Invest 37, 46, doi:10.1080/07357907.2018.1550090 (2019). 113. Ramsay, R. G. & Gonda, T. J. Myb function in normal and cancer cells. Nat Rev Cancer 8, 523, doi:10.1038/nrc2439 (2008). 114. Mitra, P. Transcription regulation of myb: A potential and novel therapeutic target in cancer. Ann Transl Med 6, 443, doi:10.21037/atm.2018.09.62 (2018). 115. Murati, A., Gervais, C., Carbuccia, N. et al. Genome profiling of acute myelomonocytic leukemia: Alteration of the myb locus in myst3-linked cases. Leukemia 23, 85, doi:10.1038/leu.2008.257 (2009). 116. Kauraniemi, P., Hedenfalk, I., Persson, K. et al. Myb oncogene amplification in hereditary brca1 breast cancer. Cancer Res 60, 5323 (2000). 117. Hugo, H., Cures, A., Suraweera, N. et al. Mutations in the myb intron i regulatory sequence increase transcription in colon cancers. Genes Chromosomes Cancer 45, 1143, doi:10.1002/gcc.20378 (2006). 118. Nakano, K., Uchimaru, K., Utsunomiya, A. et al. Dysregulation of c-myb pathway by aberrant expression of proto-oncogene myb provides the basis for malignancy in aadult t-cell leukemia/lymphoma cells. Clin Cancer Res 22, 5915, doi:10.1158/1078-0432.CCR-15-1739 (2016). 119. Persson, M., Andren, Y., Mark, J. et al. Recurrent fusion of myb and nfib transcription factor genes in carcinomas of the breast and head and neck. Proc Natl Acad Sci U S A 106, 18740, doi:10.1073/pnas.0909114106 (2009). 120. Ramsay, R. G., Thompson, M. A., Hayman, J. A. et al. Myb expression is higher in malignant human colonic carcinoma and premalignant adenomatous polyps than in normal mucosa. Cell Growth Differ 3, 723 (1992). 121. Cesi, V., Casciati, A., Sesti, F. et al. Tgfbeta-induced c-myb affects the expression of emt-associated genes and promotes invasion of er+ breast cancer cells. Cell Cycle 10, 4149, doi:10.4161/cc.10.23.18346 (2011). 122. Liu, X., Xu, Y., Han, L. et al. Reassessing the potential of myb-targeted anti-cancer therapy. J Cancer 9, 1259, doi:10.7150/jca.23992 (2018). 123. Paraskevopoulou, M. D., Vlachos, I. S., Karagkouni, D. et al. Diana-lncbase v2: Indexing microrna targets on non-coding transcripts. Nucleic Acids Res 44, D231, doi:10.1093/nar/gkv1270 (2016). 124. Elajnaf, T., Baptista-Hon, D. T. & Hales, T. G. Potent inactivation-dependent inhibition of adult and neonatal nav1.5 channels by lidocaine and levobupivacaine. Anesth Analg 127, 650, doi:10.1213/ANE.0000000000003597 (2018). 125. Xia, W., Wang, L., Yu, D. et al. Lidocaine inhibits the progression of retinoblastoma in vitro and in vivo by modulating the mir520a3p/egfr axis. Mol Med Rep 20, 1333, doi:10.3892/mmr.2019.10363 (2019). 126. Ju, C., Zhou, J., Miao, H. et al. Bupivacaine suppresses the progression of gastric cancer through regulating circ_0000376/mir-145-5p axis. BMC Anesthesiol 20, 275, doi:10.1186/s12871-020-01179-4 (2020). 127. Zhang, B., Pan, X., Cobb, G. P. et al. Micrornas as oncogenes and tumor suppressors. Dev Biol 302, 1, doi:10.1016/j.ydbio.2006.08.028 (2007). 128. Peng, Y. & Croce, C. M. The role of micrornas in human cancer. Signal Transduct Target Ther 1, 15004, doi:10.1038/sigtrans.2015.4 (2016). 129. Li, Z., Lin, C., Zhao, L. et al. Oncogene mir-187-5p is associated with cellular proliferation, migration, invasion, apoptosis and an increased risk of recurrence in bladder cancer. Biomed Pharmacother 105, 461, doi:10.1016/j.biopha.2018.05.122 (2018). 130. Mao, M., Wu, Z. & Chen, J. Microrna-187-5p suppresses cancer cell progression in non-small cell lung cancer (nsclc) through down-regulation of cyp1b1. Biochem Biophys Res Commun 478, 649, doi:10.1016/j.bbrc.2016.08.001 (2016). 131. Uhr, K., Prager-van der Smissen, W. J. C., Heine, A. A. J. et al. Micrornas as possible indicators of drug sensitivity in breast cancer cell lines. PLoS One 14, e0216400, doi:10.1371/journal.pone.0216400 (2019). 132. Hausser, J. & Zavolan, M. Identification and consequences of mirna-target interactions--beyond repression of gene expression. Nat Rev Genet 15, 599, doi:10.1038/nrg3765 (2014). 133. Farh, K. K., Grimson, A., Jan, C. et al. The widespread impact of mammalian micrornas on mrna repression and evolution. Science 310, 1817, doi:10.1126/science.1121158 (2005). 134. Jia, H., Wu, D., Zhang, Z. et al. Regulatory effect of the mafgas1/mir1505p/myb axis on the proliferation and migration of breast cancer cells. Int J Oncol 58, 33, doi:10.3892/ijo.2020.5150 (2021). 135. Miao, R. Y., Drabsch, Y., Cross, R. S. et al. Myb is essential for mammary tumorigenesis. Cancer Res 71, 7029, doi:10.1158/0008-5472.CAN-11-1015 (2011). 136. Ciciro, Y. & Sala, A. Myb oncoproteins: Emerging players and potential therapeutic targets in human cancer. Oncogenesis 10, 19, doi:10.1038/s41389-021-00309-y (2021). 137. Quintana, A. M., Liu, F., O'Rourke, J. P. et al. Identification and regulation of c-myb target genes in mcf-7 cells. BMC Cancer 11, 30, doi:10.1186/1471-2407-11-30 (2011). 138. Yang, R. M., Nanayakkara, D., Kalimutho, M. et al. Myb regulates the DNA damage response and components of the homology-directed repair pathway in human estrogen receptor-positive breast cancer cells. Oncogene 38, 5239, doi:10.1038/s41388-019-0789-3 (2019). 139. Drabsch, Y., Hugo, H., Zhang, R. et al. Mechanism of and requirement for estrogen-regulated myb expression in estrogen-receptor-positive breast cancer cells. Proc Natl Acad Sci U S A 104, 13762, doi:10.1073/pnas.0700104104 (2007). 140. Gao, Y., Zhang, W., Liu, C. et al. Mir-200 affects tamoxifen resistance in breast cancer cells through regulation of myb. Sci Rep 9, 18844, doi:10.1038/s41598-019-54289-6 (2019). 141. Akhade, V. S., Pal, D. & Kanduri, C. Long noncoding rna: Genome organization and mechanism of action. Adv Exp Med Biol 1008, 47, doi:10.1007/978-981-10-5203-3_2 (2017). 142. Volovat, S. R., Volovat, C., Hordila, I. et al. Mirna and lncrna as potential biomarkers in triple-negative breast cancer: A review. Front Oncol 10, 526850, doi:10.3389/fonc.2020.526850 (2020). 143. Thin, K. Z., Liu, X., Feng, X. et al. Lncrna-dancr: A valuable cancer related long non-coding rna for human cancers. Pathol Res Pract 214, 801, doi:10.1016/j.prp.2018.04.003 (2018). 144. Yan, Y., Shi, Q., Yuan, X. et al. Dancr: An emerging therapeutic target for cancer. Am J Transl Res 12, 4031 (2020). 145. Ghafouri-Fard, S., Khoshbakht, T., Hussen, B. M. et al. A review on the role of dancr in the carcinogenesis. Cancer Cell Int 22, 194, doi:10.1186/s12935-022-02612-z (2022). 146. Zhang, K. J., Tan, X. L. & Guo, L. The long non-coding rna dancr regulates the inflammatory phenotype of breast cancer cells and promotes breast cancer progression via ezh2-dependent suppression of socs3 transcription. Mol Oncol 14, 309, doi:10.1002/1878-0261.12622 (2020). 147. Wang, Y., Zeng, X., Wang, N. et al. Long noncoding rna dancr, working as a competitive endogenous rna, promotes rock1-mediated proliferation and metastasis via decoying of mir-335-5p and mir-1972 in osteosarcoma. Mol Cancer 17, 89, doi:10.1186/s12943-018-0837-6 (2018). 148. Jia, H., Liang, K., Liu, G. et al. Lncrna dancr promotes proliferation and metastasis of breast cancer cells through sponging mir-4319 and upregulating vapb. Cancer Biother Radiopharm, doi:10.1089/cbr.2020.3675 (2020). 149. Shi, W., Jin, X., Wang, Y. et al. High serum exosomal long non-coding rna dancr expression confers poor prognosis in patients with breast cancer. J Clin Lab Anal 36, e24186, doi:10.1002/jcla.24186 (2022). 150. Liu, H., Dilger, J. P. & Lin, J. Effects of local anesthetics on cancer cells. Pharmacol Ther 212, 107558, doi:10.1016/j.pharmthera.2020.107558 (2020). 151. Sung, H., Ferlay, J., Siegel, R. L. et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71, 209, doi:10.3322/caac.21660 (2021). 152. Perou, C. M., Sorlie, T., Eisen, M. B. et al. Molecular portraits of human breast tumours. Nature 406, 747, doi:10.1038/35021093 (2000). 153. Sparano, J. A., Gray, R. J., Makower, D. F. et al. Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. N Engl J Med 379, 111, doi:10.1056/NEJMoa1804710 (2018). 154. Morrow, M. De-escalating and escalating surgery in the management of early breast cancer. Breast 34 Suppl 1, S1, doi:10.1016/j.breast.2017.06.018 (2017). 155. Fisher, B. Laboratory and clinical research in breast cancer--a personal adventure: The david a. Karnofsky memorial lecture. Cancer Res 40, 3863 (1980). 156. Kim, R., Kawai, A., Wakisaka, M. et al. Breast cancer recurrence and survival rates in patients who underwent breast-conserving surgery under non-mechanically ventilated anesthesia. Cancer Rep (Hoboken), e1643, doi:10.1002/cnr2.1643 (2022). 157. Eschwege, P., Dumas, F., Blanchet, P. et al. Haematogenous dissemination of prostatic epithelial cells during radical prostatectomy. Lancet 346, 1528, doi:10.1016/s0140-6736(95)92054-4 (1995). 158. Peach, G., Kim, C., Zacharakis, E. et al. Prognostic significance of circulating tumour cells following surgical resection of colorectal cancers: A systematic review. Br J Cancer 102, 1327, doi:10.1038/sj.bjc.6605651 (2010). 159. Mao, L., Lin, S. & Lin, J. The effects of anesthetics on tumor progression. Int J Physiol Pathophysiol Pharmacol 5, 1 (2013). 160. Zhang, C., Xie, C. & Lu, Y. Local anesthetic lidocaine and cancer: Insight into tumor progression and recurrence. Front Oncol 11, 669746, doi:10.3389/fonc.2021.669746 (2021). 161. Zhu, J. & Han, S. Lidocaine inhibits cervical cancer cell proliferation and induces cell apoptosis by modulating the lncrna-meg3/mir-421/btg1 pathway. Am J Transl Res 11, 5404 (2019). 162. Ghandadi, M. & Sahebkar, A. Interleukin-6: A critical cytokine in cancer multidrug resistance. Curr Pharm Des 22, 518, doi:10.2174/1381612822666151124234417 (2016). 163. Aller, S. G., Yu, J., Ward, A. et al. Structure of p-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323, 1718, doi:10.1126/science.1168750 (2009). 164. Trock, B. J., Leonessa, F. & Clarke, R. Multidrug resistance in breast cancer: A meta-analysis of mdr1/gp170 expression and its possible functional significance. J Natl Cancer Inst 89, 917, doi:10.1093/jnci/89.13.917 (1997). 165. Hu, Y., Qin, X., Cao, H. et al. Reversal effects of local anesthetics on p-glycoprotein-mediated cancer multidrug resistance. Anticancer Drugs 28, 243, doi:10.1097/CAD.0000000000000455 (2017). 166. Li, K., Yang, J. & Han, X. Lidocaine sensitizes the cytotoxicity of cisplatin in breast cancer cells via up-regulation of rarbeta2 and rassf1a demethylation. Int J Mol Sci 15, 23519, doi:10.3390/ijms151223519 (2014). 167. Zhang, X., Pang, W., Liu, H. et al. Lidocine potentiates the cytotoxicity of 5-fluorouracil to choriocarcinoma cells by downregulating abc transport proteins expression. J Cell Biochem 120, 16533, doi:10.1002/jcb.28913 (2019). 168. Zhou, D., Wang, L., Cui, Q. et al. Repositioning lidocaine as an anticancer drug: The role beyond anesthesia. Front Cell Dev Biol 8, 565, doi:10.3389/fcell.2020.00565 (2020). 169. Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications o
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84746-
dc.description.abstract乳腺癌是最常見的惡性腫瘤疾病,是女性死亡的主要原因。大多數患者需要手術,而回顧性研究顯示了手術期間的麻醉技術與臨床預後之間的關聯。局部麻醉劑可能通過非編碼核糖核酸(noncoding RNA)相互作用來導致致癌作用。然而,詳細的作用機轉仍不清楚。在這項研究中,使用兩種最常用的局部麻醉劑,利多卡因和布比卡因,在乳腺癌 MCF-7 細胞上進行了研究。功能分析數據顯示局部麻醉劑會抑制癌細胞的生殖。接著,利用次世代定序技術檢驗局部麻醉劑治療的乳腺癌 MCF-7 細胞所產生微小核糖核酸(microRNAs)的表現量。其中,總共有131個微小核糖核酸(microRNAs)的表現量在兩種局部麻醉劑治療的乳腺癌MCF-7細胞中是同步表現上升的。接著使用聚合酶連鎖反應(PCR)驗證,選擇了miR-187-5p這個生物標誌候選物進行進一步分析。生物資訊學預測和螢光素酶基因檢測顯示MYB是miR-187-5p的直接標靶基因。此外,基於長片段非編碼核糖核酸 (lncRNA) 會抑制微小核糖核酸(miRNA sponge)的假設,DIANA-LncBase v2預測了miR-187-5p的標靶基因長片段非編碼核糖核酸DANCR,並通過螢光素酶基因檢測進行了驗證。此外,我們發現了DANCR和miR-187-5p之間也有相互抑制作用。總結以上的實驗結果,這些結果證明了兩種局部麻醉劑,利多卡因和布比卡因,通過 DANCR-miR-187-5p-MYB 軸而呈現的抗腫瘤機轉。我們的研究結果呈現了局部麻醉劑抑制乳腺癌腫瘤細胞的另一種新分子機制。zh_TW
dc.description.abstractBreast cancer is the most prevalent malignant disease and the main reason for deaths in women. The majority of patients require surgery, and retrospective studies have demonstrated an association between types of anesthesia during operation and clinical outcomes. By interacting with non-coding RNAs (ncRNAs), local anesthetics (LAs) have an effect on carcinogenesis. However, the detailed mechanisms underlying the interaction between LAs and ncRNAs remain unclear. In this dissertation, I report the mechanisms which two commonly used LAs, bupivacaine and lidocaine, affected the malignancy of MCF-7 breast cancer cells. Next-generation sequencing was used to investigate the expression profiles of the microRNAs (miRNAs) that responded to LA treatments. Results from the functional assay revealed that the LAs inhibited the proliferation of MCF-7 cells. Following treatment with the LAs, next-generation sequencing results showed that 131 miRNAs were upregulated. The putative biomarker miR-187-5p was identified through validation using the polymerase chain reaction (PCR), and it was selected for further examination. Primary prediction with bioinformatics tools and following experiments with luciferase reporter assays demonstrated that MYB is a direct target gene of miR-187-5p. Based on the hypothesis that lncRNAs served as sponges for miRNAs, the target lncRNA, DANCR, of miR-187-5p was predicted using DIANA-LncBase v2 and validated using luciferase reporter assays. Furthermore, the reciprocal inhibitory effect between DANCR and miR-187-5p was discovered. This study suggests that the DANCR-miR-187-5p-MYB axis has a role in one of the anti-tumor mechanisms of lidocaine and bupivacaine. This noval molecular pathway for suppressing breast tumor may open an avenue in treating breast cancer.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:23:32Z (GMT). No. of bitstreams: 1
U0001-0109202210464100.pdf: 4246814 bytes, checksum: 4cddf72bc0f52c816fc11caa1c0ecd98 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝 I 中文摘要 II Abstract III Acronyms and Abbreviations VII List of Tables VIII List of Figures IX Chapter 1. Introduction 1 1.1. Local anesthetics 1 1.2. Breast surgery and anesthesia 2 1.3. Types of anesthesia and cancer recurrence 3 1.4. Introduction of genomic technologies 8 1.5. Next-generation sequencing (NGS) 9 1.6. Noncoding RNAs and malignancy 10 1.7. Aims of this study 12 Chapter 2. Materials and methods 14 Chapter 3. Results 22 3.1. Local anesthetics significantly suppressed cell viability and migration 22 3.2. Differential miRNA expression profiles following LA treatment 23 3.3. Local anesthetics downregulated MYB expression via miR-187-5p 24 3.4. DANCR decoys miR-187-5p by reciprocal suppression 26 Chapter 4. Discussion 28 Chapter 5. Future perspective 34 Tables 39 Figures 42 Supplementary material 62 References 75
dc.language.isoen
dc.title局部麻醉劑利多卡因和布比卡因藉由增加MCF-7細胞中的miR-187-5p來抑制MYB和DANCR lncRNAzh_TW
dc.titleLidocaine and Bupivacaine Downregulate MYB and DANCR lncRNA by Upregulating miR-187-5p in MCF-7 Cellsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree博士
dc.contributor.oralexamcommittee鄭仁坤(Jen-Kun Cheng),鄭世平(Shih-Ping Cheng),簡禎彥(Chen-Yen Chien),黃烱瑋(Chiung-Wen Huang)
dc.subject.keyword利多卡因,布比卡因,微小核糖核酸,MYB,長片段非編碼核糖核酸,DANCR,乳癌,微小核糖核酸海綿,zh_TW
dc.subject.keywordlidocaine,bupivacaine,miRNA,MYB,long non-coding RNA,DANCR,breast cancer,miRNA sponge,en
dc.relation.page97
dc.identifier.doi10.6342/NTU202203050
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-05
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
dc.date.embargo-lift2022-10-13-
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
U0001-0109202210464100.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.15 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved