請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84734完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭宇翔(Yu-Hsiang Cheng) | |
| dc.contributor.author | Chu-Hsuan Lin | en |
| dc.contributor.author | 林楚軒 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:22:53Z | - |
| dc.date.copyright | 2022-09-19 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-05 | |
| dc.identifier.citation | [1] O. Graydon. https://go.nature.com/3ILBMDK (accessed. [2] A. Dobroiu, C. Otani, and K. Kawase, 'Terahertz-wave sources and imaging applications,' Measurement Science and Technology, vol. 17, no. 11, pp. R161-R174, 2006. [3] V. Petrov, T. Kurner, and I. Hosako, 'IEEE 802.15.3d: First Standardization Efforts for Sub-Terahertz Band Communications toward 6G,' IEEE Communications Magazine, vol. 58, no. 11, pp. 28-33, 2020. [4] Y. Yang, A. Shutler, and D. Grischkowsky, 'Measurement of the transmission of the atmosphere from 0.2 to 2 THz,' Opt. Express, vol. 19, no. 9, pp. 8830-8838, 2011. [5] K. Y. Li and Y. H. Cheng, 'An Inline Microstrip-to-Waveguide Transition at 300 GHz,' in 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2021, pp. 1-2. [6] C. A. Leal-Sevillano et al., 'Silicon Micromachined Canonical E-Plane and H-Plane Bandpass Filters at the Terahertz Band,' IEEE Microwave and Wireless Components Letters, vol. 23, no. 6, pp. 288-290, 2013. [7] J. x. Zhuang, Z. C. Hao, and W. Hong, 'Silicon Micromachined Terahertz Bandpass Filter With Elliptic Cavities,' IEEE Transactions on Terahertz Science and Technology, vol. 5, no. 6, pp. 1040-1047, 2015. [8] J. Cui, C. Ai, Y. Zhang, J. Hu, B. Yan, and R. Xu, 'A 420 GHz waveguide filter based on MEMS technology,' in 2017 IEEE MTT-S International Microwave Symposium (IMS), 2017: IEEE, pp. 1445-1448. [9] Q. Chen, X. Shang, Y. Tian, J. Xu, and M. Lancaster, 'SU‐8 micromachined WR‐3 band waveguide bandpass filter with low insertion loss,' Electronics letters, vol. 49, no. 7, pp. 480-482, 2013. [10] X. Shang, M. Ke, Y. Wang, and M. J. Lancaster, 'WR-3 band waveguides and filters fabricated using SU8 photoresist micromachining technology,' IEEE Transactions on Terahertz Science and Technology, vol. 2, no. 6, pp. 629-637, 2012. [11] X. Shang, Y. Tian, M. J. Lancaster, and S. Singh, 'A SU8 micromachined WR-1.5 band waveguide filter,' IEEE microwave and wireless components letters, vol. 23, no. 6, pp. 300-302, 2013. [12] X. Shang, H. Yang, D. Glynn, and M. J. Lancaster, 'Submillimeter‐wave waveguide filters fabricated by SU‐8 process and laser micromachining,' IET Microwaves, Antennas & Propagation, vol. 11, no. 14, pp. 2027-2034, 2017. [13] C. A. Leal-Sevillano, J. R. Montejo-Garai, M. Ke, M. J. Lancaster, J. A. Ruiz-Cruz, and J. M. Rebollar, 'A pseudo-elliptical response filter at W-band fabricated with thick SU-8 photo-resist technology,' IEEE microwave and wireless components letters, vol. 22, no. 3, pp. 105-107, 2012. [14] H. Yang et al., 'WR-3 waveguide bandpass filters fabricated using high precision CNC machining and SU-8 photoresist technology,' IEEE Transactions on Terahertz Science and Technology, vol. 8, no. 1, pp. 100-107, 2017. [15] J.-X. Zhuang, W. Hong, and Z.-C. Hao, 'Design and analysis of a terahertz bandpass filter,' in 2015 IEEE International Wireless Symposium (IWS 2015), 2015: IEEE, pp. 1-4. [16] J.-Q. Ding, S.-C. Shi, K. Zhou, Y. Zhao, D. Liu, and W. Wu, 'WR-3 band quasi-elliptical waveguide filters using higher order mode resonances,' IEEE Transactions on Terahertz Science and Technology, vol. 7, no. 3, pp. 302-309, 2017. [17] N. Zhang, R. Song, C. Wang, M. Hu, Q. Guo, and J. Yang, 'Design and experiment of 340-GHz band pass filter with low insertion loss,' IEEE Access, vol. 7, pp. 27196-27206, 2019. [18] D. Wang, M. J. Lancaster, Y. Wang, K. M. Shum, and Q. Zhang, 'WR‐1.5 (500–750 GHz) waveguide bandpass filter fabricated using high precision computer numerically controlled machining,' Microwave and Optical Technology Letters, vol. 63, no. 4, pp. 1160-1164, 2021. [19] Y. Feng et al., 'WR-2.8 band pseudoelliptic waveguide filter based on singlet and extracted pole resonator,' Ieee Access, vol. 7, pp. 54705-54711, 2019. [20] D. Koller, E. W. Bryerton, and J. L. Hesler, 'WM380 (675–700 GHz) bandpass filters in milled, split-block construction,' IEEE Transactions on Terahertz Science and Technology, vol. 8, no. 6, pp. 630-637, 2018. [21] Q.-J. Zhang, K. C. Gupta, and V. K. Devabhaktuni, 'Artificial neural networks for RF and microwave design-from theory to practice,' IEEE transactions on microwave theory and techniques, vol. 51, no. 4, pp. 1339-1350, 2003. [22] G. Fedi, A. Gaggelli, S. Manetti, and G. Pelosi, 'Direct‐coupled cavity filters design using a hybrid feedforward neural network–finite elements procedure,' International Journal of RF and Microwave Computer‐Aided Engineering, vol. 9, no. 3, pp. 287-296, 1999. [23] C. Zhang, J. Jin, W. Na, Q.-J. Zhang, and M. Yu, 'Multivalued neural network inverse modeling and applications to microwave filters,' IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 8, pp. 3781-3797, 2018. [24] L. Yuan, X.-S. Yang, C. Wang, and B.-Z. Wang, 'Inverse design of metasurface using combined neural network and transfer function,' in 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 2020: IEEE, pp. 2027-2028. [25] L. Yuan, L. Wang, X.-S. Yang, H. Huang, and B.-Z. Wang, 'An efficient artificial neural network model for inverse design of metasurfaces,' IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 6, pp. 1013-1017, 2021. [26] J.-S. G. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications. John Wiley & Sons, 2004. [27] D. M. Pozar, Microwave Engineering, 4th Edition. Wiley, 2011. [28] R. J. Cameron, C. M. Kudsia, and R. R. Mansour, Microwave filters for communication systems: fundamentals, design, and applications. John Wiley & Sons, 2018. [29] R. J. Cameron, 'Advanced coupling matrix synthesis techniques for microwave filters,' IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 1, pp. 1-10, 2003. [30] W. Chew, Lectures on Theory of Microwave and Optical Waveguides. 2021. [31] http://www.yidakuntai.com/news/95/229.html (accessed. [32] P. G. Huray, O. Oluwafemi, J. Loyer, E. Bogatin, and X. Ye, 'Impact of copper surface texture on loss: A model that works,' DesignCon 2010, vol. 1, pp. 462-483, 2010. [33] N. Marcuvitz, Waveguide handbook (no. 21). Iet, 1951. [34] X. Shang, M. Ke, Y. Wang, and M. Lancaster, 'Micromachined W-band waveguide and filter with two embedded H-plane bends,' IET microwaves, antennas & propagation, vol. 5, no. 3, pp. 334-339, 2011. [35] X. Shang, 'SU-8 micromachined terahertz waveguide circuits and coupling matrix design of multiple passband filters,' University of Birmingham, 2011. [36] G. F. Craven and C. Mok, 'The design of evanescent mode waveguide bandpass filters for a prescribed insertion loss characteristic,' IEEE Transactions on Microwave Theory and Techniques, vol. 19, no. 3, pp. 295-308, 1971. [37] D. Banerjee and K. Schuenemann, 'Evanescent Mode Technique—Theory and Application,' IETE Journal of Research, vol. 32, no. 2, pp. 63-68, 1986. [38] Ansoft HFSS ver. 2020 R1. Ansoft Corp, Pittsburgh, PA,. [39] K.-T. Hsu, W.-D. Guo, G.-H. Shiue, C.-M. Lin, T.-W. Huang, and R.-B. Wu, 'Design of reflectionless vias using neural network-based approach,' IEEE transactions on advanced packaging, vol. 31, no. 1, pp. 211-218, 2008. [40] L.-Y. Xiao, W. Shao, F.-L. Jin, and B.-Z. Wang, 'Multiparameter modeling with ANN for antenna design,' IEEE Transactions on Antennas and Propagation, vol. 66, no. 7, pp. 3718-3723, 2018. [41] S. Inampudi and H. Mosallaei, 'Neural network based design of metagratings,' Applied Physics Letters, vol. 112, no. 24, p. 241102, 2018. [42] F. Ghorbani, S. Beyraghi, J. Shabanpour, H. Oraizi, H. Soleimani, and M. Soleimani, 'Deep neural network-based automatic metasurface design with a wide frequency range,' Scientific Reports, vol. 11, no. 1, pp. 1-8, 2021. [43] Q. J. Zhang and K. C. Gupta, Neural Networks for RF and Microwave Design (Book + Neuromodeler Disk). Artech House, Inc., 2000. [44] R. Fletcher and C. M. Reeves, 'Function minimization by conjugate gradients,' The computer journal, vol. 7, no. 2, pp. 149-154, 1964. [45] M. F. Møller, 'A scaled conjugate gradient algorithm for fast supervised learning,' Neural networks, vol. 6, no. 4, pp. 525-533, 1993. [46] B. Gustavsen and A. Semlyen, 'Rational approximation of frequency domain responses by vector fitting,' IEEE Transactions on power delivery, vol. 14, no. 3, pp. 1052-1061, 1999. [47] C.-K. Liao, C.-Y. Chang, and J. Lin, 'A vector-fitting formulation for parameter extraction of lossy microwave filters,' IEEE Microwave and Wireless Components Letters, vol. 17, no. 4, pp. 277-279, 2007. [48] F. Feng, C. Zhang, J. Ma, and Q.-J. Zhang, 'Parametric modeling of EM behavior of microwave components using combined neural networks and pole-residue-based transfer functions,' IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 1, pp. 60-77, 2015. [49] S. R. Schmidt and R. G. Launsby, Understanding Industrial Designed Experiments. Air Academy Press, 1989. [50] P. J. Bruneau, H. D. Janzen, and J. S. Ward, 'Machining of terahertz split-block waveguides with micrometer precision,' in 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves, 2008: IEEE, pp. 1-2. [51] C. E. Groppi, B. Love, M. Underhill, and C. Walker, 'Automated CNC micromachining for integrated THz waveguide circuits,' 2010. [52] JIS-B0601-2001, Geometrical Product Specifications (GPS)-Surface texture: Profile method-Terms, definitions and surface texture parameters. [53] N. Zhang, R. Song, M. Hu, G. Shan, C. Wang, and J. Yang, 'A low-loss design of bandpass filter at the terahertz band,' IEEE Microwave and Wireless Components Letters, vol. 28, no. 7, pp. 573-575, 2018. [54] M. Kahar, M. K. Mandal, and G. Chattopadhyay, 'Loss Studies For Waveguide Based E-and H-plane Bandpass Filters at Terahertz Frequencies,' in 2021 IEEE MTT-S International Microwave and RF Conference (IMARC), 2021: IEEE, pp. 1-4. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84734 | - |
| dc.description.abstract | 本論文旨在研究太赫茲波導濾波器的設計,並採用電腦數值控制銑削技術製造出波導濾波器,最後通過量測結果以證明設計的可行性。本論文主要分為兩部分。第一部分是濾波器的基本理論。在本節中吾人分別以耦合矩陣理論與阻抗轉換器理論設計兩個工作於WR-3頻段(220 – 330 GHz)的非對稱電感性虹膜耦合的6階柴比雪夫波導濾波器。第一個濾波器的中心頻率為300 GHz,比例頻寬為13.3%;第二個則是基於IEEE 802.15.3d標準中的CH67 (278.64 – 304.56 GHz)所訂定。而第二部分則是人工智慧。在此節中吾人由訓練完成的人工神經網路來獲得所目標響應下的濾波器幾何尺寸。並且為了進一步提高其訓練速率,吾人先將濾波器的頻率響應做向量擬合以轉為對應的極點與殘值進而減少網路輸入個數。訓練結果表明濾波器尺寸的均方誤差接近電腦數值控製銑削的製作誤差。 量測結果表明300 GHz波導濾波器其在281 – 324 GHz的通帶內穿透損耗小於5 dB,反損耗優於13 dB。CH67濾波器在276 – 310 GHz的通帶內穿透損耗小於3 dB,反損耗優於17 dB。由於這兩個濾波器的性能並不完美,所以吾人作了後模擬以分析探討影響通帶內的穿透損耗的原因,以便在後續的設計中進行修正與改進。 | zh_TW |
| dc.description.abstract | The purpose of this thesis is to study terahertz waveguide filter designs. The designed waveguide filters are fabricated by the computer numerical controlled milling process and then measured to show the feasibility. The thesis is mainly divided in to two parts. The first part is the basic theory of the microwave filters. In this section, two asymmetric inductive iris coupled waveguide bandpass filters with 6-pole Chebyshev responses are designed by coupling matrix theory and impedance inverter theory, respectively. The first filter has a center frequency of 300 GHz and a fractional bandwidth of 13.3%; the second filter is designed to apply to Channel 67 of the IEEE 802.15.3d standard (278.64 – 304.56 GHz). The second part is the application of artificial intelligence to filter designs. In this section, an artificial neural network is used to provide the filter geometries using the desired frequency response. In order to improve the training speed, we first use the vector fitting technique to convert the frequency response into the corresponding poles and residues so that we can reduce the number of the network inputs. The results show that the mean squared error of the filter dimensions is close to the fabricating error of computer numerical controlled milling process. The measurement results show that the insertion loss of the 300 GHz filter is less than 5 dB and the return loss is better than 13 dB in the range 281 – 324 GHz. The insertion loss of the CH67 filter is less than 3 dB and the return loss is better than 17 dB in the range 276 – 310 GHz. Since the performances of these two filters are not perfect, I perform the post-simulation to analyze the causes of the insertion loss in the passband, in order to improve our future designs. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:22:53Z (GMT). No. of bitstreams: 1 U0001-0308202215533900.pdf: 7328416 bytes, checksum: ac6629d6cddb087dc54577066473f4e2 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES xii Chapter 1 簡介 1 1.1 太赫茲輻射與應用概述 1 1.2 太赫茲波導和微加工概述 3 1.3 論文動機和目標 4 1.4 章節與內容概述 5 Chapter 2 耦合共振濾波器和矩形波導基本理論 6 2.1 雙埠濾波器概述 6 2.2 濾波器轉移函數 7 2.2.1 巴特沃茲響應 7 2.2.2 柴比雪夫響應 8 2.2.3 低通到帶通的轉換 9 2.2.4 導抗轉換器 11 2.3 共振濾波器耦合矩陣理論 13 2.3.1 等效電路迴圈方程式 13 2.3.2 等效電路節點方程式 16 2.3.3 通用耦合矩陣的合成 18 2.3.4 耦合共振濾波器示例 19 2.4 波導濾波器的物理實現 21 2.4.1 矩形波導與共振腔 21 2.4.2 虹膜耦合結構 25 2.4.3 電感與電容性虹膜耦合波導濾波器的頻率選擇度討論 26 2.4.4 物理結構的外部品質因子萃取 28 2.4.5 物理結構的共振腔間的耦合係數萃取 29 2.4.6 阻抗轉換器模型 32 2.5 濾波器優化 37 Chapter 3 基於人工神經網路的濾波器優化 38 3.1 應用人工神經網路於射頻微波領域 38 3.1.1 多層感知器網路 38 3.1.2 神經元激活函數 40 3.1.3 反向傳播演算法 41 3.1.4 共軛梯度演算法 43 3.2 Vector Fitting technology 44 3.2.1 Vector Fitting 演算法 44 3.2.2 應用Vector Fitting 近似濾波器頻率響應 46 3.3 神經網路輔助優化帶通濾波器 48 3.3.1 神經網路模型架構 48 3.3.2 神經網路的訓練與評估 50 Chapter 4 波導濾波器實作與量測討論 56 4.1 CNC 銑削技術 56 4.2 300 GHz 波導濾波器的設計與製作 56 4.3 300 GHz 波導濾波器的量測分析與討論 59 4.4 CH67波導濾波器的設計與製作 64 4.5 CH67波導濾波器的量測分析與討論 66 Chapter 5 結論 76 REFERENCE 77 | |
| dc.language.iso | zh-TW | |
| dc.subject | 太赫茲 | zh_TW |
| dc.subject | 人工神經網路 | zh_TW |
| dc.subject | 波導濾波器 | zh_TW |
| dc.subject | terahertz | en |
| dc.subject | waveguide bandpass filter | en |
| dc.subject | artificial neural network | en |
| dc.title | 基於人工神經網路的太赫茲波導帶通濾波器設計 | zh_TW |
| dc.title | Terahertz Waveguide Bandpass Filter Designs Using an Artificial Neural Network | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳宗霖(Tzong-Lin Wu),陳士元(Shih-Yuan Chen),馬自莊(Tzyh-Ghuang Ma) | |
| dc.subject.keyword | 太赫茲,波導濾波器,人工神經網路, | zh_TW |
| dc.subject.keyword | terahertz,waveguide bandpass filter,artificial neural network, | en |
| dc.relation.page | 82 | |
| dc.identifier.doi | 10.6342/NTU202202015 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-09-06 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-09-19 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0308202215533900.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
