Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8473
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor龔源成(Yuancheng Gung)
dc.contributor.authorKai-Xun Chenen
dc.contributor.author陳凱勛zh_TW
dc.date.accessioned2021-05-20T00:55:17Z-
dc.date.available2020-07-20
dc.date.available2021-05-20T00:55:17Z-
dc.date.copyright2020-07-20
dc.date.issued2020
dc.date.submitted2020-07-01
dc.identifier.citationAndo, M. (1979). The stress field of the Japan islands in the last 0.5 million years (in Japanese). The Earthquake Monthly Symposium, 7, 541–546.
Abt, D. L., Fischer, K. M., French, S. W., Ford, H. A., Yuan, H., Romanowicz, B. (2010). North American lithospheric discontinuity structure imaged by Ps and Sp receiver functions. Journal of Geophysical Research, 115, B09301. https://doi.org/10.1029/2009JB006914
Agostinetti, N. P., Chiarabba, C. (2008). Seismic structure beneath Mt Vesuvius from receiver function analysis and local earthquakes tomography: evidences for location and geometry of the magma chamber. Geophysical Journal International, 175 (3), 1298–1308. http://dx.doi.org/10.1111/j.1365-246X.2008.03868.x.
Arpa, M. C., Zellmer, G. F., Christensou, B., Lube, G., Shellnutt, G. (2017). Variable magma reservoir depths for Tongariro volcanic complex eruptive deposits from 10,1000 years to present. Bulletin of Volcanology, 79, 56. https://doi.org/10.1007/s00445-017-1137-5
Audoine, E., Savage, K., Gledhill, K. (2004). Anisotropic structure under a back arc spreading region, the Taupo Volcanic Zone, New Zealand. Journal of Geophysical Research, 109, B11305. https://doi.org/10.1029/2003JB002932
Bachmann, O., Bergantz, G. W. (2004). On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. Journal of Petrology, 45, 1565–1582. https://doi. org/10.1093/petrology/egh019.
Bachmann, O., Huber, C. (2016). Silicic magma reservoirs in the Earth’s crust. American Mineralogist, 101, 2377–2404. https://doi.org/10.2138/am-2016-5675.
Bannister, S., Bryan, C. J., Bibby, H. M. (2004). Shear wave velocity variation across the Taupo Volcanic Zone, New Zealand, from receiver function inversion. Geophysical Journal International, 159, 291–310. https://doi: 10.1111/j.1365-246X.2004.02384.x
Ban, M., Sagawa, H., Miura, K., Hirotani, S. (2008). Evidence for short-lived stratified magma chamber: petrology of Z-To5 tephra layer (c. 5.8 ka) at Zao volcano, NE Japan. In C. Annen, G.F. Zellmer (Eds.), Dynamics of Crustal Magma Transfer, Storage and Differentiation (Vol. 304, pp. 149–168). London, Special Publications. https://doi.org/10.1144/SP304.8
Bass, J. D. (1995). Elasticity of Minerals, Glasses, and Melts. Mineral Physics and Crystallography: A Handbook of Physical Constants, vol. 2, pp. 45–63. https:// doi.org/10.1029/RF002p0045.
Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., LeVshin, A. L., Lin, F. C., Moschetti, M. P., Shapiro, N. M., Yang, Y. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169, 1239–1260. https://doi.org/10.1111/j.1365-246X.2007.03374.x
Bianchi, I., Bokelmann, G., Shiomi, K. (2015). Crustal anisotropy across northern Japan from receiver functions. Journal of Geophysical Research, Solid Earth, 120, 4998–5012. https://doi.org/10.1002/2014JB011681.
Cashman, K., Sparks, R., Blundy, J. (2017). Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science, 355. https://doi.org/ 10.1126/science.aag3055. https://doi.org/10. 1126/science.aag3055.
Chen, K. X., Chen, P. F., Chen, L. W., Yao, H., Fang, H., Su, P. (2016b). South Ilan plain High-Resolution 3-D S-Wave Velocity from Ambient Noise Tomography. Terrestrial, Atmospheric and Oceanic sciences journal, 27, 375–385. https://doi.org/10.3319/TAO.2016.01.29.02(TEM)
Chen, K.-X., Fischer, K.M., Hua, J., Gung, Y. (2020). Imaging crustal melt beneath northeast Japan with Ps receiver functions. Earth and Planetary Science Letters, 537, 2020. https://doi.org/10.1016/j.epsl.2020.116173.
Chen, K. X., Gung, Y., Kuo, B. Y., Huang, T. Y. (2018). Crustal magmatism and deformation fabrics in northeast Japan revealed by ambient noise tomography. Journal of Geophysical Research, Solid Earth, 123, 8891–8906. https://doi.org/10.1029/ 2017JB015209
Chen, K. X., Kuo-Chen, H., Brown, D., Li, Q., Ye, Z., Liang, W. T., Wang, C. Y., Yao, H. (2016a). Three-dimensional ambient noise tomography across the Taiwan Strait: The structure of a magma-poor rifted margin. Tectonics, 35, 8, 1782–1792. https://doi.org/10.1002/2015TC004097
Chen, L., Wen, L., Zheng, T. (2005). A wave equation migration method for receiver function imaging: 2. Application to the Japan subduction zone. Journal of Geophysical Research, Solid Earth, 110, B11310. http://doi.org/10.1029/2005JB003666.
Chen, L. W., Chen, Y. N., Gung, Y., Lee, J. C., Liang, W. T. (2017). Strong near-surface seismic anisotropy of Taiwan revealed by coda interferometry. Earth Planetary Science Letters, 475, 224–230. https://doi.org/10.1016/j.epsl.2017.07.016
Chiao, L. Y., Fang, H. Y., Gung, Y., Chang, Y. S., Hung, S. H. (2010). Comparative appraisal of linear inverse models constructed via distinctive parameterizations. Journal of Geophysical Research, 115, B07305. https://doi.org/10.1029/2009JB006867
Chiao, L. Y., Kuo, B. Y. (2001). Multiscale seismic tomography. Geophysical Journal International, 145, 517–527. https://doi.org/10.1046/j.0956-540x.2001.01403.x
Chiao, L. Y., Lin, J. R., Gung, Y. (2006). Crustal magnetization equivalent source model of Mars constructed from a hierarchical multiresolution inversion of the MGS data. Journal of Geophysical Research, 111, E12010. https://doi.org.10.1029/2006JE002725
Chu, R. S., Helmberger, D. V., Sun, D. Y., Jackson, J. M., Zhu, L. P. (2010). Mushy magma beneath Yellowstone. Geophysical Research Letters, 37. http://dx.doi.org/10.1029/ 2009GL041656.
Crampin, S., McGonigle, R. (1981). The variation of delays in stress-induced anisotropic polarization anomalies. Geophysical Journal International, 64, 115–131. https://doi.org/10.1111/j.1365-246X.1981.tb02661.x
Costa, A., Caricchi, L., Bagdassarov, N. (2009). A model for the rheology of particle-bearing suspensions and partially molten rocks. Geochemistry, Geophysics, Geosystems, 10, Q03010. https://doi.org/10.1029/2008GC002138.
DeMets, C., Gordon, R. G., Argus, D. F. (2010). Geologically currentplate motions. Geophysical Journal International, 181(1), 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x
Finn, C. (1994). Aeromagnetic evidence for a buried Early Cretaceous magmatic arc, northeast Japan. Journal of Geophysical Research, 99, 22,165–22,185. https://doi.org/10.1029/94JB00855
Fitch, T. J. (1972). Plate convergence, transcurrent faults, and internal deformation adjacent to Southeast Asia and the western Pacific. Journal of Geophysical Research, 77(23), 4432–4460. https://doi.org/10.1029/JB077i023p04432
Gassmann, F., 1951. Über die Elastizität poröser Medien. Vierteljahrsschr. Naturforsch. Ges. Zürich, 96, 1–23.
Gung, Y., Hsu, Y., Chiao, L. Y., Obayashi, M. (2009). Multiscale waveform tomography with two-step model parameterization. Journal of Geophysical Research, 114, B11301. https://doi.org/10.1029/2008JB006275
Guo, Z., Guo, X., Shi, H., Wang, W. (2013). Crustal and uppermost mantle S-wave velocity structure beneath the Japanese islands from seismic ambient noise tomography. Geophysical Journal International, 193, 394–406. https://doi.org/10.1093/gji/ggs121
Hasegawa, A., Horiuchi, S., Umino, N. (1994). Seismic structure of the northeastern Japan convergent margin: a synthesis. Journal of Geophysical Research, Solid Earth, 99, 22295–22311. https:// doi.org/10.1029/93JB02797.
Hasegawa, A., Nakajima, J. (2004). Geophysical constraints on slab subduction and arc magmatism. In R. S. J. Sparks, C. J. Hawkesworth (Eds.), The State of the Planet: Frontiers and Challenges in Geophysics (Vol. 150, pp. 81–94). American Geophysical Union, Washington, D. C.
Hasegawa, A., Umino, N., Takagi, A. (1978). Double-planed structure of the deep seismic zone in the northeastern Japan arc. Tectonophysics, 47, 43–58. https://doi.org/10.1016/0040-1951(78)90150-6
Hildreth, W. (2004). Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems. Journal of Volcanology and Geothermal Research, 136, 169–198. https://doi.org/10.1016/j.jvolgeores.2004.05.019.
Holt, A. F., Becker, T. W., Buffett, B. A. (2015). Trench migration and overriding plate stress in dynamic subduction models. Geophysical Journal International, 201, 172-192. https://doi.org/10.1093/gji/ggv011
Huang, H. H., Lin, F. C., Schmandt, B., Farrell, J., Smith, R. B., Tsai, V. C. (2015). The Yellowstone magmatic system from the mantle plume to the upper crust. Science, 348, 773–776. https://doi.org/10.1126/science.aaa5648
Huang, T. Y., Gung, Y., Kuo, B. Y., Chiao, L. Y., Chen, Y. N. (2015). Layered deformation in the Taiwan orogeny. Science, 349(6249), 720–72. https://doi.org/10.1126/science.aab1879
Huang, T. Y., Gung, Y., Liang, W. T., Chiao, L. Y., Teng, L. S. (2012). Broad-band Rayleigh wave tomography of Taiwan and its implications on gravity anomalies. Geophysical Research Letters, 39, L05305. https://doi.org/10.1029/2011GL050727
Huang, Z., Zhao, D., Wang, L. (2011a). Shear wave anisotropy in the crust, mantle wedge, and subducting Pacific slab under northeast Japan. Geochemistry, Geophysics, Geosystems, 12, Q01002, https://doi.org/10.1029/2010GC003343
Huang, Z., Zhao, D., Wang, L. (2011b). Frequency-dependent shear-wave splitting and multilayer anisotropy in Northeast Japan. Geophysical Research Letters, 38, L08302. https://doi.org/10.1029/2011GL046804.
Huber, C., Townsend, M., Degruyter, W., Bachmann, O. (2019). Optimal depth of subvolcanic magma chamber growth controlled by volatiles and crust rheology. Nature Geoscience, 12, 762–768. https://doi.org/10.1038/s41561-019-0415-6.
Huber, C., Bachmann, O., Manga, M. (2009). Homogenization processes in silicic magma chambers by stirring and mushification (latent heat buffering). Earth and Planetary Science Letters, 283 (1-4), 38-47. http://dx.doi.org/10.1016/j.epsl.2009.03.029.
Hung, S. H., Chen, W. P., and Chiao, L. Y. (2011). A data-adaptive, multiscale approach of finite-frequency, traveltime tomography with special reference to P and S wave data from central Tibet, Journal Geophysical Research, 116, B06307, doi:10.1029/2010JB008190.
Igarashi, T., Iidaka, T., Miyabayashi, S. (2011). Crustal structure in the Japanese Islands inferred from receiver function analysis. Journal of the Seismological Society of Japan, 63, 139–151. https://doi.org/10.4294/zisin.63.139 (in Japanese with English abstract).
Iidaka, T., Muto, J., Obara, K., Igarashi, T., Shibazaki, B. (2013). Trench-parallel crustal anisotropy along the trench in the fore-arc region of Japan. Geophysical Research Letters, 41, 1957–1963. https://doi.org/10.1002/2013GL058359
Iinuma, T., Kato, T., Hori, M. (2005). Inversion of GPS velocity and seismicity data to yield changes in stress in the Japanese Islands. Geophysical Journal International, 160, 417–434. https://doi.org/10.1111/j.1365-246X.2005.02513.x
Iwasaki, T., Levin, V., Nikulin, A., Iidaka, T. (2013). Constraints on the Moho in Japan and Kamchatka. Tectonophysics, 609, 184–201. https://doi.org/10.1016/j. tecto.2012.11.023.
Jackson, M. D., Blundy, J., Sparks, R. S. J. (2018). Chemical differentiation, cold storage and remobilization of magma in the Earth’s crust. Nature 564, 405–409. https:// doi.org/10.1038/s41586-018-0746-2.
Janiszewski, H. A., Abers, G. A., Shillington, D. J., Calkins, J. A. (2013). Crustal structure along the Aleutian island arc: new insights from receiver functions constrained by active-source data. Geochemistry, Geophysics, Geosystem, 14, 2977–2992. https://doi. org/10.1002/ggge.20211.
Jolivet, L., Tamaki, K., Fournier, M. (1994). Japan Sea, opening history and mechanism: A synthesis. Journal of Geophysical Research, 99, 22,237–22,259. https://doi.org/10.1029/93JB03463
Kaminski, É., Ribe, N. M. (2002). Timescales for the evolution of seismic anisotropy in mantle flow. Geochemistry, Geophysics, Geosystems, 3(8). https://doi.org/10.1029/2001GC000222
Kaneko, S. (1966). Transcurrent displacement along the Median Line, southwestern Japan. New Zealand Journal of Geology and Geophysics, 9, 45–59. https://dx.doi.org/10.1080/00288306.1966.10420194
Kaneshima, S. (1990). Origin of crustal anisotropy: shear wave splitting studies in Japan. Journal of Geophysical Research, 95, 11,121-11,133.
Kaneshima, S., Ando, M., Crampin, S. (1987). Shear-wave splitting above small earthquakes in the Kinki District of Japan. Physics of the Earth and Planetary Interiors, 45, 45–58. https://doi.org/10.1016/0031-9201(87)90196-8
Kano, K., Kato, H., Yanagisawa, Y., Yoshida, F. (1991). Stratigraphy and geologic history of the Cenozoic of Japan. Geological Survey of Japan Report, 274, 114.
Karato, S., Jung, H., Katayama, I., Skemer, P. A. (2008). Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratory studies. Annual Review of Earth and Planetary Sciences, 36, 59–95. https://doi.org/10.1146/annurev.earth.36.031207.124120
Katayama, I., Hirauchi, K.‐I., Michibayashi, K., Ando, J.‐I. (2009). Trench‐parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge. Nature, 461, 1114–1117. https://doi.org/10.1038/nature08513
Katsumata, A. (2010). Depth of the Moho discontinuity beneath the Japanese islands estimated by traveltime analysis. Journal of Geophysical Research, 115, B04303. https://doi.org/10.1029/2008JB005864
Kawakatsu, H., Watada, S. (2007). Seismic evidence for deep-water transportation in the mantle. Science, 316 (5830), 1468–1471. https://doi.org/10.1126/science. 1140855.
Keith, C. M., Crampin, S. (1977). Seismic body waves in anisotropic media: synthetic seismograms. Geophysical Journal of the Royal Astronomical Society, 49, 225–243. https://doi.org/10.1111/j. 1365-246X.1977.tb03710.x.
Kennett, B. L. N. (1991). The removal of free surface interactions from three-component seismograms. Geophysical Journal International, 104, 153–163. https://doi.org/10.1111/j.1365- 246X.1991.tb02501.x.
Kiser, E., Palomeras, I., Levander, A., Zelt, C., Harder, S., Schmandt, B., Hansen, S., Creager, K., Ulberg, C. (2016). Magma reservoirs from the upper crust to the Moho inferred from high-resolution Vp and Vs models beneath Mount St. Helens, Washington State, USA. Geology, 44 (6), G37591.1. https://doi.org/10.1130/ G37591.1.
Kiser, E., Levander, A., Zelt, C., Schmandt, B., Hansen, S. J. G. (2018). Focusing of melt near the top of the Mount St. Helens (USA) magma reservoir and its relationship to major volcanic eruptions. Geology, 46, 775–778. https://doi.org/10.1130/ G45140.1.
Ko, Y. T., Kuo, B. Y., Hung, S. H. (2012). The southwestern edge of the Ryukyu subduction zone: a high Q mantle wedge. Earth and Planetary Science Letters, 335-336, 145-153. https://doi.org/10.1016/j.epsl.2012.04.041
Komatsu, M., Osanai, Y., Toyoshima, T., Miyashita, S. (1989). Evolution of the Hidaka metamorphic belt, northern Japan. In J. S. Daly, R. A. Cliff, B. W. D. Yardley (Eds.), Evolution of Metamorphic Belts (Special Publication, 43, pp. 487–493). Geological Society, London. https://doi.org/10.1144/GSL.SP.1989.043.01.45
Koulakov, I., Abkadyrov, I., Al Arifi, N., Deev, E., Droznina, S., Gordeev, E. I., Jakovlev, A., El Khrepy, S., Kulakov, R. I., Kugaenko, Y. (2017). Three different types of plumbing systems beneath the neighboring active volcanoes of Tolbachik, Bezymianny and KlyucheVskoy in Kamchatka. Journal of Geophysical Research, 122 (5). https:// doi.org/10.1002/2017JB014082.
Kuo, B. Y., Wu, K. Y. (1997). Global shear velocity heterogeneities in the D” layer: Inversion from Sd-SKS differential travel times, Journal of Geophysical Research, 102, 11,775-11,788.
Lawson, C. L., Hanson, R. J. (1974). Solving least squares problems. Englewood Cliffs: Prentice-Hall.
Lekic, V., Fischer, K. M. (2014). Contrasting lithospheric signatures across the western United States revealed by Sp receiver functions. Earth and Planetary Science Letters, 402, 90–98. https://doi.org/10.1016/j.epsl.2013.11.026.
Levy, M., Bass, H., Stern, R. (2000). Handbook of Elastic Properties of Solids, Liquids, and Gases, Four-Volume Set. Academic Press.
LeVshin, A. L., Yanocskaya, T. B., Lander, A. V., Bukchin, B. G., Barmin, M. P., Ratnikova, L. I., Its, E. N. (1989). In V. I. Keilis-Borok (Eds.), Seismic Surface Waves in a Laterally Inhomogeneous Earth. Kluwer Academic, Norwell, Mass. https://doi.org/10.1007/978-94-009-0883-3_1
Ligorria, J. P., Ammon, C. J. (1999). Iterative deconvolution and receiver-function estimation. Bulletin of the Seismological Society of America, 89, 1395–1400.
Lin, S. C., Kuo, B. Y. (2016). Dynamics of the opposite-verging subduction zones in the Taiwan region: Insights from numerical models. Journal of Geophysical Research, Solid Earth, 121, 2174–2192. https://doi.org/10.1002/2015JB012784
Liu, X., Zhao, D. (2016). Backarc spreading and mantle wedge flow beneath the Japan Sea: insight from Rayleigh-wave anisotropic tomography. Geophysical Journal International, 207, 357–373. https://doi.org/10.1093/gji/ggw288
Matsubara, M., Sato, H., Uehira, K., Mochizuki, M., Kanazawa, T. (2017). Three dimensional seismic velocity structure beneath Japanese Islands and surroundings based on NIED seismic networks using both inland and offshore events. Journal of Disaster Research, 12, 844–857. https://doi.org/10.20965/jdr.2017.p0844.
Mardia, K. V., Jupp, P. E. (2000). Directional Statistics (pp. 429). John Wiley, Hoboken, N. J. https://dx.doi.org/10.1002/9780470316979
Miyagi, I. (2007). Stratigraphy and volcanic activities of Hijiori volcano, Northeastern Japan arc (in Japanese with English abstract). Bulletin of the Volcanological Society of Japan, 52(6), 311–333. https://doi.org/10.18940/kazan.52.6_311
Miyagi, I., Kita, N., Morishita, Y. (2017). The geochemical and petrological characteristics of prenatal caldera volcano: a case of the newly formed small dacitic caldera, Hijiori, Northeast Japan. Contributions to Mineralogy and Petrology, 172, 79. https://doi. org/10.1007/s00410-017-1391-8.
Montagner, J.-P., Nataf, H.-C. (1986). A simple method for inverting the azimuthal anisotropy of surface waves. Journal of Geophysical Research, 91(B1), 511–520.
Nakajima, J., Hasegawa, A. (2004). Shear-wave polarization anisotropy and subduction-induced flow in the mantle wedge of northeastern Japan. Earth and Planetary Science Letters, 225, 365–377. https://doi.org/10.1016/j.epsl.2004.06.011
Nakajima, J., Matsuzawa, T., Hasegawa, A., Zhao, D. (2001). Three-dimensional structure of Vp, Vs, and Vp/Vs beneath northeastern Japan: Implications for arc magmatism and fluids. Journal of Geophysical Research, 106, 21, 843–21, 857. https://doi.org/10.1029/2000JB000008
Nakajima, J., Matsuzawa, T., Hasegawa, A. (2002). Moho depth variation in the central part of northeastern Japan estimated from reflected and converted waves. Physics of the Earth and Planetary Interiors, 130, 31–47. https:// https://doi.org/10.1016/S0031-9201(01)00307-7
Nakajima, J., Shimizu, J., Hori, S., Hasegawa, A. (2006). Shear-wave splitting beneath the southwestern Kurile arc and northeastern Japan arc: A new insight into mantle return flow. Geophysical Research Letters, 33, L05305. https://doi.org/10.1029/2005GL025053
Nakamichi, H., Tanaka, S., Hamaguchi, H. (2002). Fine S wave velocity structure beneath Iwate volcano, northeastern Japan, as derived from receiver functions and travel times. Journal of Volcanology and Geothermal Research, 116, 235–255. https://doi.org/10.1016/ S0377-0273(02)00218-4.
Nakata, N., Snieder, R. (2012). Estimating near-surface shear wave velocities in Japan by applying seismic interferometry to KiK-net data. Journal of Geophysical Research, 117, B01308. https://doi.org/10.1029/2011JB008595
Nishida, K., Kawakatsu, H., Obara, K. (2008). Three‐dimensional crustal S wave velocity structure in Japan using microseismic data recorded by Hi‐net tiltmeters. Journal of Geophysical Research, 113, B10302. https://doi.org/10.1029/2007JB005395
Nishimoto, S., Ishikawa, M., Arima, M., Yoshida, T., Nakajima, J. (2008). Simultaneous high P-T measurements of ultrasonic compressional and shear wave velocities in Ichinomegata mafic xenoliths: their bearings on seismic velocity perturbations in lower crust of Northeast Japan arc. Journal of Geophysical Research, 113, B12212. https:// doi.org/10.1029/2008JB005587.
Niu, X., Zhao, D., Li, J. (2018). Precise relocation of low-frequency earthquakes in Northeast Japan: new insight into arc magma and fluids. Geophysical Journal International, 212, 1183-1200. https://doi.org/10.1093/gji/ggx445
Nur, A., Mavko, G., Dvorkin, J., Galmudi, D. (1998). Critical porosity: a key to relating physical properties to porosity in rocks. Lead. Edge, 17, 357–362. https://doi.org/ 10.1190/1.1437977.
Obara, K., Kasahara, K., Hori, S., Okada, Y. (2005). A densely distributed high-sensitivity seismograph network in Japan: Hi-net by National Research Institute for Earth Science and Disaster Prevention. Review of Scientific Instruments, 76, 021301. https://doi.org/10.1063/1.1854197
Okada, S., Ikeda, Y. (2012). Quantifying crustal extension and shortening in the back-arc region of Northeastern Japan. Journal of Geophysical Research, 117, B01404. https://doi.org/10.1029/2011JB008355
Ozawa, K., Shibata, K., Uchiumi, S. (1988). K-Ar ages of hornblende in gabbroic rocks from the Miyamori ultramafic complex of the Kitakami Mountains. Journal of Mineralogy, Petrology and Economic Geology, 83, 150–159. https://doi.org/10.2465/ganko.83.150
Pandey, S., Yuan, X., Debayle, E., Tilmann, F., Priestley, K., Li, X. (2015). Depth-variant azimuthal anisotropy in Tibet revealed by surface wave tomography. Geophysical Research Letters, 42, 4326–4334. https://doi.org/10.1002/2015GL063921
Park, S., Ishii, M. (2018). Near-surface compressional and shear wave speeds constrained by body-wave polarisation analysis. Geophysical Journal International, 213, 1559–1571. https://doi.org/10.1093/gji/ggy072.
Park, S., Tsai, V. C., Ishii, M. (2019). Frequency-dependent P wave polarization and its subwavelength near-surface depth sensitivity. Geophysical Research Letters, 46, 14,377–14,384. https://doi.org/10.1029/2019GL084892.
Porritt, R. W., Yoshioka, S. (2017). Evidence of dynamic crustal deformation in Tohoku, Japan, from time-varying receiver functions. Tectonics, 36, 1934–1946. https:// doi.org/10.1002/2016TC004413.
Ray, T. W., Anderson, D. L. (1994). Spherical disharmonics in the earth sciences and the spatial solution: Ridges, hotspots, slabs, geochemistry and tomography corrections. Journal of Geophysical Research, 99, 9605–9614. https://doi.org/10.1029/94JB00340
Ribe, N. M. (1992). On the relation between seismic anisotropy and finite strain. Journal of Geophysical Research, 97(B6), 8737–8747. https://doi.org/10.1029/92JB00551
Saito, M. (1988). DISPER80: A subroutine package for the calculation of seismic normal mode solutions. In D. J. Doornbos (Ed.), Seismological Algorithms: Computational Methods and Computer Programs, 293–319. New York: Academic Press.
Schulte-Pelkum, V., Mahan, K. (2014). A method for mapping crustal deformation and anisotropy with receiver functions and first results from USArray. Earth and Planetary Science Letters, 402, 221–233. https://doi.org/10.1016/j.epsl.2014.01.050.
Seats, K. J., Lawrence, J. F., Prieto, G. A. (2011). Improved ambient noise correlation functions using Welch’s methods. Geophysical Journal International, 188, 513–523. https://doi:10.1111/j.1365-246X.2011. 05263.X
Shapiro, N. M., Campillo, M., Stehly, L., Ritzwoller, M. H. (2005). High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715), 1615–1618. https://doi.org/10.1126/science.1108339
Smith, M. L., Dahlen, F. A. (1973). Azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium. Journal of Geophysical Research, 78(17), 3321–3333. https://doi.org/10.1029/JB078i017p03321.
Sparks, R. S. J., Annen, C., Blundy, J. D., Cashman, K. V., Rust, A. C., Jackson, M. D. (2019). Formation and dynamics of magma reservoirs. Philosophical Transactions of the Royal Society, A 377 (2139). https://doi.org/10.1098/rsta.2018.0019.
Sweldens, W. (1996). The lifting scheme: Accustom-design construction of biorthogonal wavelets, Applied and Computational Harmonic Analysis 3, 186-200.
https://doi.org/10.1006/acha.1996.0015
Taira, A. (2001). Tectonic evolution of the Japanese island arc system. Annual Review of Earth and Planetary Sciences, 29, 109–134. https://doi.org/10.1146/annurev.earth.29.1.109
Tamura, Y., Tatsumi, Y., Zhao, D., Kido, Y., Shukuno, H. (2002). Hot fingers in the mantle wedge: new insights into magma genesis in subduction zones. Earth Planetary Science Letters, 197, 105–116. https://doi.org/10.1016/S0012-821X(02)00465-X
Tatham, D. J., Lloyd, G. E., Butler, R. W. H., Casey, M. (2008). Amphibole and lower crustal seismic properties. Earth Planetary Science Letters, 267, 118-128. https://doi.org/10.1016/j.epsl.2007.11.042
Ueno, H., Hatakeyama. S., Aketagawa. T., Funasaki. J., Hamada, N. (2002). Improvement of hypocenter determination procedures in the Japan Meteorological Agency (in Japanese with English abstract). Quarterly Journal of Seismology, 65, 123–134.
Umeda, K., Ban, M., Hayashi, S., Kusano, T. (2013). Tectonic shortening and coeval volcanism during the Quaternary, Northeast Japan arc. Journal of Earth System Science, 122, 137–147. https://doi.org/10.1007/s12040-012-0245-z
Van der Molen, I., Paterson, M. S. (1979). Experimental deformation of partially- melted granite. Contributions to Mineralogy and Petrology, 70, 299–318. https://doi.org/10.1007/ BF00375359.
Wang, J., Zhao, D. (2013). P-wave tomography for 3-D radial and azimuthal anisotropy of Tohoku and Kyushu subduction zones. Geophysical Journal International, 193, 1166–1181. https://doi.org/10.1093/gji/ggt086
Wang, K. L., Chung, S. L., O’ Reilly, S. Y., Sun, S. S., Shinjo, R., Chen, C. H. (2004). Geochemical constraints for the genesis of post-collisional magmatism and the geodynamic evolution of the northern Taiwan region. Journal of Petrology, 45, 975–1011. https://doi.org/10.1093/petrology/egh001
Ward, K., Zandt, G., Beck, S., Christensen, D., McFarlin, H. (2014). Seismic imaging of the magmatic underpinnings beneath the Altiplano–Puna volcanic complex from the joint inversion of surface wave dispersion and receiver functions. Earth and Planetary Science Letters, 404, 43–53. https://doi.org/10.1016/j.epsl.2014.07.022.
Xia, S., Zhao, D., Qiu, X., Nakajima, J., Matsuzawa, T., Hasegawa, A. (2007). Mapping the crustal structure under active volcanoes in central Tohoku, Japan using P and PmP data. Geophysical Research Letters, 34, L10309. https://doi.org/10.1029/2007GL030026
Yang, T. Y., Chen, C. H., Lee, T. (1992). Fission-track dating of Lutao volcanics: implications of partial annealing and eruption history. Journal of the Geological Society of China, 35, 19–42. https://doi.org/10.1016/0743-9547(94)00041-C
Yang, Y., Ritzwoller. M. H., Lin. F. C., Moschetti. M. P., Shapiro, N. M. (2008). Structure of the crust and uppermost mantle beneath the Western United States revealed by ambient noise and earthquake tomography. Journal of Geophysical Research, 113, B12, 1–9. https://doi.org/10.1029/2008JB005833
Yoshida, T., Kimura, J.-I., Yamada, R., Acocella, V., Sato, H., Zhao, D., Nakajima, J., Hasegawa, A., Okada, T., Honda, S., Ishikawa, M., Prima, O.D.A., Kudo, T., Shibazaki, B., Tanaka, A., Imaizumi, T. (2014). Evolution of late Cenozoic magmatism and the crust-mantle structure in the NE Japan Arc. Geological Society, London, Special Publications, 385, 335–387. https://doi.org/10.1144/SP385.15.
Yoshii, T., Asano, S. (1972). Time-term analyses of explosion seismic data. Journal of Physics of the Earth, 20, 47–58. https://doi.org/10.4294/jpe1952.20.47.
You, S. H., Gung, Y., Chiao, L. Y., Chen, Y. N., Lin, C. H., Liang, W. T., Chen, Y. L. (2010). Multi-scale ambient noise tomography of short period Rayleigh waves across northern Taiwan. Bulletin of the Seismological Society of America, 100(6), 3165–3173. https://doi.org/10.1785/0120090394
Yu, X., Lee, C.-T. A., 2016. Critical porosity of melt segregation during crustal melting: constraints from zonation of peritectic garnets in a dacite volcano. Earth and Planetary Science Letters, 449, 127–134. https://doi.org/10.1016/j.epsl.2016.05.025.
Zellmer, G. F., Annen, C. (2008). An introduction to magma dynamics. In C. Annen and G. F. Zellmer (Eds.), Dynamics of Crustal Magma Transfer, Storage and Differentiation (Special Publications 304, pp. 1-13) Geological Society, London. https://doi.org/10.1144/SP304.1
Zellmer, G. F., Chen, K. X., Gung, Y., Kuo, B. Y., Yoshida, T. (2019). Magma transfer processes in the NE Japan arc: insights from crustal ambient noise tomography combined with volcanic eruption records. Frontiers in Earth Science, 7, 40. https:// doi.org/10.3389/feart.2019.00040.
Zellmer, G. F., Pistone, M., Iizuka, Y., Andrews, B. J., Gómez-Tuena, A., Straub, S. M., Cottrell, E. (2016). Petrogenesis of antecryst-bearing arc basalts from the Trans-Mexican Volcanic Belt: Insights into along-arc variations in magma-mush ponding depths, H2O contents, and surface heat flux. American Mineralogist, 101, 2405–2422. https://doi.org/10.2138/am-2016-5701
Zhang, S., Karoto, S. I. (1995). Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature, 375, 774–777. https://doi.org/ doi:10.1038/375774a0
Zhao, D., Hasegawa, A., Horiuchi, S. (1992). Tomographic imaging of P and S wave velocity structure beneath northeastern Japan. Journal of Geophysical Research, 97, 19,909–19,928. https://doi.org/10.1029/92JB00603
Zhao, D., Kitagawa, H., Toyokuni, G. (2015). A water wall in the Tohoku forearc causing large crustal earthquakes. Geophysical Journal International, 200, 149–172. https://doi.org/10.1093/gji/ggu381
Zhao, D., Matsuzawa, T., Hasegawa, A. (1997). Morphology of the subducting slab boundary in the northeastern Japan arc. Physics of the Earth and Planetary Interiors, 102, 89–104. https://doi.org/10.1016/S0031-9201(96)03258-X
Zhao, D., Yanada, T., Hasegawa, A., Umino, N., Wei, W. (2012). Imaging the subducting slabs and mantle upwelling under the Japan Islands. Geophysical Journal International, 190, 816-828. http://doi:10.1111/j.1365-246X.2012.05550.x
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8473-
dc.description.abstract日本東北是日本各地區當中構造單純的區域,在此地區的研究結果是往後研究其他受板塊隱沒與岩漿活動區域的基石。在這裡,太平洋板塊向西隱沒到歐亞板塊下,島的東側由兩個相當古老的岩塊組成,中間有多座活火山,西側由零星的活火山以及第三紀、第四紀沈積物組成。相較於過去三四十年的研究多著重在地幔的構造,近期受惠於資料品質的提升以及技術方法的演進,地殼尺度的相關研究也逐漸增加中。
我們使用佈設於此區一百個左右Hi-net測站之連續噪訊紀錄,計算兩測站間的交相關函數,這些廣佈的高品質測站交織出相當密集的波線路徑,進而將擷取出的基態表面波訊號用於建立高解析的地殼剪力波速度與方位非均向的模型。在三維的剪力波速度模型中,幾乎所有的火山下方都在5-18公里的深度間表現出顯著的低速異常,而在9-13公里深的速度異常更是可以高達將近-10%。而三維的非均向性模型顯示日本東北的地殼是由兩個不同的變形機制所構成,其中淺部5公里的快方向主要為南北向,平行島嶼走向,推斷是岩石受應力後而產生的排列方式; 20公里以下的快軸主要是東西向的板塊聚合方向,成因可能是受到在地幔楔因隱沒的二維地幔楔流場所帶動的剪力所導致;另一種成因可能是這地區在上一次的日本海張裂時期就已經形成並冷卻殘餘留下的非均向性; 在這兩層之間的非均向性則呈現強度減弱、快方向排列不一致的結果,顯示火山下方的震波速度明顯受到火成活動影響。
另外,遠震的接收函數也被用來探討地殼內不連續面的分佈與可能的成因,在分析將近15年總計約1800個的遠震資料後,我們發現接收函數中負相位的訊號多集中在火山附近約8-10公里深,先前的研究多將這類訊號歸因於地殼內的非均向性,不過我們在反覆確認計算結果、並利用合成波型來測試後,發現單純用地殼內非均向性來解釋所觀察到的負相位強度是遠遠不夠的,同時,這些負相位訊號在我們的剪力波速度模型上正巧是處於低速異常的上邊界,意味著該處可能是因為火山熔體堆積在整個儲集區的頂部而產生的速度下降,經計算後得知約有5~10%的熔體含量,而零星分佈在下部地殼的負異常訊號可能是反應另一個較深處熔體儲集區的上邊界。
以上兩個研究使用了地震學中不同的分析方法,不但能夠相互驗證與解釋,與火山構造的吻合也將單純的速度分佈賦予了火山構造的含義,使我們對這地區的地殼構造能夠有進一步的認識。
zh_TW
dc.description.abstractNortheast Japan, or the Tohoku region, is the “simplest” area in Japan archipelago for fundamental study of subduction-magmatism system that will be the basis for the other similar regions. Here, the Pacific plate westward subducts beneath the Eurasian plate, the east two mountains are composed of Cretaceous rocks, and Holocene arc volcanoes dominate in the central belt and lie more sporadically in the west. The seismic structure of Tohoku, particularly in the mantle was broadly investigated in the past few decades. In contrast, crustal-scale study is increasing in recent years, contributing to the improvements in data quality and analysis method.
In the first part of this thesis, continuous records from 123 Hi-net stations were used to construct cross-correlation functions between each potential station-pair. These high-quality, widely-deployed borehole stations yield a data set of fundamental-mode surface wave with a dense path coverage, allowing us to simultaneously inverts for high-resolution shear velocity and azimuthal anisotropy crustal models. In the Vs structure, under most of the active volcanoes, low velocity zones are more common in the upper crust and are strong at a depth of 9-13 km with anomaly up to -10%. In azimuthal anisotropy, a crustal two-layer pattern is resolved, which a near N-S, island-parallel fast direction in shallow 5 km depth that may map structural fabrics of crustal deformation, and a near E-W, convergence-parallel fast direction in lower crust that may result from shearing either imposed by the return flow in the mantle wedge or frozen-in from the last stage of extension of the continental margin. Between these two layers, coherent crustal fabrics collapse and anisotropy turns to a chaotic state, suggesting that continuous volcanic activities disrupt the otherwise consistent fabrics.
In the second part of this thesis, Ps receiver functions were used to investigate crustal discontinuities and their origins. From ~1800 teleseismic events occurred in 15 years, the calculated receiver functions show prevalent negative phases at a depth range of 8-10 km near the active volcanoes. In a previous study, the negative phases were attributed to crustal azimuthal anisotropy. However, after a closer look at the results and a series of tests with synthetic seismograms, we inferred that azimuthal anisotropy is insufficient to explain the strong negative phases. These pronounced phases correlate well with the upper margins of low velocity zones beneath volcanoes, which this feature is consistent with model for crustal melt storage where the highest concentrations of melt are localized at the top the mush column, implying a 5-10% melt fractions across the Tohoku. Some groups of deeper negative Ps phases may reflect the upper boundary of melt storage at greater depths.
In this thesis, observations from ambient noise tomography and Ps receiver function could explain well with each other and correlate well with surface geology that provides seismic velocity more implication in volcanic structure, letting us move forward in crustal structure of Tohoku.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T00:55:17Z (GMT). No. of bitstreams: 1
U0001-3006202016562800.pdf: 21064317 bytes, checksum: 23f696bfb5677b9a6cef423f793119fb (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents
口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT v
Table of Contents vii
LIST OF FIGURES ix
Chapter 1 Introduction 1
Chapter 2 Crustal Magmatism and Deformation Fabrics in Northeast Japan Revealed by Ambient Noise Tomography 5
2.1 Introduction 6
2.2 Data and Method 10
2.3 Results 17
2.4 Discussion 30
2.4.1 Vs-Volcano Relationship 30
2.4.2 Anisotropy and Magma Reservoir 32
2.4.3 The Lower-Crustal Flow 36
2.4.4 More About Magma Reservoir 37
2.5 Conclusions 41
2.6 Appendix A 42
2.6.1 Inversion for Vs and anisotropy 42
2.6.2 Recovery test 43
2.6.3 Checkerboard resolution test 47
2.6.4 The binomial distribution and t-test 49
2.6.5 Bootstraps experiment 52
Chapter 3 Imaging crustal melt beneath northeast Japan with Ps receiver functions 55
3.1 Introduction 56
3.1.1 Crustal magma storage 56
3.1.2 Subduction, the Tohoku arc and crustal velocity structure 57
3.2 Data and Methods 60
3.3 Results: observed crustal discontinuities and their origin 76
3.4 Discussion 85
3.4.1 Modeling velocity structure 85
3.4.2 Bounds on melt-fraction in the shallow magma storage zone 96
3.4.3 Implications for polybaric crustal melt storage 97
3.5 Conclusions 100
REFERENCES 102
dc.language.isoen
dc.title利用噪訊成像法以及Ps接收函數探究日本東北之地殼構造zh_TW
dc.titleCrustal Seismic Structure of Northeast Japan Revealed by Ambient Noise Tomography and Ps Receiver Functionsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.author-orcid0000-0003-0288-2767
dc.contributor.coadvisor郭本垣(Ban-Yuan Kuo)
dc.contributor.oralexamcommittee喬淩雲(Lin-Yun Chiao),洪淑蕙(Shu-Huei Hung),林佩瑩(Pei-Ying Lin)
dc.subject.keyword日本東北,周遭噪訊層析成像,地殼速度,地殼非均向性,分層變形,熔體儲集區,接收函數,速度降,熔體含量,zh_TW
dc.subject.keywordNortheast Japan,ambient noise tomography,crustal shear velocity,crustal azimuthal anisotropy,layered-deformation,melt storage,Ps receiver function,velocity drop,melt fraction,en
dc.relation.page115
dc.identifier.doi10.6342/NTU202001217
dc.rights.note同意授權(全球公開)
dc.date.accepted2020-07-01
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
U0001-3006202016562800.pdf20.57 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved