請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84695
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張智芬(Zee-Fen Chang) | |
dc.contributor.author | Chun-Hsiang Fan | en |
dc.contributor.author | 范竣翔 | zh_TW |
dc.date.accessioned | 2023-03-19T22:20:57Z | - |
dc.date.copyright | 2022-10-04 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-08 | |
dc.identifier.citation | 1. Hall, A.R., et al., Mitochondrial fusion and fission proteins: novel therapeutic targets for combating cardiovascular disease. Br J Pharmacol, 2014. 171(8): p. 1890-906. 2. Detmer, S.A. and D.C. Chan, Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol, 2007. 8(11): p. 870-9. 3. Tatsuta, T. and T. Langer, Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J, 2008. 27(2): p. 306-14. 4. Kleele, T., et al., Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature, 2021. 593(7859): p. 435-439. 5. Mazure, N.M. and J. Pouyssegur, Hypoxia-induced autophagy: cell death or cell survival? Curr Opin Cell Biol, 2010. 22(2): p. 177-80. 6. Daskalaki, I., I. Gkikas, and N. Tavernarakis, Hypoxia and Selective Autophagy in Cancer Development and Therapy. Front Cell Dev Biol, 2018. 6: p. 104. 7. Russell, R.C., H.X. Yuan, and K.L. Guan, Autophagy regulation by nutrient signaling. Cell Res, 2014. 24(1): p. 42-57. 8. Gatica, D., V. Lahiri, and D.J. Klionsky, Cargo recognition and degradation by selective autophagy. Nat Cell Biol, 2018. 20(3): p. 233-242. 9. Levy, J.M.M., C.G. Towers, and A. Thorburn, Targeting autophagy in cancer. Nat Rev Cancer, 2017. 17(9): p. 528-542. 10. Dikic, I. and Z. Elazar, Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol, 2018. 19(6): p. 349-364. 11. Zachari, M. and N.T. Ktistakis, Mammalian Mitophagosome Formation: A Focus on the Early Signals and Steps. Front Cell Dev Biol, 2020. 8: p. 171. 12. Sugiura, A., et al., A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J, 2014. 33(19): p. 2142-56. 13. Towers, C.G., et al., Mitochondrial-derived vesicles compensate for loss of LC3-mediated mitophagy. Dev Cell, 2021. 56(14): p. 2029-2042 e5. 14. Jiao, H., et al., Mitocytosis, a migrasome-mediated mitochondrial quality-control process. Cell, 2021. 184(11): p. 2896-2910 e13. 15. Neuspiel, M., et al., Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr Biol, 2008. 18(2): p. 102-8. 16. Li, W., et al., Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLoS One, 2008. 3(1): p. e1487. 17. Zhang, B., et al., GIDE is a mitochondrial E3 ubiquitin ligase that induces apoptosis and slows growth. Cell Res, 2008. 18(9): p. 900-10. 18. Jung, J.H., et al., E3 ubiquitin ligase Hades negatively regulates the exonuclear function of p53. Cell Death Differ, 2011. 18(12): p. 1865-75. 19. Yun, J., et al., MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin. Elife, 2014. 3: p. e01958. 20. Prudent, J., et al., MAPL SUMOylation of Drp1 Stabilizes an ER/Mitochondrial Platform Required for Cell Death. Mol Cell, 2015. 59(6): p. 941-55. 21. Fu, Y., M. Tigano, and A. Sfeir, Safeguarding mitochondrial genomes in higher eukaryotes. Nat Struct Mol Biol, 2020. 27(8): p. 687-695. 22. Falkenberg, M., Mitochondrial DNA replication in mammalian cells: overview of the pathway. Essays Biochem, 2018. 62(3): p. 287-296. 23. Garcia-Gomez, S., et al., PrimPol, an archaic primase/polymerase operating in human cells. Mol Cell, 2013. 52(4): p. 541-53. 24. Singh, B., et al., Human REV3 DNA Polymerase Zeta Localizes to Mitochondria and Protects the Mitochondrial Genome. PLoS One, 2015. 10(10): p. e0140409. 25. Sykora, P., et al., DNA Polymerase Beta Participates in Mitochondrial DNA Repair. Mol Cell Biol, 2017. 37(16). 26. Ngo, H.B., J.T. Kaiser, and D.C. Chan, The mitochondrial transcription and packaging factor Tfam imposes a U-turn on mitochondrial DNA. Nat Struct Mol Biol, 2011. 18(11): p. 1290-6. 27. Stros, M., D. Launholt, and K.D. Grasser, The HMG-box: a versatile protein domain occurring in a wide variety of DNA-binding proteins. Cell Mol Life Sci, 2007. 64(19-20): p. 2590-606. 28. Chew, K. and L. Zhao, Interactions of Mitochondrial Transcription Factor A with DNA Damage: Mechanistic Insights and Functional Implications. Genes (Basel), 2021. 12(8). 29. Smith, E.F., P.J. Shaw, and K.J. De Vos, The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett, 2019. 710: p. 132933. 30. Bose, A. and M.F. Beal, Mitochondrial dysfunction in Parkinson's disease. J Neurochem, 2016. 139 Suppl 1: p. 216-231. 31. Jodeiri Farshbaf, M. and K. Ghaedi, Huntington's Disease and Mitochondria. Neurotox Res, 2017. 32(3): p. 518-529. 32. Grimm, A., K. Friedland, and A. Eckert, Mitochondrial dysfunction: the missing link between aging and sporadic Alzheimer's disease. Biogerontology, 2016. 17(2): p. 281-96. 33. Chatterjee, N. and G.C. Walker, Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen, 2017. 58(5): p. 235-263. 34. Croteau, D.L., R.H. Stierum, and V.A. Bohr, Mitochondrial DNA repair pathways. Mutat Res, 1999. 434(3): p. 137-48. 35. Mason, P.A., et al., Mismatch repair activity in mammalian mitochondria. Nucleic Acids Res, 2003. 31(3): p. 1052-8. 36. Druzhyna, N.M., G.L. Wilson, and S.P. LeDoux, Mitochondrial DNA repair in aging and disease. Mech Ageing Dev, 2008. 129(7-8): p. 383-90. 37. Hegde, M.L., T.K. Hazra, and S. Mitra, Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res, 2008. 18(1): p. 27-47. 38. Thyagarajan, B., R.A. Padua, and C. Campbell, Mammalian mitochondria possess homologous DNA recombination activity. J Biol Chem, 1996. 271(44): p. 27536-43. 39. Fontana, G.A. and H.L. Gahlon, Mechanisms of replication and repair in mitochondrial DNA deletion formation. Nucleic Acids Res, 2020. 48(20): p. 11244-11258. 40. Mouret, S., et al., Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proc Natl Acad Sci U S A, 2006. 103(37): p. 13765-70. 41. Marteijn, J.A., et al., Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol, 2014. 15(7): p. 465-81. 42. Gredilla, R., DNA damage and base excision repair in mitochondria and their role in aging. J Aging Res, 2010. 2011: p. 257093. 43. Sun, N., et al., A fluorescence-based imaging method to measure in vitro and in vivo mitophagy using mt-Keima. Nat Protoc, 2017. 12(8): p. 1576-1587. 44. Puri, R., et al., Mul1 restrains Parkin-mediated mitophagy in mature neurons by maintaining ER-mitochondrial contacts. Nat Commun, 2019. 10(1): p. 3645. 45. Lee, H.C. and Y.H. Wei, Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int J Biochem Cell Biol, 2005. 37(4): p. 822-34. 46. Deyrieux, A.F. and V.G. Wilson, In vitro culture conditions to study keratinocyte differentiation using the HaCaT cell line. Cytotechnology, 2007. 54(2): p. 77-83. 47. West, A.P., et al., Mitochondrial DNA stress primes the antiviral innate immune response. Nature, 2015. 520(7548): p. 553-7. 48. Kang, I., C.T. Chu, and B.A. Kaufman, The mitochondrial transcription factor TFAM in neurodegeneration: emerging evidence and mechanisms. FEBS Lett, 2018. 592(5): p. 793-811. 49. Brown, T.A. and D.A. Clayton, Release of replication termination controls mitochondrial DNA copy number after depletion with 2',3'-dideoxycytidine. Nucleic Acids Res, 2002. 30(9): p. 2004-10. 50. Jezek, J., K.F. Cooper, and R. Strich, Reactive Oxygen Species and Mitochondrial Dynamics: The Yin and Yang of Mitochondrial Dysfunction and Cancer Progression. Antioxidants (Basel), 2018. 7(1). 51. Ni, H.M., J.A. Williams, and W.X. Ding, Mitochondrial dynamics and mitochondrial quality control. Redox Biol, 2015. 4: p. 6-13. 52. Denison, S.R., et al., Alterations in the common fragile site gene Parkin in ovarian and other cancers. Oncogene, 2003. 22(51): p. 8370-8. 53. Tufi, R., et al., Enhancing nucleotide metabolism protects against mitochondrial dysfunction and neurodegeneration in a PINK1 model of Parkinson's disease. Nat Cell Biol, 2014. 16(2): p. 157-66. 54. Youle, R.J. and D.P. Narendra, Mechanisms of mitophagy. Nat Rev Mol Cell Biol, 2011. 12(1): p. 9-14. 55. Dan, X., et al., DNA damage invokes mitophagy through a pathway involving Spata18. Nucleic Acids Res, 2020. 48(12): p. 6611-6623. 56. H, X.R., The NME3-dependent regulation of MUL1 in hypoxia, in Molecular medicine college of medicine. 2021, National Taiwan University: unpublished. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84695 | - |
dc.description.abstract | 紫外光導致的去氧核醣核酸需要透過核苷酸切除修復的機制來進行修補。粒線體DNA容易因為紫外光而發生損壞。然而,粒腺體內仍未被發現存在NER機制。粒線體自噬已知是粒線體用來淘汰損壞粒線體以維持自身品質的過程,本篇研究試圖探討細胞內參與於UV導致的粒線體自噬的因子。我使用能表現粒線體自噬的指標單白mt-Keima的海拉 (HeLa) 細胞與角質形成細胞 (HaCaT) 來探討UV對粒線體型態、粒線體DNA、粒線體自噬的改變。我發現紫外光造成HeLa與HaCaT粒線體碎片化與粒線體DNA的減少。然而,紫外光並不會造成HeLa的粒線體自噬,除非將粒線體泛素連接酶1 (MUL1) 剔除。相反的,擁有較少MUL1表現亮的HaCaT在經過紫外光照射後,呈現出粒線體自噬的現象。在MUL1剔除的HeLa與HaCaT中表現MUL1則可抑制紫外光導致的粒線體自噬。因此,MUL1負向調控紫外光導致的粒線體自噬。有趣的是。去氧核醣核苷的補充或是透過扎西他濱 (Zalcitabine, ddC) 抑制粒線體DNA的複製都可降低紫外光導致的粒線體自噬。這些結果顯示,核苷酸調控的粒線體DNA品質與MUL1對於紫外光導致的粒線體自噬扮演重要角色。 | zh_TW |
dc.description.abstract | UV-mediated DNA damages are repaired by nucleotide excision repair (NER). Mitochondrial DNA (mtDNA) is susceptible to UV damage. However, NER machineries are not found in mitochondria. It is known that mitophagy is a process that eliminates damaged mitochondria for mitochondrial quality control. This study explores the cellular factors determining UV-induced mitophagy. I used HeLa and HaCaT cells expressing mt-Keima, a mitophagy reporter, to investigate UVB-induced changes in mitochondrial morphology, mtDNA and mitophagy. I found that UVB exposure caused mitochondrial fragmentation and reduction in mtDNA copy number in HeLa and HaCaT cells. However, in HeLa cells, UVB did not elicit mitophagy signal until knockout of MUL, an E3 ubiquitin ligase. Contrarily, HaCaT cells that express less amount of MUL1 displayed mitophagy signal in response to UVB exposure. Enforced expression of MUL1 in MUL1 knockout HeLa and HaCAT suppressed UVB-induced mitophagy. Thus, MUL1 negatively regulates UVB-induced mitophagy. Interestingly, either deoxyribonucleosides (dNs) supplementation or inhibition of mtDNA replication by 2’3’-dideoxycytidine (ddC) reduced UVB-induced mitophagy in HaCaT. In summary, these data suggested that nucleoside-regulated mtDNA quality and MUL1 play important roles in UVB-induced mitophagy. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:20:57Z (GMT). No. of bitstreams: 1 U0001-0609202213280400.pdf: 3576499 bytes, checksum: d5c560d682dbf06a41cdb7c5974bf6e2 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 口試委員審定書 ………………………………………………………………………………….… i 誌謝 ………………………………………………………………………………………………… ii 論文摘要 ……….………………………………………………………………………………….. iii Abstract …………………………………………………………………………………………… iv Table of contents …………………………………………………………………………………... 1 Introduction ………………...……………………………………………………………………... 3 1. The quality control of mitochondria ……………………………………………………. 3 1.1 Mitochondrial fusion and fission …………………………………………………… 3 1.2 Mitophagy ………………………………………………………………………….. 4 1.3 Mitochondrial ubiquitin ligase 1 (MUL1) ………………………………………….. 6 1.4 NME3-MUL1 regulation in mitophagy ……………………………………………. 7 2. The role of mitochondrial DNA in mitochondrial quality ……………………………... 7 2.1 mtDNA and mitochondrial transcription factor A (TFAM) ……………………….. 7 2.2 mtDNA damage response ………………………………………………………….. 8 Rationale …………………...……………………………………………………………………... 10 Materials and methods …………………………………………………………………………... 11 Results …………………………………………………………………………………………….. 21 UVB exposure induces mitochondrial fragmentation but not mitophagy in HeLa ……….. 21 Overexpression NME3 in HeLa increases mitophagy after UVB exposure ……………… 22 Deoxyribonucleosides reduce UVB-induced mitophagy in HeLa (MUL1 KO) ………….. 23 UVB irradiation evokes the formation of CPD and H2AX in HaCaT ………………………. 24 UVB exposure triggers mitophagy in HaCaT……………………………………………... 24 The effect of UVB exposure on mtDNA copy number and cytosolic leakage ………….... 25 Deoxyribonucleosides prevent UVB-induced mitophagy in HaCaT …………………...… 26 Reducing mtDNA copy suppresses UVB-induced mitophagy in HaCaT ………………… 26 IR exposure induces mitochondrial fragmentation but not mitophagy in HeLa ………..… 27 Discussion ………………...……………………………………………………………………..... 28 Figures ………………...……………………………………………………………….………..... 35 Reference ………………...……………………………………………………………………...... 54 Appendix ………………...……………………………………………………………………...... 61 | |
dc.language.iso | en | |
dc.title | 探討紫外光B誘導的粒線體自噬 | zh_TW |
dc.title | Characterization of UVB-induced mitophagy | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡欣祐(Hsin-Yue Tsai),吳青錫(Ching-Shyi Wu) | |
dc.subject.keyword | 粒線體,粒線體自噬,紫外光B,粒線體泛素連接酶1,粒線體去氧核醣核酸, | zh_TW |
dc.subject.keyword | mitochondria,mitophagy,ultraviolet B,MUL1,mtDNA, | en |
dc.relation.page | 63 | |
dc.identifier.doi | 10.6342/NTU202203191 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-09-08 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
dc.date.embargo-lift | 2022-10-04 | - |
顯示於系所單位: | 分子醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0609202213280400.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.49 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。