Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84702
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧子彬(Tzu-Pin Lu)
dc.contributor.authorYa-Wen Chuangen
dc.contributor.author莊雅雯zh_TW
dc.date.accessioned2023-03-19T22:21:17Z-
dc.date.copyright2022-10-04
dc.date.issued2022
dc.date.submitted2022-09-07
dc.identifier.citation1. Brugada, P. and J. Brugada, Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome: a multicenter report. Journal of the American College of Cardiology, 1992. 20(6): p. 1391-1396. 2. Brugada, R., et al., Brugada syndrome. Methodist DeBakey cardiovascular journal, 2014. 10(1): p. 25. 3. Gussak, I., et al., The Brugada syndrome: clinical, electrophysiologic and genetic aspects. Journal of the American College of Cardiology, 1999. 33(1): p. 5-15. 4. Berne, P. and J. Brugada, Brugada Syndrome 2012. Circulation Journal, 2012. 76. 5. Juang, J.-M.J. and M. Horie, Genetics of Brugada syndrome. Journal of arrhythmia, 2016. 32(5): p. 418-425. 6. Brugada Syndrome. Available from: https://rarediseases.org/rare-diseases/brugada-syndrome/. 7. Barc, J., et al., Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility. Nature genetics, 2022. 54(3): p. 232-239. 8. Jimmy Juang, J.-M., et al., Validation and disease risk assessment of previously reported genome-wide genetic variants associated with Brugada syndrome: SADS-TW BrS Registry. Circulation: Genomic and Precision Medicine, 2020. 13(4): p. e002797. 9. Bezzina, C.R., et al., Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nature genetics, 2013. 45(9): p. 1044-1049. 10. Fan, C.-T., J.-C. Lin, and C.-H. Lee, Taiwan Biobank: a project aiming to aid Taiwan’s transition into a biomedical island. 2008. 11. Wacholder, S., et al., Selection of controls in case-control studies: III. Design options. American journal of epidemiology, 1992. 135(9): p. 1042-1050. 12. Shadish, W.R. and P.M. Steiner, A primer on propensity score analysis. Newborn and Infant Nursing Reviews, 2010. 10(1): p. 19-26. 13. D'Agostino Jr, R.B., Propensity score methods for bias reduction in the comparison of a treatment to a non‐randomized control group. Statistics in medicine, 1998. 17(19): p. 2265-2281. 14. Austin, P.C., An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate behavioral research, 2011. 46(3): p. 399-424. 15. Stuart, E.A., et al., MatchIt: nonparametric preprocessing for parametric causal inference. Journal of statistical software, 2011. 16. Purcell, S., et al., PLINK: a tool set for whole-genome association and population-based linkage analyses. The American journal of human genetics, 2007. 81(3): p. 559-575. 17. Turner, S., et al., Quality control procedures for genome‐wide association studies. Current protocols in human genetics, 2011. 68(1): p. 1.19. 1-1.19. 18. 18. Anderson, C.A., et al., Data quality control in genetic case-control association studies. Nature protocols, 2010. 5(9): p. 1564-1573. 19. Tam, V., et al., Benefits and limitations of genome-wide association studies. Nature Reviews Genetics, 2019. 20(8): p. 467-484. 20. Reed, E., et al., A guide to genome‐wide association analysis and post‐analytic interrogation. Statistics in medicine, 2015. 34(28): p. 3769-3792. 21. Benjamini, Y. and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological), 1995. 57(1): p. 289-300. 22. Lander, E. and L. Kruglyak, Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature genetics, 1995. 11(3): p. 241-247. 23. Gibson, J., et al., A meta-analysis of genome-wide association studies of epigenetic age acceleration. PLoS genetics, 2019. 15(11): p. e1008104. 24. Duggal, P., et al., Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies. BMC genomics, 2008. 9(1): p. 1-8. 25. Abdi, H. and L.J. Williams, Principal component analysis. Wiley interdisciplinary reviews: computational statistics, 2010. 2(4): p. 433-459. 26. Wold, S., K. Esbensen, and P. Geladi, Principal component analysis. Chemometrics and intelligent laboratory systems, 1987. 2(1-3): p. 37-52. 27. Cattell, R.B., The scree test for the number of factors. Multivariate behavioral research, 1966. 1(2): p. 245-276. 28. Marchini, J. and B. Howie, Genotype imputation for genome-wide association studies. Nature Reviews Genetics, 2010. 11(7): p. 499-511. 29. Delaneau, O., J.-F. Zagury, and J. Marchini, Improved whole-chromosome phasing for disease and population genetic studies. Nature methods, 2013. 10(1): p. 5-6. 30. Howie, B., J. Marchini, and M. Stephens, Genotype imputation with thousands of genomes. G3: Genes| Genomes| Genetics, 2011. 1(6): p. 457-470. 31. Chattopadhyay, A. Multi-ethnic Imputation System. 2022; Available from: http://misystem.cgm.ntu.edu.tw/. 32. Consortium, G.P., A global reference for human genetic variation. Nature, 2015. 526(7571): p. 68. 33. Duncan, L., et al., Analysis of polygenic risk score usage and performance in diverse human populations. Nature communications, 2019. 10(1): p. 1-9. 34. Choi, S.W., T.S.-H. Mak, and P.F. O’Reilly, Tutorial: a guide to performing polygenic risk score analyses. Nature protocols, 2020. 15(9): p. 2759-2772. 35. Choi, S.W. and P.F. O'Reilly, PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience, 2019. 8(7): p. giz082. 36. Buniello, A., et al., The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic acids research, 2019. 47(D1): p. D1005-D1012. 37. Henning, R.J., Type-2 diabetes mellitus and cardiovascular disease. Future cardiology, 2018. 14(6): p. 491-509. 38. Fanciulli, A. and G.K. Wenning, Multiple-system atrophy. New England Journal of Medicine, 2015. 372(3): p. 249-263. 39. Ray, K.K., et al., ALP Levels Predict Adverse Cardiovascular Outcomes and Cognitive Impairment in High Risk Patients. Circulation, 2019. 140(Suppl_1): p. A12948-A12948. 40. Safran, M., et al., The GeneCards Suite, in Practical Guide to Life Science Databases. 2021, Springer. p. 27-56. 41. Guindo-Martínez, M., et al., The impact of non-additive genetic associations on age-related complex diseases. Nature communications, 2021. 12(1): p. 1-14. 42. Hoffmann, T.J., et al., Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation. Nature genetics, 2017. 49(1): p. 54-64. 43. Agresti, A., On logit confidence intervals for the odds ratio with small samples. Biometrics, 1999. 55(2): p. 597-602. 44. Hu, D., et al., Mutations in SCN10A are responsible for a large fraction of cases of Brugada syndrome. Journal of the American College of Cardiology, 2014. 64(1): p. 66-79. 45. Kirk, E.P., et al., Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. The American Journal of Human Genetics, 2007. 81(2): p. 280-291. 46. Merscher, S., et al., TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell, 2001. 104(4): p. 619-629. 47. Decher, N., et al., Characterization of TASK‐4, a novel member of the pH‐sensitive, two‐pore domain potassium channel family. FEBS letters, 2001. 492(1-2): p. 84-89. 48. Ntalla, I., et al., Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction. Nature communications, 2020. 11(1): p. 1-12. 49. Senderek, J., et al., Mutation of the SBF2 gene, encoding a novel member of the myotubularin family, in Charcot–Marie–Tooth neuropathy type 4B2/11p15. Human molecular genetics, 2003. 12(3): p. 349-356. 50. Das, S., et al., Next-generation genotype imputation service and methods. Nature genetics, 2016. 48(10): p. 1284-1287.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84702-
dc.description.abstract研究背景: 布魯蓋達氏症候群(Brugada syndrome, BrS)是一種心臟沒有結構上異常,卻突發性猝死的遺傳性心臟病,通常在半夜休息睡覺時發作,因此布魯蓋達氏症候群也被稱為突發不明性夜間猝死症候群。迄今已有多個與布魯蓋達氏症候群相關的基因被發現,但只能解釋30-35%的病患,其中SCN5A是最常被提及的致病基因,然在白人患者中,僅20-25%的患者具有此突變,而台灣患者具有此突變的比例更是不到10%,這說明不同種族的致病基因存在一定差異。本論文的研究目標是在台灣布魯蓋達氏症候群患者中,找到可以診斷疾病的致病基因,並比較白種人與台灣族群的致病基因差異。此外,布魯蓋達氏症候群的症狀,也可以分為較嚴重的猝死和較輕微的胸口不適,因此另一個目標為找到可以預測疾病嚴重程度的基因。 材料與方法: 資料來源為台大醫院的313位布魯蓋達氏症候群患者的單核苷酸多態性資料(Single nucleotide polymorphisms, SNP),檢驗位點的晶片為Axiom Genome-Wide TWB 2.0 array與Axiom Genome-Wide TPM array,並以台灣人體生物資料庫(Taiwan Biobank)作為對照組,透過全基因組關聯研究(Genome-wide association study, GWAS) 探討兩組之間的基因變異。除了透過晶片上檢驗的數十萬個變異位點,我們使用IMPUTE2演算法來進行基因型插補,以將研究的變異位點擴增至全基因組,期望找到更多與布魯蓋達氏症候群關聯的基因。在實務應用上,我們嘗試建立多基因風險評分模型(Polygenic risk score, PRS),幫助我們達到評估個體罹病風險的目的。 結果: 使用原始資料分析致病基因時,有50個變異位點達到邦佛洛尼校正法的顯著水準(P值<1.14e-07);而在插補資料的分析中,有910個變異位點達到邦佛洛尼校正法的顯著水準(P值<1.36e-08)。將結果整合後,一共有185個彼此之間不存在連鎖不平衡的顯著變異位點,其中7個變異位點在已有的文獻中,證明了他們與心電圖、血液相關測量值的關聯。在多基因風險評分方面,設定P值閾值為4.04e-06,使用100個變異位點來計算罹病的風險分數,其解釋力可達到0.707。在原始資料的預後基因分析中,有2個變異位點達到顯著水準(P值<1e-05);而使用插補資料分析時,有28個變異位點達到顯著水準(P值<1e-05)。整合分析結果後,有2個不存在連鎖不平衡的顯著變異位點,目前尚未有文獻說明他們與布魯蓋達氏症候群相關的性狀有關聯。在多基因風險評分方面,設定P值閾值為2e-04,使用50個變異位點來計算患者預後的風險分數,其解釋力僅0.022。 結論: 本論文所建立的多基因風險評分模型,在罹患疾病的預測中,具有70%以上的解釋力,因此透過基因檢測,可以幫助醫生更早地判斷個體風險,提供進一步的干預措施,例如:給予患者生活方式建議、提高家屬警覺,透過了解遺傳風險,做為決定治療方式的參考。zh_TW
dc.description.abstractBackground: Brugada syndrome (BrS) is a genetic disorder with no structural abnormalities of the heart, but BrS is highly associated with sudden cardiac death. It usually occurs in the middle of the night when resting and sleeping. BrS is also known as sudden unexplained nocturnal death syndrome. Till now, several BrS-associated genes have been reported; however, only 30-35% of BrS patients can be genetically diagnosed, even if we included the major gene, SCN5A. Notably, only 20-25% of Caucasian patients have SCN5A mutations, and such proportion of Taiwanese patients is less than 10%, indicating that there are huge differences in different races. To address these issues, this thesis aims to find the susceptible genes of BrS in Taiwanese patients and to compare their differences between Caucasian and Taiwanese patients. In addition to diagnostic genes, the symptoms of BrS can divided into 2 categories: more severe (sudden death) and less severe (chest discomfort). Therefore, the second aim is to develop a prognostic prediction model for BrS patients in Taiwan. Materials and Method: The BrS patients were enrolled from National Taiwan University Hospital and their SNP data were examined by using the Axiom Genome-Wide TWB 2.0 array and Axiom Genome-Wide TPM array. The total number of BrS patients analyzed in this study was 313, and the health control were selected from Taiwan Biobank. By using the case control design, a genome-wide association study (GWAS) was performed accordingly. In addition to the genotyped SNPs examined from the chip, we used the IMPUTE2 algorithm to obtain more SNPs in the human genome. Such approach can help us to to find more genes associated with BrS and extend the coverage of SNPs. To summarize the importance of identified SNPs, we developed two polygenic risk score (PRS) models to evaluate the incidence risk and the prognostic risk of BrS, respectively. Results: There are 50 SNPs reaching Bonferroni-adjusted significance (P-value < 1.14e-07) from the whole SNPs analyzed by using the array, and 910 significant SNPs were identified (P-value < 1.36e-08) from the imputed SNPs. After being integrated, a total of 185 lead SNPs were reported, and 7 of them were associated with ECG, and blood measurement. In the PRS model for the case control design, the explanatory power can be up to 0.707 under the settings as the P-value < 4.04e-06 and 100 SNPs in the model. Regarding the SNP analysis of the prognostic model in BrS, 2 SNPs reached significance level (P-value < 1e-05) from the whole SNPs analyzed by using the array, and 28 SNPs were identified (P-value < 1e-05) from the imputed SNPs. After being integrated, there are 2 lead SNPs. Currently, no literature shows the associations of these 2 SNPs with any trait known for BrS. In the PRS model for the prognosis, the explanatory power is 0.022 under the settings as the P-value < 2e-04, and 50 SNPs in the model. Conclusion: The PRS developed in this study had more than 70% explanatory power in predicting the incidence of BrS. The results suggest providing genetic testing for BrS may help medical doctors to evaluate the risk earlier. Further interventions can be provided such as giving lifestyle advice to patients at an early stage, and raising the awareness of family members. By understanding the genetic risk can further improve the timing of providing interventions and treatment decisions.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:21:17Z (GMT). No. of bitstreams: 1
U0001-0709202220211800.pdf: 3473681 bytes, checksum: 07bf307487689a55ad7b3f2ab352e680 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 i 中文摘要 ii Abstract iv 第一章 研究背景與目的 1 1-1 布魯蓋達氏症候群 1 1-2 已被發現的致病基因與不同種族間差異 2 1-3 台灣布魯蓋達氏症候群全基因組關聯研究之文獻回顧 2 1-4 研究目的 3 第二章 材料與方法 5 2-1 資料來源 5 2-2 樣本選擇與傾向評分匹配 5 2-3 數據品質管控 7 2-4 全基因組關聯研究 8 2-5 主成分分析 8 2-6 基因型插補 9 2-7 研究流程 10 2-8 分析模型 11 2-8-1 致病基因分析模型 11 2-8-2 預後基因分析模型 12 2-9 多基因風險評分 12 第三章 結果 14 3-1 敘述統計 14 3-2 布魯蓋達氏症候群之致病基因 14 3-3 布魯蓋達氏症候群之預後基因 15 3-4 多基因風險評分 15 3-4-1 致病基因的多基因風險評分 15 3-4-2 預後基因的多基因風險評分 16 第四章 討論 17 4-1 與歐洲布魯蓋達氏症候群患者之研究比較 17 4-2 與布魯蓋達氏症候群顯著相關的基因 17 4-3 與患者症狀嚴重程度顯著相關的基因 19 4-4 結論 19 4-5 研究限制 20 4-6 研究困難 21 參考文獻 22 附錄 26
dc.language.isozh-TW
dc.title利用插補單核苷酸多態性探討台灣布魯蓋達氏症候群患者的全基因組關聯研究zh_TW
dc.titleGenome-wide association study of Brugada syndrome patients in Taiwan by typed and imputed single nucleotide polymorphismsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭柏秀(Po-Hsiu Kuo),蕭自宏,林敬恒
dc.subject.keyword布魯蓋達氏症候群,突發性猝死症候群,全基因組關聯研究,基因型插補,多基因風險評分,zh_TW
dc.subject.keywordBrugada syndromeBrugada syndrome,sudden unexpected death syndrome,GWAS,genotype imputation,polygenic risk score,en
dc.relation.page82
dc.identifier.doi10.6342/NTU202203233
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-08
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
dc.date.embargo-lift2024-09-08-
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-0709202220211800.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.39 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved