請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84696
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭文芳(Wen-Fang Cheng),華筱玲(Hsiao-Lin Hwa) | |
dc.contributor.author | Chia-Yi Lee | en |
dc.contributor.author | 李家儀 | zh_TW |
dc.date.accessioned | 2023-03-19T22:21:00Z | - |
dc.date.copyright | 2022-10-04 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-08 | |
dc.identifier.citation | 1. Published by Health Promotion Administration MoHaW, Taiwan. Cancer Registry annual report, 2018. Availabe from: https://wwwhpagovtw/Pages/Detailaspx?nodeid=269&pid=13498 [Accessed 18 Feburary 2020]. 2. Eisenhauer EL, Salani R, Copeland LJ. Epithelial Ovarian Cancer. 2018:253-89.e14. 3. Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 2011;61:212-36. 4. Berek JS, Kehoe ST, Kumar L, Friedlander M. Cancer of the ovary, fallopian tube, and peritoneum. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics 2018;143 Suppl 2:59-78. 5. Cabasag CJ, Fagan PJ, Ferlay J, et al. Ovarian cancer today and tomorrow: A global assessment by world region and Human Development Index using GLOBOCAN 2020. International journal of cancer;n/a. 6. Chiang YC, Chen CA, Chiang CJ, et al. Trends in incidence and survival outcome of epithelial ovarian cancer: 30-year national population-based registry in Taiwan. J Gynecol Oncol 2013;24:342-51. 7. Kajiyama H, Suzuki S, Yoshikawa N, et al. Long-term oncologic outcome and its prognostic indicators in reproductive-age women with ovarian clear-cell carcinoma. Arch Gynecol Obstet 2019;300:717-24. 8. Liao CI, Chow S, Chen LM, Kapp DS, Mann A, Chan JK. Trends in the incidence of serous fallopian tube, ovarian, and peritoneal cancer in the US. Gynecol Oncol 2018;149:318-23. 9. Sung HK, Ma SH, Choi JY, et al. The Effect of Breastfeeding Duration and Parity on the Risk of Epithelial Ovarian Cancer: A Systematic Review and Meta-analysis. Journal of preventive medicine and public health = Yebang Uihakhoe chi 2016;49:349-66. 10. Huang T, Tworoger SS, Willett WC, Stampfer MJ, Rosner BA. Associations of early life and adulthood adiposity with risk of epithelial ovarian cancer. Ann Oncol 2019;30:303-9. 11. Wentzensen N, Poole EM, Trabert B, et al. Ovarian Cancer Risk Factors by Histologic Subtype: An Analysis From the Ovarian Cancer Cohort Consortium. J Clin Oncol 2016;34:2888-98. 12. Chen S, Parmigiani G. Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol 2007;25:1329-33. 13. Helder-Woolderink JM, Blok EA, Vasen HF, Hollema H, Mourits MJ, De Bock GH. Ovarian cancer in Lynch syndrome; a systematic review. European journal of cancer (Oxford, England : 1990) 2016;55:65-73. 14. NCCN. Ovarian Cancer (Including Fallopian Tube Cancer and Primary Peritoneal Cancer), Version 2.2020. Available from : https://wwwnccnorg/professionals/physician_gls/pdf/ovarianpdf [Accessed 18 Feburary 2021]. 15. Iversen L, Sivasubramaniam S, Lee AJ, Fielding S, Hannaford PC. Lifetime cancer risk and combined oral contraceptives: the Royal College of General Practitioners' Oral Contraception Study. Am J Obstet Gynecol 2017;216:580.e1-.e9. 16. Marchetti C, De Felice F, Palaia I, et al. Risk-reducing salpingo-oophorectomy: a meta-analysis on impact on ovarian cancer risk and all cause mortality in BRCA 1 and BRCA 2 mutation carriers. BMC women's health 2014;14:150. 17. Clark TG, Stewart ME, Altman DG, Gabra H, Smyth JF. A prognostic model for ovarian cancer. British journal of cancer 2001;85:944-52. 18. Tingulstad S. Survival and prognostic factors in patients with ovarian cancer. Obstetrics & Gynecology 2003;101:885-91. 19. Oken MM, Creech RH, Tormey DC, et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. American journal of clinical oncology 1982;5:649-55. 20. Miller RE, Banerjee S. The current state of pemetrexed in ovarian cancer. Expert Opinion on Investigational Drugs 2013;22:1201-10. 21. du Bois A, Reuss A, Pujade-Lauraine E, Harter P, Ray-Coquard I, Pfisterer J. Role of surgical outcome as prognostic factor in advanced epithelial ovarian cancer: a combined exploratory analysis of 3 prospectively randomized phase 3 multicenter trials: by the Arbeitsgemeinschaft Gynaekologische Onkologie Studiengruppe Ovarialkarzinom (AGO-OVAR) and the Groupe d'Investigateurs Nationaux Pour les Etudes des Cancers de l'Ovaire (GINECO). Cancer 2009;115:1234-44. 22. Eisenhauer EL, Abu-Rustum NR, Sonoda Y, Aghajanian C, Barakat RR, Chi DS. The effect of maximal surgical cytoreduction on sensitivity to platinum-taxane chemotherapy and subsequent survival in patients with advanced ovarian cancer. Gynecologic Oncology 2008;108:276-81. 23. Berek JS, Renz M, Kehoe S, Kumar L, Friedlander M. Cancer of the ovary, fallopian tube, and peritoneum: 2021 update. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics 2021;155 Suppl 1:61-85. 24. Yoshida K, Miki Y. Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Science 2004;95:866-71. 25. Zwet M, Wiegant W, Zdzienicka M. Brca2 (XRCC11) deficiency results in enhanced mutagenesis. Mutagenesis 2003;18:521-5. 26. Bolton KL, Chenevix- Trench G, Goh C, et al. Association Between BRCA1 and BRCA2 Mutations and Survival in Women With Invasive Epithelial Ovarian Cancer. Jama 2012;307:382-9. 27. Lancaster JM, Powell CB, Chen LM, Richardson DL. Society of Gynecologic Oncology statement on risk assessment for inherited gynecologic cancer predispositions. Gynecol Oncol 2015;136:3-7. 28. Winter-Roach BA, Kitchener HC, Lawrie TA. Adjuvant (post-surgery) chemotherapy for early stage epithelial ovarian cancer. The Cochrane database of systematic reviews 2012;3:Cd004706. 29. Trimbos JB, Vergote I, Bolis G, et al. Impact of adjuvant chemotherapy and surgical staging in early-stage ovarian carcinoma: European Organisation for Research and Treatment of Cancer-Adjuvant ChemoTherapy in Ovarian Neoplasm trial. Journal of the National Cancer Institute 2003;95:113-25. 30. Pignata S, Scambia G, Ferrandina G, et al. Carboplatin plus paclitaxel versus carboplatin plus pegylated liposomal doxorubicin as first-line treatment for patients with ovarian cancer: the MITO-2 randomized phase III trial. J Clin Oncol 2011;29:3628-35. 31. Chemotherapy in advanced ovarian cancer: an overview of randomised clinical trials. Advanced Ovarian Cancer Trialists Group. BMJ (Clinical research ed) 1991;303:884-93. 32. McGuire WP, Hoskins WJ, Brady MF, et al. Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. The New England journal of medicine 1996;334:1-6. 33. Piccart MJ, Bertelsen K, James K, et al. Randomized intergroup trial of cisplatin-paclitaxel versus cisplatin-cyclophosphamide in women with advanced epithelial ovarian cancer: three-year results. Journal of the National Cancer Institute 2000;92:699-708. 34. Neijt JP, Engelholm SA, Witteveen PO, et al. Paclitaxel (175 mg/m2 over 3 hours) with cisplatin or carboplatin in previously untreated ovarian cancer: an interim analysis. Seminars in oncology 1997;24:S15-36-s15-39. 35. Ozols RF, Bundy BN, Greer BE, et al. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol 2003;21:3194-200. 36. du Bois A, Lück HJ, Meier W, et al. A randomized clinical trial of cisplatin/paclitaxel versus carboplatin/paclitaxel as first-line treatment of ovarian cancer. Journal of the National Cancer Institute 2003;95:1320-9. 37. Greimel ER, Bjelic-Radisic V, Pfisterer J, Hilpert F, Daghofer F, du Bois A. Randomized study of the Arbeitsgemeinschaft Gynaekologische Onkologie Ovarian Cancer Study Group comparing quality of life in patients with ovarian cancer treated with cisplatin/paclitaxel versus carboplatin/paclitaxel. J Clin Oncol 2006;24:579-86. 38. Katsumata N, Yasuda M, Takahashi F, et al. Dose-dense paclitaxel once a week in combination with carboplatin every 3 weeks for advanced ovarian cancer: a phase 3, open-label, randomised controlled trial. Lancet 2009;374:1331-8. 39. Katsumata N, Yasuda M, Isonishi S, et al. Long-term results of dose-dense paclitaxel and carboplatin versus conventional paclitaxel and carboplatin for treatment of advanced epithelial ovarian, fallopian tube, or primary peritoneal cancer (JGOG 3016): a randomised, controlled, open-label trial. The Lancet Oncology 2013;14:1020-6. 40. Pignata S, Scambia G, Katsaros D, et al. Carboplatin plus paclitaxel once a week versus every 3 weeks in patients with advanced ovarian cancer (MITO-7): a randomised, multicentre, open-label, phase 3 trial. The Lancet Oncology 2014;15:396-405. 41. Clamp AR, James EC, McNeish IA, et al. Weekly dose-dense chemotherapy in first-line epithelial ovarian, fallopian tube, or primary peritoneal carcinoma treatment (ICON8): primary progression free survival analysis results from a GCIG phase 3 randomised controlled trial. Lancet 2019;394:2084-95. 42. Blagden SP, Cook AD, Poole C, et al. Weekly platinum-based chemotherapy versus 3-weekly platinum-based chemotherapy for newly diagnosed ovarian cancer (ICON8): quality-of-life results of a phase 3, randomised, controlled trial. The Lancet Oncology 2020;21:969-77. 43. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). European journal of cancer (Oxford, England : 1990) 2009;45:228-47. 44. Vergote I, Tropé CG, Amant F, et al. Neoadjuvant chemotherapy or primary surgery in stage IIIC or IV ovarian cancer. The New England journal of medicine 2010;363:943-53. 45. Fagotti A, Ferrandina G, Vizzielli G, et al. Phase III randomised clinical trial comparing primary surgery versus neoadjuvant chemotherapy in advanced epithelial ovarian cancer with high tumour load (SCORPION trial): Final analysis of peri-operative outcome. European journal of cancer (Oxford, England : 1990) 2016;59:22-33. 46. Heintz AP, Odicino F, Maisonneuve P, et al. Carcinoma of the ovary. FIGO 26th Annual Report on the Results of Treatment in Gynecological Cancer. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics 2006;95 Suppl 1:S161-92. 47. Giornelli GH, Mandó P. A theoretical view of ovarian cancer relapse. European medical journal 2017;2[3]:128-135. 48. Banerjee S, Kaye SB. New strategies in the treatment of ovarian cancer: current clinical perspectives and future potential. Clinical cancer research : an official journal of the American Association for Cancer Research 2013;19:961-8. 49. Coleman RL, Monk BJ, Sood AK, Herzog TJ. Latest research and treatment of advanced-stage epithelial ovarian cancer. Nature reviews Clinical oncology 2013;10:211-24. 50. Goff BA, Mandel LS, Drescher CW, et al. Development of an ovarian cancer symptom index: possibilities for earlier detection. Cancer 2007;109:221-7. 51. Pinsky PF, Zhu C, Skates SJ, et al. Potential effect of the risk of ovarian cancer algorithm (ROCA) on the mortality outcome of the Prostate, Lung, Colorectal and Ovarian (PLCO) trial. International journal of cancer 2013;132:2127-33. 52. Henderson JT, Webber EM, Sawaya GF. Screening for Ovarian Cancer: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. Jama 2018;319:595-606. 53. Buys SS, Partridge E, Black A, et al. Effect of Screening on Ovarian Cancer Mortality: The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Randomized Controlled Trial. Jama 2011;305:2295-303. 54. Anderson GL, McIntosh M, Wu L, et al. Assessing lead time of selected ovarian cancer biomarkers: a nested case-control study. Journal of the National Cancer Institute 2010;102:26-38. 55. Fung-Kee-Fung M, Oliver T, Elit L, Oza A, Hirte HW, Bryson P. Optimal chemotherapy treatment for women with recurrent ovarian cancer. Current oncology (Toronto, Ont) 2007;14:195-208. 56. Chi DS, McCaughty K, Diaz JP, et al. Guidelines and selection criteria for secondary cytoreductive surgery in patients with recurrent, platinum-sensitive epithelial ovarian carcinoma. Cancer 2006;106:1933-9. 57. Bois AD, Sehouli J, Vergote I, et al. Randomized phase III study to evaluate the impact of secondary cytoreductive surgery in recurrent ovarian cancer: Final analysis of AGO DESKTOP III/ENGOT-ov20. Journal of Clinical Oncology 2020;38:6000-. 58. Parmar MK, Ledermann JA, Colombo N, et al. Paclitaxel plus platinum-based chemotherapy versus conventional platinum-based chemotherapy in women with relapsed ovarian cancer: the ICON4/AGO-OVAR-2.2 trial. Lancet 2003;361:2099-106. 59. Wagner U, Marth C, Largillier R, et al. Final overall survival results of phase III GCIG CALYPSO trial of pegylated liposomal doxorubicin and carboplatin vs paclitaxel and carboplatin in platinum-sensitive ovarian cancer patients. British journal of cancer 2012;107:588-91. 60. Coleman RL, Spirtos NM, Enserro D, et al. Secondary Surgical Cytoreduction for Recurrent Ovarian Cancer. New England Journal of Medicine 2019;381:1929-39. 61. Davis A, Tinker AV, Friedlander M. 'Platinum resistant' ovarian cancer: what is it, who to treat and how to measure benefit? Gynecol Oncol 2014;133:624-31. 62. Galluzzi L, Senovilla L, Vitale I, et al. Molecular mechanisms of cisplatin resistance. Oncogene 2012;31:1869-83. 63. Galletti E, Magnani M, Renzulli ML, Botta M. Paclitaxel and docetaxel resistance: molecular mechanisms and development of new generation taxanes. ChemMedChem 2007;2:920-42. 64. Yin F, Liu X, Li D, Wang Q, Zhang W, Li L. Tumor suppressor genes associated with drug resistance in ovarian cancer (Review). Oncology reports 2013;30:3-10. 65. Galluzzi L, Vitale I, Michels J, et al. Systems biology of cisplatin resistance: past, present and future. Cell Death & Disease 2014;5:e1257-e. 66. Mimeault M, Hauke R, Mehta PP, Batra SK. Recent advances in cancer stem/progenitor cell research: therapeutic implications for overcoming resistance to the most aggressive cancers. Journal of Cellular and Molecular Medicine 2007;11:981-1011. 67. Helleman J, Jansen MPHM, Burger C, van der Burg MEL, Berns EMJJ. Integrated genomics of chemotherapy resistant ovarian cancer: A role for extracellular matrix, TGFbeta and regulating microRNAs. The International Journal of Biochemistry & Cell Biology 2010;42:25-30. 68. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-74. 69. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer discovery 2022;12:31-46. 70. Burger RA, Brady MF, Bookman MA, et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. The New England journal of medicine 2011;365:2473-83. 71. Perren TJ, Swart AM, Pfisterer J, et al. A phase 3 trial of bevacizumab in ovarian cancer. The New England journal of medicine 2011;365:2484-96. 72. Oza AM, Cook AD, Pfisterer J, et al. Standard chemotherapy with or without bevacizumab for women with newly diagnosed ovarian cancer (ICON7): overall survival results of a phase 3 randomised trial. The Lancet Oncology 2015;16:928-36. 73. Coleman RL, Brady MF, Herzog TJ, et al. Bevacizumab and paclitaxel-carboplatin chemotherapy and secondary cytoreduction in recurrent, platinum-sensitive ovarian cancer (NRG Oncology/Gynecologic Oncology Group study GOG-0213): a multicentre, open-label, randomised, phase 3 trial. The Lancet Oncology 2017;18:779-91. 74. Fong PC, Yap TA, Boss DS, et al. Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol 2010;28:2512-9. 75. Mirza MR, Coleman RL, González-Martín A, et al. The forefront of ovarian cancer therapy: update on PARP inhibitors. Ann Oncol 2020;31:1148-59. 76. Moore K, Colombo N, Scambia G, et al. Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. The New England journal of medicine 2018;379:2495-505. 77. Ray-Coquard I, Pautier P, Pignata S, et al. Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer. The New England journal of medicine 2019;381:2416-28. 78. Lorusso D, Lotz J-P, Harter P, et al. Maintenance olaparib plus bevacizumab (bev) after platinum-based chemotherapy plus bev in patients (pts) with newly diagnosed advanced high-grade ovarian cancer (HGOC): Efficacy by BRCA1 or BRCA2 mutation in the phase III PAOLA-1 trial. Journal of Clinical Oncology 2020;38:6039-. 79. González-Martín A, Pothuri B, Vergote I, et al. Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. The New England journal of medicine 2019;381:2391-402. 80. Pujade-Lauraine E, Ledermann JA, Selle F, et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial. The Lancet Oncology 2017;18:1274-84. 81. Swisher EM, Lin KK, Oza AM, et al. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. The Lancet Oncology 2017;18:75-87. 82. Mirza MR, Monk BJ, Herrstedt J, et al. Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer. The New England journal of medicine 2016;375:2154-64. 83. Wang Q, Peng H, Qi X, Wu M, Zhao X. Targeted therapies in gynecological cancers: a comprehensive review of clinical evidence. Signal Transduct Target Ther 2020;5:137. 84. Teng MW, Swann JB, Koebel CM, Schreiber RD, Smyth MJ. Immune-mediated dormancy: an equilibrium with cancer. Journal of leukocyte biology 2008;84:988-93. 85. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nature immunology 2002;3:991-8. 86. Strauss DC, Thomas JM. Transmission of donor melanoma by organ transplantation. The Lancet Oncology 2010;11:790-6. 87. Nelson BH. The impact of T-cell immunity on ovarian cancer outcomes. Immunological reviews 2008;222:101-16. 88. Pagès F, Galon J, Dieu-Nosjean MC, Tartour E, Sautès-Fridman C, Fridman WH. Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 2010;29:1093-102. 89. Odunsi K. Immunotherapy in ovarian cancer. Ann Oncol 2017;28:viii1-viii7. 90. Yang L, Pang Y, Moses HL. TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 2010;31:220-7. 91. Löb S, Königsrainer A, Rammensee H-G, Opelz G, Terness P. Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees? Nature Reviews Cancer 2009;9:445-52. 92. Chen YL, Lin HW, Chien CL, et al. BTLA blockade enhances Cancer therapy by inhibiting IL-6/IL-10-induced CD19(high) B lymphocytes. J Immunother Cancer 2019;7:313. 93. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12:252-64. 94. Gu D, Ao X, Yang Y, Chen Z, Xu X. Soluble immune checkpoints in cancer: production, function and biological significance. J Immunother Cancer 2018;6:132. 95. Radestad E, Klynning C, Stikvoort A, et al. Immune profiling and identification of prognostic immune-related risk factors in human ovarian cancer. Oncoimmunology 2019;8:e1535730. 96. Marinelli O, Annibali D, Aguzzi C, et al. The Controversial Role of PD-1 and Its Ligands in Gynecological Malignancies. Front Oncol 2019;9:1073. 97. Chen J, Jiang CC, Jin L, Zhang XD. Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol 2016;27:409-16. 98. Vendel AC, Calemine-Fenaux J, Izrael-Tomasevic A, Chauhan V, Arnott D, Eaton DL. B and T lymphocyte attenuator regulates B cell receptor signaling by targeting Syk and BLNK. Journal of immunology (Baltimore, Md : 1950) 2009;182:1509-17. 99. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif) 2001;25:402-8. 100. Young R. WHO classification of tumours of female reproductive organs. 2014. 101. Melton LJ, 3rd. Selection bias in the referral of patients and the natural history of surgical conditions. Mayo Clinic proceedings 1985;60:880-5. 102. Tu L, Guan R, Yang H, et al. Assessment of the expression of the immune checkpoint molecules PD-1, CTLA4, TIM-3 and LAG-3 across different cancers in relation to treatment response, tumor-infiltrating immune cells and survival. International journal of cancer 2020;147:423-39. 103. Welsh JB, Zarrinkar PP, Sapinoso LM, et al. Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer. Proc Natl Acad Sci U S A 2001;98:1176-81. 104. Chen J, Kang S, Wu J, et al. CTLA-4 polymorphism contributes to the genetic susceptibility of epithelial ovarian cancer. J Obstet Gynaecol Res 2022;48:1240-7. 105. Gatalica Z, Snyder C, Maney T, et al. Programmed Cell Death 1 (PD-1) and Its Ligand (PD-L1) in Common Cancers and Their Correlation with Molecular Cancer Type. Cancer Epidemiology, Biomarkers & Prevention 2014;23:2965-70. 106. Świderska J, Kozłowski M, Gaur M, et al. Clinical Significance of BTLA, CD27, CD70, CD28 and CD80 as Diagnostic and Prognostic Markers in Ovarian Cancer. Diagnostics 2022;12:251. 107. Gao Y, Chen L, Cai G, et al. Heterogeneity of immune microenvironment in ovarian cancer and its clinical significance: a retrospective study. Oncoimmunology 2020;9:1760067. 108. Kurman RJ, Shih Ie M. The Dualistic Model of Ovarian Carcinogenesis: Revisited, Revised, and Expanded. The American journal of pathology 2016;186:733-47. 109. Wieser V, Gaugg I, Fleischer M, et al. BRCA1/2 and TP53 mutation status associates with PD-1 and PD-L1 expression in ovarian cancer. Oncotarget 2018;9:17501-11. 110. Drakes ML, Mehrotra S, Aldulescu M, et al. Stratification of ovarian tumor pathology by expression of programmed cell death-1 (PD-1) and PD-ligand- 1 (PD-L1) in ovarian cancer. Journal of ovarian research 2018;11:43. 111. Zhu J, Wen H, Bi R, Wu Y, Wu X. Prognostic value of programmed death-ligand 1 (PD-L1) expression in ovarian clear cell carcinoma. J Gynecol Oncol 2017;28:0. 112. Chang C-C, Su K-M, Lu K-H, et al. Key Immunological Functions Involved in the Progression of Epithelial Ovarian Serous Carcinoma Discovered by the Gene Ontology-Based Immunofunctionome Analysis. International Journal of Molecular Sciences 2018;19:3311. 113. Rustin GJ, Vergote I, Eisenhauer E, et al. Definitions for response and progression in ovarian cancer clinical trials incorporating RECIST 1.1 and CA 125 agreed by the Gynecological Cancer Intergroup (GCIG). Int J Gynecol Cancer 2011;21:419-23. 114. Hawkins RE, Roberts K, Wiltshaw E, Mundy J, McCready VR. The clinical correlates of serum CA125 in 169 patients with epithelial ovarian carcinoma. British journal of cancer 1989;60:634-7. 115. Rustin GJ, Nelstrop AE, Tuxen MK, Lambert HE. Defining progression of ovarian carcinoma during follow-up according to CA 125: a North Thames Ovary Group Study. Ann Oncol 1996;7:361-4. 116. Santillan A, Garg R, Zahurak ML, et al. Risk of epithelial ovarian cancer recurrence in patients with rising serum CA-125 levels within the normal range. J Clin Oncol 2005;23:9338-43. 117. Juretzka MM, Barakat RR, Chi DS, et al. CA125 level as a predictor of progression-free survival and overall survival in ovarian cancer patients with surgically defined disease status prior to the initiation of intraperitoneal consolidation therapy. Gynecol Oncol 2007;104:176-80. 118. O'Brien TJ, Beard JB, Underwood LJ, Dennis RA, Santin AD, York L. The CA 125 gene: an extracellular superstructure dominated by repeat sequences. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2001;22:348-66. 119. Rump A, Morikawa Y, Tanaka M, et al. Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. The Journal of biological chemistry 2004;279:9190-8. 120. Zhang M, Cheng S, Jin Y, Zhao Y, Wang Y. Roles of CA125 in diagnosis, prediction, and oncogenesis of ovarian cancer. Biochim Biophys Acta Rev Cancer 2021;1875:188503. 121. Matte I, Garde-Granger P, Bessette P, Piché A. Ascites from ovarian cancer patients stimulates MUC16 mucin expression and secretion in human peritoneal mesothelial cells through an Akt-dependent pathway. BMC cancer 2019;19:406. 122. Imai Y, Hasegawa K, Matsushita H, et al. Expression of multiple immune checkpoint molecules on T cells in malignant ascites from epithelial ovarian carcinoma. Oncol Lett 2018;15:6457-68. 123. James NE, Miller K, LaFranzo N, et al. Immune Modeling Analysis Reveals Immunologic Signatures Associated With Improved Outcomes in High Grade Serous Ovarian Cancer. Frontiers in Oncology 2021;11. 124. Huang LJ, Deng XF, Chang F, Wu XL, Wu Y, Diao QZ. Prognostic significance of programmed cell death ligand 1 expression in patients with ovarian carcinoma: A systematic review and meta-analysis. Medicine (Baltimore) 2018;97:e12858. 125. Eltabbakh GH, Goodrich S. Update on the treatment of recurrent ovarian cancer. Women's health (London, England) 2006;2:127-39. 126. Scalapino KJ, Daikh DI. CTLA-4: a key regulatory point in the control of autoimmune disease. Immunological reviews 2008;223:143-55. 127. Brunet JF, Denizot F, Luciani MF, et al. A new member of the immunoglobulin superfamily--CTLA-4. Nature 1987;328:267-70. 128. Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. The Journal of experimental medicine 2009;206:1717-25. 129. Friese C, Harbst K, Borch TH, et al. CTLA-4 blockade boosts the expansion of tumor-reactive CD8(+) tumor-infiltrating lymphocytes in ovarian cancer. Scientific reports 2020;10:3914. 130. Hodi FS, Butler M, Oble DA, et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc Natl Acad Sci U S A 2008;105:3005-10. 131. ClinicalTrials.gov. Phase II Study of Ipilimumab Monotherapy in Recurrent Platinum-sensitive Ovarian Cancer. Available online: https://clinicaltrialsgov/ct2/show/NCT01611558 (accessed on 1 June 2022). 132. Gaillard S, Berg M, Harrison J, et al. A clinical study of tremelimumab alone or in combination with olaparib in patients with advanced epithelial ovarian cancer. Journal of Clinical Oncology 2020;38:6045-. 133. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. The EMBO journal 1992;11:3887-95. 134. Salmaninejad A, Valilou SF, Shabgah AG, et al. PD-1/PD-L1 pathway: Basic biology and role in cancer immunotherapy. Journal of cellular physiology 2019;234:16824-37. 135. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annual review of immunology 2008;26:677-704. 136. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A 2002;99:12293-7. 137. Hamanishi J, Mandai M, Iwasaki M, et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci U S A 2007;104:3360-5. 138. Brahmer JR, Drake CG, Wollner I, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 2010;28:3167-75. 139. Hamanishi J, Mandai M, Ikeda T, et al. Safety and Antitumor Activity of Anti-PD-1 Antibody, Nivolumab, in Patients With Platinum-Resistant Ovarian Cancer. J Clin Oncol 2015;33:4015-22. 140. Varga A, Piha-Paul SA, Ott PA, et al. Antitumor activity and safety of pembrolizumab in patients (pts) with PD-L1 positive advanced ovarian cancer: Interim results from a phase Ib study. Journal of Clinical Oncology 2015;33:5510-. 141. Disis ML, Patel MR, Pant S, et al. Avelumab (MSB0010718C), an anti-PD-L1 antibody, in patients with previously treated, recurrent or refractory ovarian cancer: A phase Ib, open-label expansion trial. Journal of Clinical Oncology 2015;33:5509-. 142. Ning Z, Liu K, Xiong H. Roles of BTLA in Immunity and Immune Disorders. Frontiers in Immunology 2021;12. 143. ClinicalTrials.gov. Safety, Tolerability and Pharmacokinetics of a Recombinant Humanized mAb Specific to B-and T-Lymphocyte Attenuator (BTLA) for Injection in Subjects With Advanced Malignancies Available online: https://clinicaltrialsgov/ct2/show/record/NCT04278859?cond=btla&draw=2&rank=1&view=record (accessed on 1 June 2022). 144. ClinicalTrials.gov. Safety, Tolerability and Pharmacokinetics of a Monoclonal Antibody Specific to B-and T-Lymphocyte Attenuator (BTLA) as Monotherapy and in Combination With an Anti-PD1 Monoclonal Antibody for Injection in Subjects With Advanced Malignancies. Available online: https://clinicaltrialsgov/ct2/show/NCT04137900?cond=btla&draw=2&rank=2 (accessed on 1 June 2022). 145. Monk BJ, Colombo N, Oza AM, et al. Chemotherapy with or without avelumab followed by avelumab maintenance versus chemotherapy alone in patients with previously untreated epithelial ovarian cancer (JAVELIN Ovarian 100): an open-label, randomised, phase 3 trial. The Lancet Oncology 2021;22:1275-89. 146. Matulonis UA, Shapira R, Santin A, et al. Final results from the KEYNOTE-100 trial of pembrolizumab in patients with advanced recurrent ovarian cancer. Journal of Clinical Oncology 2020;38:6005-. 147. Disis ML, Taylor MH, Kelly K, et al. Efficacy and Safety of Avelumab for Patients With Recurrent or Refractory Ovarian Cancer: Phase 1b Results From the JAVELIN Solid Tumor Trial. JAMA Oncol 2019;5:393-401. 148. Konstantinopoulos PA, Waggoner S, Vidal GA, et al. Single-Arm Phases 1 and 2 Trial of Niraparib in Combination With Pembrolizumab in Patients With Recurrent Platinum-Resistant Ovarian Carcinoma. JAMA Oncol 2019;5:1141-9. 149. Zamarin D, Burger RA, Sill MW, et al. Randomized Phase II Trial of Nivolumab Versus Nivolumab and Ipilimumab for Recurrent or Persistent Ovarian Cancer: An NRG Oncology Study. J Clin Oncol 2020;38:1814-23. 150. Lwin Z, Gomez-Roca C, Saada-Bouzid E, et al. LBA41 LEAP-005: Phase II study of lenvatinib (len) plus pembrolizumab (pembro) in patients (pts) with previously treated advanced solid tumours. Annals of Oncology 2020;31:S1170. 151. Morice P, Gouy S, Leary A. Mucinous Ovarian Carcinoma. The New England journal of medicine 2019;380:1256-66. 152. Seidman JD, Kurman RJ, Ronnett BM. Primary and metastatic mucinous adenocarcinomas in the ovaries: incidence in routine practice with a new approach to improve intraoperative diagnosis. The American journal of surgical pathology 2003;27:985-93. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84696 | - |
dc.description.abstract | 上皮性卵巢癌是婦科癌症領域中相當重要的疾病。過去在卵巢癌的腫瘤減積手術技術、化學治療藥物及標靶藥物的使用方面已經累積了豐富的臨床經驗與研究成果,然而,一旦患者復發,則容易對化療藥物產生抗藥性,並造成後續藥物選擇的困難。近年來,許多研究聚焦於卵巢癌的腫瘤微環境及其中的免疫組成,企圖從腫瘤免疫學的觀點找尋新的治療策略,因此,本研究利用台灣上皮性卵巢癌患者的腫瘤組織進行四種常見的免疫檢查點:CTLA-4、PD-1、PD-L1及BTLA的分析,並進一步探討其表現量與各臨床因子及患者預後的關聯。 本研究於患者接受卵巢癌手術時蒐集部分癌組織並抽取RNA,利用四種免疫檢查點之引子進行即時定量聚合酶鏈反應以偵測其基因相對表現量,另蒐集正常卵巢組織作為對照組。研究發現卵巢癌組織比起正常卵巢組織表現較多的CTLA-4(P=0.016)與PD-1(P<0.001)。漿液性/子宮內膜樣腺癌表現較多的CTLA-4(P=0.044)、亮細胞癌/黏液性腺癌表現較多的PD-L1(P=0.003)、晚期患者則表現較多的CTLA-4(P=0.008)、PD-1(P=0.035)、BTLA(P=0.043),另外術前CA-125較高的患者表現較多的CTLA-4(P=0.0097)及PD-1(P=0.015)。高CTLA-4表現量有較低的疾病復發風險(風險比:0.39,95%信賴區間:0.16-0.99,P=0.047),除此之外,晚期癌症則為重要的疾病復發風險因子(風險比:12.68,95%信賴區間:4.14-38.85,P<0.001)及疾病死亡風險因子(風險比:13.63,95%信賴區間:1.48−125.26,P=0.021)。 總結而言,本研究發現不同組織型別、期別的卵巢癌組織在四種免疫檢查點的表現量不盡相同,而高CTLA-4表現量的患者有較低的疾病復發風險,然而本研究的侷限為收案人數不足,且晚期患者偏多及部分組織型別患者偏少,另外免疫檢查點可能同時表現在多種細胞表面,而本研究並未探究癌組織中的免疫細胞組成。因此,本研究之成果宜做為此議題之初探,未來宜增加收案人數並更深入的探討各免疫檢查點的分布及實質影響,以期能作為臨床預後的指標及藥物選擇的基準。 | zh_TW |
dc.description.abstract | Epithelial ovarian cancer is a disease of considerable importance in the field of gynecological cancer. Rich clinical experiences and researches have been accumulated in the use of debulking surgery, adjuvant chemotherapy and target therapy. However, resistance to chemotherapy medication may occur once patients got disease recurrence, and it causes treatment difficulties. Many recent studies focus on the tumor microenvironment of ovarian cancer and its immune system components in an attempt to find new therapeutic strategies from the perspective of tumor immunology. Guided by these studies, this research analyzes the gene expression of the four common immune checkpoints: CTLA-4、PD-1、PD-L1 and BTLA, in Taiwanese epithelial ovarian cancerous tissue, and further explores the correlation between their expression levels with various clinical factors and patients’ prognoses. This study collects the cancerous tissue when patients underwent debulking surgery, extracts the RNAs from cancerous tissue, and performs real-time PCR after adding primers of the four immune checkpoints. The expression levels of these immune checkpoints are analyzed. Normal ovarian tissue is used as a control group. There are more CTLA-4(P=0.016) and PD-1(P<0.001) in the cancerous tissue than in the normal ovarian tissue. There are more CTLA-4(P=0.044) in serous/endometrioid adenocarcinoma, more PD-L1(P=0.003) in clear cell/mucinous adenocarcinoma, more CTLA-4(P=0.008)、PD-1(P=0.035)、BTLA(P=0.043) in advanced stage diseases. Patients with abnormally high CA-125 express more CTLA-4(P=0.0097) and PD-1(P=0.015). Patients with high CTLA-4 expression have a lower risk of recurrence (HR: 0.39, 95% CI: 0.16-0.99, P=0.047). Besides, patients with advanced stage diseases have a greater risk of recurrence (HR: 12.68, 95% CI: 4.14−38.85, P<0.001) and death (HR: 13.63, 95% CI: 1.48−125.26, P=0.021). In conclusion, this study finds that ovarian cancer tissue of different histological types and stages has different expression levels of the four immune checkpoints, and patients with high CTLA-4 expression have a lower risk of disease recurrence. However, there are some limitations of this study, including the limited case number, and the uneven proportion between different stages and histologies. In addition, immune checkpoints may be expressed on the surface of multiple cells at the same time, and this study does not explore the composition of immunocytes in cancerous tissue. Therefore, the results of this study should be used as a preliminary exploration of this topic. In the future, the number of cases should be increased and the distribution and substantial impact of each immune checkpoint should be discussed in more depth, in order to be used as an indicator of clinical prognosis and a benchmark for drug selection. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:21:00Z (GMT). No. of bitstreams: 1 U0001-0609202222272900.pdf: 1271751 bytes, checksum: 75b8a4c3293100b6c0ca2dab166d5dbb (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 口試委員會審定書∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙I 中文摘要∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙II 英文摘要∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙IV 第一章:緒論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1 第二章:研究方法與材料∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙20 第三章:結果∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙24 第四章:討論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙31 第五章:展望∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙41 參考文獻∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙43 圖∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙56 表∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙59 附錄∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙65 | |
dc.language.iso | zh-TW | |
dc.title | 免疫因子與上皮性卵巢癌預後之關聯性 | zh_TW |
dc.title | Correlation of Immune Profiles with Outcomes of Ovarian Carcinoma Patients | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.author-orcid | 0000-0002-2689-4685 | |
dc.contributor.oralexamcommittee | 江盈澄(Ying-Cheng Chiang) | |
dc.subject.keyword | 上皮性卵巢癌,預後,免疫檢查點,CTLA-4,PD-1,PD-L1,BTLA, | zh_TW |
dc.subject.keyword | epithelial ovarian cancer,prognosis,immune checkpoints,CTLA-4,PD-1,PD-L1,BTLA, | en |
dc.relation.page | 70 | |
dc.identifier.doi | 10.6342/NTU202203207 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-09-08 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
dc.date.embargo-lift | 2022-10-04 | - |
顯示於系所單位: | 臨床醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0609202222272900.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.24 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。