請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84681完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 溫進德 | zh_TW |
| dc.contributor.advisor | Jin-Der Wen | en |
| dc.contributor.author | 張廷莉 | zh_TW |
| dc.contributor.author | Ting-Li Chang | en |
| dc.date.accessioned | 2023-03-19T22:20:20Z | - |
| dc.date.available | 2025-12-31 | - |
| dc.date.copyright | 2023-07-11 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Aitken, C. E., R. A. Marshall and J. D. Puglisi (2008). "An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments." Biophys J 94(5): 1826-1835. Bates, M., B. Huang, G. T. Dempsey and X. Zhuang (2007). "Multicolor super-resolution imaging with photo-switchable fluorescent probes." Science 317(5845): 1749-1753. Betzig, E., G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz and H. F. Hess (2006). "Imaging intracellular fluorescent proteins at nanometer resolution." Science 313(5793): 1642-1645. Aitken, C. E., R. A. Marshall and J. D. Puglisi (2008). "An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments." Biophys J 94(5): 1826-1835. Bates, M., B. Huang, G. T. Dempsey and X. Zhuang (2007). "Multicolor super-resolution imaging with photo-switchable fluorescent probes." Science 317(5845): 1749-1753. Betzig, E., G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz and H. F. Hess (2006). "Imaging intracellular fluorescent proteins at nanometer resolution." Science 313(5793): 1642-1645. Boni, I. V., V. S. Artamonova and M. Dreyfus (2000). "The last RNA-binding repeat of the Escherichia coli ribosomal protein S1 is specifically involved in autogenous control." J Bacteriol 182(20): 5872-5879. Bycroft, M., T. J. Hubbard, M. Proctor, S. M. Freund and A. G. Murzin (1997). "The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold." Cell 88(2): 235-242. Byrgazov, K., S. Manoharadas, A. C. Kaberdina, O. Vesper and I. Moll (2012). "Direct interaction of the N-terminal domain of ribosomal protein S1 with protein S2 in Escherichia coli." PLoS One 7(3): e32702. Carter, A. P., W. M. Clemons, Jr., D. E. Brodersen, R. J. Morgan-Warren, T. Hartsch, B. T. Wimberly and V. Ramakrishnan (2001). "Crystal structure of an initiation factor bound to the 30S ribosomal subunit." Science 291(5503): 498-501. Cifuentes-Goches, J. C., L. Hernandez-Ancheyta, G. Guarneros, N. Oviedo and J. Hernandez-Sanchez (2019). "Domains two and three of Escherichia coli ribosomal S1 protein confers 30S subunits a high affinity for downstream A/U-rich mRNAs." J Biochem 166(1): 29-40. Draper, D. E. and L. P. Reynaldo (1999). "RNA binding strategies of ribosomal proteins." Nucleic Acids Res 27(2): 381-388. Draper, D. E. and P. H. von Hippel (1978). "Nucleic acid binding properties of Escherichia coli ribosomal protein S1. I. Structure and interactions of binding site I." J Mol Biol 122(3): 321-338. Duval, M., A. Korepanov, O. Fuchsbauer, P. Fechter, A. Haller, A. Fabbretti, L. Choulier, R. Micura, B. P. Klaholz, P. Romby, M. Springer and S. Marzi (2013). "Escherichia coli ribosomal protein S1 unfolds structured mRNAs onto the ribosome for active translation initiation." PLoS Biol 11(12): e1001731. Eriksen, M., K. Sneppen, S. Pedersen and N. Mitarai (2017). "Occlusion of the Ribosome Binding Site Connects the Translational Initiation Frequency, mRNA Stability and Premature Transcription Termination." Front Microbiol 8: 362. Fabbretti, A., C. L. Pon, S. P. Hennelly, W. E. Hill, J. S. Lodmell and C. O. Gualerzi (2007). "The real-time path of translation factor IF3 onto and off the ribosome." Mol Cell 25(2): 285-296. Giorginis, S. and A. R. Subramanian (1980). "The major ribosome binding site of Escherichia coli ribosomal protein S1 is located in its N-terminal segment." J Mol Biol 141(4): 393-408. Gualerzi, C., C. L. Pon and A. Kaji (1971). "Initiation factor dependent release of aminoacyl-tRNAs from complexes of 30S ribosomal subunits, synthetic polynucleotide and aminoacyl tRNA." Biochem Biophys Res Commun 45(5): 1312-1319. Gualerzi, C. O. and C. L. Pon (2015). "Initiation of mRNA translation in bacteria: structural and dynamic aspects." Cell Mol Life Sci 72(22): 4341-4367. Held, W. A., S. Mizushima and M. Nomura (1973). "Reconstitution of Escherichia coli 30 S ribosomal subunits from purified molecular components." J Biol Chem 248(16): 5720-5730. Ikai, A. (2010). "A review on: atomic force microscopy applied to nano-mechanics of the cell." Adv Biochem Eng Biotechnol 119: 47-61. Khanna, P. L. and E. F. Ullman (1980). "4',5'-Dimethoxy-6-carboxyfluorescein: a novel dipole-dipole coupled fluorescence energy transfer acceptor useful for fluorescence immunoassays." Anal Biochem 108(1): 156-161. Komarova, A. V., L. S. Tchufistova, E. V. Supina and I. V. Boni (2002). "Protein S1 counteracts the inhibitory effect of the extended Shine-Dalgarno sequence on translation." RNA 8(9): 1137-1147. Malkusch, N., T. Dorfler, J. Nagy, T. Eilert and J. Michaelis (2017). "smFRET experiments of the RNA polymerase II transcription initiation complex." Methods 120: 115-124. Milon, P., C. Maracci, L. Filonava, C. O. Gualerzi and M. V. Rodnina (2012). "Real-time assembly landscape of bacterial 30S translation initiation complex." Nat Struct Mol Biol 19(6): 609-615. Neuman, K. C. and A. Nagy (2008). "Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy." Nat Methods 5(6): 491-505. Paci, M., C. Pon and C. Gualerzi (1985). "The interaction between initiation factor 3 and 30 S ribosomal subunits studied by high-resolution 1H NMR spectroscopy." J Biol Chem 260(2): 887-892. Parkhurst, K. M. and L. J. Parkhurst (1995). "Kinetic studies by fluorescence resonance energy transfer employing a double-labeled oligonucleotide: hybridization to the oligonucleotide complement and to single-stranded DNA." Biochemistry 34(1): 285-292. Petrelli, D., A. LaTeana, C. Garofalo, R. Spurio, C. L. Pon and C. O. Gualerzi (2001). "Translation initiation factor IF3: two domains, five functions, one mechanism?" EMBO J 20(16): 4560-4569. Qureshi, N. S., T. Matzel, E. C. Cetiner, R. Schnieders, H. R. A. Jonker, H. Schwalbe and B. Furtig (2021). "NMR structure of the Vibrio vulnificus ribosomal protein S1 domains D3 and D4 provides insights into molecular recognition of single-stranded RNAs." Nucleic Acids Res 49(13): 7753-7764. Ringquist, S., S. Shinedling, D. Barrick, L. Green, J. Binkley, G. D. Stormo and L. Gold (1992). "Translation initiation in Escherichia coli: sequences within the ribosome-binding site." Mol Microbiol 6(9): 1219-1229. Roberts, M. W. and J. C. Rabinowitz (1989). "The effect of Escherichia coli ribosomal protein S1 on the translational specificity of bacterial ribosomes." J Biol Chem 264(4): 2228-2235. Salah, P., M. Bisaglia, P. Aliprandi, M. Uzan, C. Sizun and F. Bontems (2009). "Probing the relationship between Gram-negative and Gram-positive S1 proteins by sequence analysis." Nucleic Acids Res 37(16): 5578-5588. Sengupta, J., R. K. Agrawal and J. Frank (2001). "Visualization of protein S1 within the 30S ribosomal subunit and its interaction with messenger RNA." Proc Natl Acad Sci U S A 98(21): 11991-11996. Shine, J. and L. Dalgarno (1975). "Determinant of cistron specificity in bacterial ribosomes." Nature 254(5495): 34-38. Sillers, I. Y. and P. B. Moore (1981). "Position of protein S1 in the 30 S ribosomal subunit of Escherichia coli." J Mol Biol 153(3): 761-780. Skorski, P., P. Leroy, O. Fayet, M. Dreyfus and S. Hermann-Le Denmat (2006). "The highly efficient translation initiation region from the Escherichia coli rpsA gene lacks a shine-dalgarno element." J Bacteriol 188(17): 6277-6285. Skorski, P., F. Proux, C. Cheraiti, M. Dreyfus and S. Hermann-Le Denmat (2007). "The deleterious effect of an insertion sequence removing the last twenty percent of the essential Escherichia coli rpsA gene is due to mRNA destabilization, not protein truncation." J Bacteriol 189(17): 6205-6212. Stryer, L. and R. P. Haugland (1967). "Energy transfer: a spectroscopic ruler." Proc Natl Acad Sci U S A 58(2): 719-726. Suryanarayana, T. and A. R. Subramanian (1983). "An essential function of ribosomal protein S1 in messenger ribonucleic acid translation." Biochemistry 22(11): 2715-2719. Szer, W., J. M. Hermoso and S. Leffler (1975). "Ribosomal protein S1 and polypeptide chain initiation in bacteria." Proc Natl Acad Sci U S A 72(6): 2325-2329. Tzareva, N. V., V. I. Makhno and I. V. Boni (1994). "Ribosome-messenger recognition in the absence of the Shine-Dalgarno interactions." FEBS Lett 337(2): 189-194. Uster, P. S. (1993). "In situ resonance energy transfer microscopy: monitoring membrane fusion in living cells." Methods Enzymol 221: 239-246. van de Meent, J. W., J. E. Bronson, C. H. Wiggins and R. L. Gonzalez, Jr. (2014). "Empirical Bayes methods enable advanced population-level analyses of single-molecule FRET experiments." Biophys J 106(6): 1327-1337. Wahba, A. J., Y. B. Chae, K. Iwasaki, R. Mazumder, M. J. Miller, S. Sabol and M. A. Sillero (1969). "Initiation of protein synthesis in Escherichia coli. I. Purification and properties of the initiation factors." Cold Spring Harb Symp Quant Biol 34: 285-290. Wen, J. D., S. T. Kuo and H. D. Chou (2021). "The diversity of Shine-Dalgarno sequences sheds light on the evolution of translation initiation." RNA Biol 18(11): 1489-1500. Wen, J. D., L. Lancaster, C. Hodges, A. C. Zeri, S. H. Yoshimura, H. F. Noller, C. Bustamante and I. Tinoco (2008). "Following translation by single ribosomes one codon at a time." Nature 452(7187): 598-603. Yildiz, A., J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman and P. R. Selvin (2003). "Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization." Science 300(5628): 2061-2065. 楊宜芳,國立台灣大學分子與細胞生物學研究所碩士論文,以單分子螢光共振能量轉移技術觀測S1如何結合mRNA,2020 盧韋霖,國立台灣大學分子與細胞生物學研究所碩士論文,核醣體bS1蛋白在轉譯起始階段之功能性研究,2021 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84681 | - |
| dc.description.abstract | 轉譯作用於核醣體進行,其中bS1是核醣體上分子量最大、與30S結合力最弱,且與mRNA具非專一性結合力的蛋白。實驗室先前的研究成果已知bS1會先結合於rpsO mRNA之5’UTR (非轉譯區) 雙髮夾結構間的單股序列,再解開下游hairpin 2的髮夾結構以增強結合的穩定性並促進轉譯的起始。然而bS1與它自身的mRNA-rpsA 之間是否也存在類似的結合規律,是否也具有蛋白結合的結構或者序列 偏好,尚屬未知。因此我的研究將逐步修改rpsA 5’UTR的組成結構與序列,並以單分子螢光共振能量轉移技術探討bS1蛋白是如何結合至RNA上,進而調控自身的轉譯作用。此外,由於先前的研究中發現bS1蛋白間具有協同性 (cooperativity),且此協同性可能來自於蛋白質N端與C端之間的交互作用,因此於本研究中也使用除去D6 domain的bS1蛋白突變體bS1-DD6進行實驗,以探討兩者結合能力的差異。 我們發現當保留rpsA 5’UTR的第二與第三髮夾結構及中間的單股序列時,bS1即能夠很好地與其結合,且再進一步去掉hairpin 3後依然能使bS1良好結合,然而去除hairpin 2卻無法得到類似的結果。此外,當更換rpsA 5’UTR的第二段單股序列 (連接hairpin 2與3)為rpsO 5’UTR中相對應的單股片段時,將獲得截然不同的結果:於bS1不存在的情況下,RNA本身即具有多種動態與靜態存在的形式,而在加入bS1之後,更能觀察到複雜多樣的動態變化。對於置換單股序列造成的迥異結果,我們推論bS1蛋白可能是藉由其中特定的結構域有順序地先結合至rpsA 5’UTR的第二段單股序列,再向上游打開hairpin 2的結構,如此才能使蛋白穩定地結合。 我們也將與bS1結合良好的mRNA再與bS1-DD6進行單分子實驗,並做動力學分析,發現以單一速率常數即能夠很好地擬合蛋白的結合速率,且其與加入的蛋白濃度成正比,然而需要以兩個速率常數才能夠較好地擬合蛋白的解離速率,推測是由於多個bS1的結合以及bS1結合至RNA上不同的位置所造成的結果。此外我發現bS1-DD6能夠更快地結合至保留下游兩個髮夾結構的rpsA (rpsA-HP2-HP3)上,且其解離速率也較bS1慢。然而若再去除第三個髮夾則會觀察到bS1-DD6比bS1更快地解離,因而推論bS1的D6 domain可能會阻礙其與RNA結合,而於rpsA (rpsA-HP2-HP3)上所觀察到bS1-DD6的結合時間較長,則可能還包含bS1某些結構域與RNA間的相互影響。綜合以上,我們對於bS1與rpsA 5’UTR之間的交互作用提出新的見解。 | zh_TW |
| dc.description.abstract | Translation is carried out on ribosomes, among which bS1 is the protein with the largest molecular weight, the weakest binding affinity to the ribosome, and non-sequence-specificity for mRNA. The previous research results of our laboratory have shown that bS1 first binds to the single-stranded sequence between the rpsO 5’UTR double hairpin structure, and then unwinds the downstream hairpin 2 to enhance the stability of the binding and promote the initiation of translation. However, it is unknown whether a similar binding mechanism follows between bS1 and its own mRNA, rpsA, and whether it also has a structure- or sequence-binding preference. Hence, I will progressively modify the structure and sequence of the rpsA 5’UTR, and use the single-molecule fluorescence resonance energy transfer technology to explore how bS1 protein binds to it to regulate its own translation. In addition, since the cooperativity between bS1 proteins was found in previous studies and it may come from the interaction between the N-terminus and C-terminus of the protein, the bS1 protein mutant without the D6 domain (bS1-DD6) was also used in this study to explore the difference in binding ability between them. We found that when the second and third hairpin structures, together with the single-stranded linker, of rpsA 5’UTR were retained, bS1 could bind well to it. Further removal of hairpin 3 could still make bS1 bind well, but similar results were not obtained when hairpin 2 was deleted. In addition, when the single-stranded linker between hairpins 2 and 3 of the rpsA 5’UTR was replaced with the corresponding single-stranded fragment from the rpsO 5’UTR, completely different results were obtained. In the absence of bS1, RNA itself has a a variety of dynamic and static forms, and after adding bS1, more complex and diverse changes can be observed. Regarding the different results caused by the replacement of the single-stranded sequence, we deduced that the binding of bS1 protein may be sequenced by specific domains therein. It may first bind to the second single -stranded linker (SS2) of the rpsA 5’UTR, and then opens the structure of upstream hairpin 2, so that the protein can be stably bound. We also performed single-molecule experiments with bS1-DD6 for mRNA that binds well to bS1, and did kinetic analysis. We found that a single rate constant could well fit the binding rate of the protein, and it was proportional to the added protein concentration. However, two rate constants are required to fit the protein dissociation rate well, presumably due to the binding of multiple bS1 and the binding of bS1 to different positions on the RNA. In addition, I found that bS1- DD6 binds faster to two-hairpin-containing rpsA (rpsA-HP2-HP3) and dissociates at a slower rate than bS1. However, on rpsA-HP2-SS2 (without hairpin 3), it was observed that bS1-DD6 dissociates faster than bS1, so it is inferred that the D6 domain of bS1 may hinder its binding to RNA, and that the longer duration of bS1-DD6 binding to rpsA (rpsA-HP2-HP3) may also involve interactions between certain domains of bS1 and RNA. Taken together, we provide new insights into the interaction between bS1 and rpsA 5’UTR. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:20:20Z (GMT). No. of bitstreams: 1 U0001-0109202217342600.pdf: 16754302 bytes, checksum: 2ce7183be6e47889c2855d14e8f8f010 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 目錄 口試委員審定書 i 致謝 ii 摘要 iv Abstract vi 目錄 viii 圖目錄 x 表目錄 xii 第一章 導論 1 1.1 夏因-達爾加諾序列 1 1.2 轉譯起始 2 1.3 核醣體蛋白bS1 2 1.4 rpsA TIR 4 1.5 單分子技術 5 1.6 螢光共振能量轉移 6 1.7 研究動機 7 第二章 材料與方法 8 2.1材料 8 2.1.1勝任細胞品系 8 2.1.2質體 8 2.1.3試劑組 8 2.1.4藥品 9 2.1.5酵素 11 2.1.6溶液 12 2.1.7載體構築序列 14 2.1.8探針設計 16 2.2方法 17 2.2.1質體建構 17 2.2.2 bS1蛋白突變體的製備 21 2.2.3 IPTG誘導測試 25 2.2.4蛋白的純化 26 2.2.5單分子螢光共振能量轉移實驗 (smFRET) 30 第三章 結果 33 3.1 核醣體蛋白bS1-DD6的純化 33 3.2 核醣體蛋白bS1-dCtail的純化 34 3.3 RNA樣本製備 35 3.3.1 胞外轉錄 (in vitro transcription) 35 3.3.2 RNA與DNA handle黏合反應 35 3.4 RNA與bS1蛋白的交互作用 36 3.4.1 rpsA 36 3.4.2 rpsA-SS2-HP3 39 3.4.3 rpsA-HP3 40 3.4.4 Lk17-HP3 41 3.4.5 rpsOLk12-HP3 43 3.4.6 rpsA-HP2-SS2 45 3.4.7 rpsA-HP2 47 3.4.8 rpsA-sHP2-SS2 48 3.4.9 rpsA-HP2-rpsOLk12 49 第四章 討論 52 參考文獻 59 圖目錄 圖1 rpsA 5’UTR與rpsO 5’UTR結構示意圖 63 圖2 bS1、bS1-DD6及bS1-dCtail各結構域示意圖 64 圖3 bS1-DD6終止密碼子插入位置示意圖 65 圖4 bS1-dCtail終止密碼子插入位置示意圖 66 圖5 pSP6mS2S、pSP6rpsA質體示意圖 67 圖6 玻片修飾 68 圖7 bS1-DD6經FPLC Resource Q 管柱純化之洗脫分佈 69 圖8 bS1-DD6經FPLC Resource Q管柱純化後的膠圖 71 圖9 bS1-DD6經FPLC Superdex 200, 10 / 300 column純化之洗脫分布 72 圖10 bS1-DD6經FPLC Superdex 200, 10/300 column純化後的膠圖 73 圖11 bS1-DD6完整純化後的膠圖結果 75 圖12 bS1-dCtail經DEAE sepharose純化後的膠圖 76 圖13 bS1-dCtail經FPLC Resource Q純化之洗脫分布 77 圖14 bS1-dCtail經FPLC Resource Q管柱純化後的膠圖 79 圖15 bS1-dCtail經FPLC Superdex 200, 10/300管柱純化之洗脫分布 80 圖16 bS1-dCtail經FPLC Superdex 200, 10/300管柱純化後的膠圖 81 圖17 bS1-dCtail完整純化後的膠圖結果 82 圖18 經胞外轉錄之RNA 83 圖19 經胞外轉錄之RNA 85 圖19 RNA與DNA探針黏合結果 87 圖21 rpsA結構示意圖、 FRET分布直方圖與FRET時間軌跡圖 91 圖22 rpsA+WT-S1 FRET分布直方圖與FRET隨時間變化圖 94 圖23 rpsA+bS1-DD6 FRET分布直方圖與FRET隨時間變化圖 96 圖24 rpsA與WT-S1/bS1-DD6的結合速率圖 97 圖25 rpsA與WT-S1/bS1-DD6的解離速率與比例圖 98 圖26 rpsA-SS2-HP3結構示意圖、FRET分布直方圖與FRET時間軌跡圖 99 圖27 rpsA-SS2-HP3+WT-S1 FRET分布直方圖與FRET隨時間變化圖 101 圖28 rpsA-HP3結構示意圖、FRET分布直方圖與FRET時間軌跡圖 102 圖29 rpsA-HP3+WT-S1 FRET分布直方圖與FRET隨時間變化圖 105 圖30 Lk17-HP3結構示意圖、FRET分布直方圖與FRET時間軌跡圖 106 圖31 Lk17-HP3+WT-S1 FRET分布直方圖與FRET隨時間變化圖 109 圖34 rpsA-HP2-SS2結構示意圖、FRET分布直方圖與FRET時間軌跡圖 114 圖35 rpsA-HP2-SS2+WT-S1 FRET分布直方圖與FRET隨時間變化圖 117 圖36 rpsA-HP2-SS2+bS1-DD6 FRET分布直方圖與FRET隨時間變化圖 119 圖37 rpsA-HP2-SS2 與WT-S1/bS1-DD6的結合速率圖 120 圖38 rpsA-HP2-SS2 與WT-S1/bS1-DD6的解離速率與比例圖 121 圖39 rpsA-HP2結構示意圖、FRET分布直方圖與FRET時間軌跡圖 122 圖40 rpsA-HP2+WT-S1 FRET分布直方圖與FRET隨時間變化圖 125 圖41 rpsA-sHP2-SS2結構示意圖、FRET分布直方圖與FRET時間軌跡圖 126 圖42 rpsA-sHP2-SS2+WT-S1 FRET分布直方圖與FRET隨時間變化圖 129 圖43 rpsA-HP2-rpsOLk12結構示意圖、FRET分布直方圖與FRET時間軌跡圖 130 圖44 rpsA-HP2-rpsOLk12+WT-S1 FRET分布直方圖與FRET隨時間變化圖 133 圖45 Rates of rpsA+WT-S1/bS1-DD6 134 圖46 Rates of rpsA-HP2-SS2+WT-S1/bS1-DD6 135 圖47 以單一/多個指數函數擬合bS1的解離速率 136 圖48 rpsA-SS2-HP3與rpsOLk12-HP3的二級結構預測結果圖 137 圖49 bS1與rpsA 5’UTR結合之模型 138 表目錄 表1 WT-S1/bS1-DD6對rpsA的結合速率 139 表2 WT-S1/bS1-DD6對rpsA的兩種解離速率 140 表3 WT-S1/bS1-DD6對rpsA-HP2-SS2的結合速率 141 表4 WT-S1/bS1-DD6對rpsA-HP2-SS2的兩種解離速率 142 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 單分子技術 | zh_TW |
| dc.subject | 核醣體蛋白bS1 | zh_TW |
| dc.subject | rpsA 5’UTR | zh_TW |
| dc.subject | 轉譯起始 | zh_TW |
| dc.subject | 螢光共振能量轉移 | zh_TW |
| dc.subject | single molecule | en |
| dc.subject | rpsA 5’UTR | en |
| dc.subject | ribosomal protein bS1 | en |
| dc.subject | FRET | en |
| dc.subject | translation initiation | en |
| dc.title | 以單分子螢光共振能量轉移技術探討核醣體蛋白bS1與rpsA 5’UTR之間的交互作用 | zh_TW |
| dc.title | Study of the Interaction Between Ribosomal Protein bS1 and rpsA 5’UTR Using Single-Molecule FRET | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李弘文;李以仁 | zh_TW |
| dc.contributor.oralexamcommittee | Hung-Wen Li;I-Ren Lee | en |
| dc.subject.keyword | 核醣體蛋白bS1,rpsA 5’UTR,轉譯起始,單分子技術,螢光共振能量轉移, | zh_TW |
| dc.subject.keyword | ribosomal protein bS1,rpsA 5’UTR,translation initiation,single molecule,FRET, | en |
| dc.relation.page | 142 | - |
| dc.identifier.doi | 10.6342/NTU202203077 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2022-09-12 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | - |
| dc.date.embargo-lift | 2025-12-31 | - |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0109202217342600.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 16.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
