請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84667
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 方偉宏(Woei-horng Fang) | |
dc.contributor.author | Li-Hsin Chen | en |
dc.contributor.author | 陳立馨 | zh_TW |
dc.date.accessioned | 2023-03-19T22:19:45Z | - |
dc.date.copyright | 2022-10-04 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-14 | |
dc.identifier.citation | Angulo, I., Vadas, O., Garçon, F., Banham-Hall, E., Plagnol, V., Leahy, T. R., Wu, C. (2013). Phosphoinositide 3-kinase δ gene mutation predisposes to respiratory infection and airway damage. Science, 342(6160), 866-871. Beese, L. S., Friedman, J. M., & Steitz, T. A. (1993). Crystal structures of the Klenow fragment of DNA polymerase I complexed with deoxynucleoside triphosphate and pyrophosphate. Biochemistry, 32(51), 14095-14101. Case-Green, S. C., & Southern, E. M. (1994). Studies on the base pairing properties of deoxyinosine by solid phase hybridisation to oligonucleotides. Nucleic acids research, 22(2), 131-136. Cao, W. (2013). Endonuclease V: an unusual enzyme for repair of DNA deamination. Cellular and Molecular Life Sciences, 70(17), 3145-3156. Chang, H.-L., Su, K.-Y., Goodman, S. D., Chou, N.-A., Lin, K.-C., Cheng, W.-C., Fang, W.-h. (2020). Proofreading of single nucleotide insertion/deletion replication errors analyzed by MALDI-TOF mass spectrometry assay. DNA repair, 88, 102810. Cox, M. M., Doudna, J., & O'Donnell, M. (2015). Molecular Biology: Principles and Practice: Macmillan Higher Education. Dalhus, B., Alseth, I., & Bjørås, M. (2015). Structural basis for incision at deaminated adenines in DNA and RNA by endonuclease V. Progress in biophysics and molecular biology, 117(2-3), 134-142. Dalhus, B., Arvai, A. S., Rosnes, I., Olsen, Ø. E., Backe, P. H., Alseth, I., Bjørås, M. (2009). Structures of endonuclease V with DNA reveal initiation of deaminated adenine repair. Nature structural & molecular biology, 16(2), 138-143. Derbyshire, V., Freemont, P. S., Sanderson, M. R., Beese, L., Friedman, J. M., Joyce, C. M., & Steitz, T. A. (1988). Genetic and crystallographic studies of the 3′, 5′-exonucleolytic site of DNA polymerase I. Science, 240(4849), 199-201. Drake, J. W. (1991). A constant rate of spontaneous mutation in DNA-based microbes. Proceedings of the National Academy of Sciences, 88(16), 7160-7164. Fortini, Paola, Parlanti, Eleonora, Sidorkina, M, O., Eugenia. (1999). The type of DNA glycosylase determines the base excision repair pathway in mammalian cells. Journal of Biological Chemistry, 274(21), 15230-15236. Freemont, P., Friedman, J., Beese, L., Sanderson, M., & Steitz, T. (1988). Cocrystal structure of an editing complex of Klenow fragment with DNA. Proceedings of the National Academy of Sciences, 85(23), 8924-8928. Friedberg, E. C., Walker, G. C., Siede, W., & Wood, R. D. (2005). DNA repair and mutagenesis: American Society for Microbiology Press. Gulston, M., & Knowland, J. (1999). Illumination of human keratinocytes in the presence of the sunscreen ingredient Padimate-O and through an SPF-15 sunscreen reduces direct photodamage to DNA but increases strand breaks. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 444(1), 49-60. Han, W., & Yu, K. (2010). Ionizing radiation, DNA double strand break and mutation. Advances in Genetics research, 4, 197-210. Hitchcock, T. M., Gao, H., & Cao, W. (2004). Cleavage of deoxyoxanosine-containing oligodeoxyribonucleotides by bacterial endonuclease V. Nucleic acids research, 32(13), 4071-4080. Houle, D., Morikawa, B., & Lynch, M. (1996). Comparing mutational variabilities. Genetics, 143(3), 1467-1483. Hubscher, U. (2010). DNA Polymerases: Discovery, Characterization, and Functions in Cellular DNA Transactions: World Scientific. Joyce, C. M., & Grindley, N. (1984). Method for determining whether a gene of Escherichia coli is essential: application to the polA gene. Journal of bacteriology, 158(2), 636-643. Kawase, Y., Iwai, S., Inoue, H., Miura, K., & Ohtsuka, E. (1986). Studies on nucleic acid interactions I. Stabilities of mini-duplexes (dG 2 A 4 XA 4 G 2. dC 2 T 4 YT 4 C 2) and self-complementary d (GGGAAXYTTCCC) containing deoxyinosine and other mismatched bases. Nucleic acids research, 14(19), 7727-7736. Klenow, H., & Henningsen, I. (1970). Selective elimination of the exonuclease activity of the deoxyribonucleic acid polymerase from Escherichia coli B by limited proteolysis. Proceedings of the National Academy of Sciences, 65(1), 168-175. Kuraoka, I. (2015). Diversity of endonuclease V: from DNA repair to RNA editing. Biomolecules, 5(4), 2194-2206. Lahue, R., Au, K., & Modrich, P. (1989). DNA mismatch correction in a defined system. Science, 245(4914), 160-164. Lee, C.-C., Yang, Y.-C., Goodman, S. D., Lin, C.-J., Chen, Y.-A., Wang, Y.-t., Fang, W.-h. (2013). The excision of 3′ penultimate errors by DNA polymerase I and its role in endonuclease V-mediated DNA repair. DNA repair, 12(11), 899-911. Lee, C.-C., Yang, Y.-C., Goodman, S. D., Yu, Y.-H., Lin, S.-B., Kao, J.-T., Fang, W.-h. (2010). Endonuclease V-mediated deoxyinosine excision repair in vitro. DNA repair, 9(10), 1073-1079. Lehman, I. R., Bessman, M. J., Simms, E. S., & Kornberg, A. (1958). Enzymatic synthesis of deoxyribonucleic acid: I. Preparation of substrates and partial purification of an enzyme from Escherichia coli. Journal of Biological Chemistry, 233(1), 163-170. Lindahl, T., & Wood, R. D. (1999). Quality control by DNA repair. Science, 286(5446), 1897-1905. Loft, S., & Poulsen, H. E. (1996). Cancer risk and oxidative DNA damage in man. Journal of molecular medicine, 74(6), 297-312. Majorek, K. A., & Bujnicki, J. M. (2009). Modeling of Escherichia coli Endonuclease V structure in complex with DNA. Journal of molecular modeling, 15(2), 173-182. Mannuss, A., Trapp, O., & Puchta, H. (2012). Gene regulation in response to DNA damage. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1819(2), 154-165. Modrich, P. (1991). Mechanisms and biological effects of mismatch repair. Annual review of genetics, 25(1), 229-253. Napolitano, R., Janel-Bintz, R., Wagner, J., & Fuchs, R. (2000). All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis. The EMBO journal, 19(22), 6259-6265. Nawaz, M. S., Vik, E. S., Ronander, M. E., Solvoll, A. M., Blicher, P., Bjørås, M., Dalhus, B. (2016). Crystal structure and MD simulation of mouse EndoV reveal wedge motif plasticity in this inosine-specific endonuclease. Scientific reports, 6(1), 1-11. Rosnes, I., Rowe, A. D., Vik, E. S., Forstrøm, R. J., Alseth, I., Bjørås, M., & Dalhus, B. (2013). Structural basis of DNA loop recognition by endonuclease V. Structure, 21(2), 257-265. Sancar, A. (1996). DNA excision repair. Annual review of biochemistry, 65(1), 43-81. Sancar, A., & Tang, M.-s. (1993). NUCLEOTIDE EXCISION REPAIR. Photochemistry and Photobiology, 57(5), 905-921. Schouten, K. A., & Weiss, B. (1999). Endonuclease V protects Escherichia coli against specific mutations caused by nitrous acid. Mutation Research/DNA Repair, 435(3), 245-254. Sebastian Vik, E., Sameen Nawaz, M., Strøm Andersen, P., Fladeby, C., Bjørås, M., Dalhus, B., & Alseth, I. (2013). Endonuclease V cleaves at inosines in RNA. Nature communications, 4(1), 1-7. Su, K.-Y., Lai, H.-M., Goodman, S. D., Hu, W.-Y., Cheng, W.-C., Lin, L.-I., Fang, W.-h. (2018). Application of single nucleotide extension and MALDI-TOF mass spectrometry in proofreading and DNA repair assay. DNA repair, 61, 63-75. Su, K.-Y., Lin, L.-I., Goodman, S. D., Yen, R.-S., Wu, C.-Y., Chang, W.-C., Fang, W.-h. (2018). DNA polymerase I proofreading exonuclease activity is required for endonuclease V repair pathway both in vitro and in vivo. DNA repair, 64, 59-67. Surova, O., & Zhivotovsky, B. (2013). Various modes of cell death induced by DNA damage. Oncogene, 32(33), 3789-3797. Su, S. S., Lahue, R. S., Au, K. G., & Modrich, P. (1988). Mispair specificity of methyl-directed DNA mismatch correction in vitro. Journal of Biological Chemistry, 263(14), 6829-6835. Sanchez, A. M., Volk, D. E., Gorenstein, D. G., & Lloyd, R. S. (2003). Initiation of repair of A/G mismatches is modulated by sequence context. DNA repair, 2(8), 863-878. Sziller, I., Babula, O., Ujhazy, A., Nagy, B., Hupuczi, P., Papp, Z., Witkin, S. (2007). Chlamydia trachomatis infection, Fallopian tube damage and a mannose-binding lectin codon 54 gene polymorphism. Human reproduction, 22(7), 1861-1865. Thacker, J. (2005). The RAD51 gene family, genetic instability and cancer. Cancer letters, 219(2), 125-135. Theis, K., Chen, P. J., Skorvaga, M., Van Houten, B., & Kisker, C. (1999). Crystal structure of UvrB, a DNA helicase adapted for nucleotide excision repair. The EMBO journal, 18(24), 6899-6907. Van Houten, B. (1990). Nucleotide excision repair in Escherichia coli. Microbiological reviews, 54(1), 18-51. Watkins Jr, N. E., & SantaLucia Jr, J. (2005). Nearest-neighbor thermodynamics of deoxyinosine pairs in DNA duplexes. Nucleic acids research, 33(19), 6258-6267. Weiss, B. (2001). Endonuclease V of Escherichia coli prevents mutations from nitrosative deamination during nitrate/nitrite respiration. Mutation Research/DNA Repair, 461(4), 301-309. Weiss, B. (2008). Removal of deoxyinosine from the Escherichia coli chromosome as studied by oligonucleotide transformation. DNA repair, 7(2), 205-212. Yao, M., & Kow, Y. W. (1994). Strand-specific cleavage of mismatch-containing DNA by deoxyinosine 3'-endonuclease from Escherichia coli. Journal of Biological Chemistry, 269(50), 31390-31396. Yao, M., & Kow, Y. W. (1995). Interaction of deoxyinosine 3′-endonuclease from Escherichia coli with DNA containing deoxyinosine. Journal of Biological Chemistry, 270(48), 28609-28616. Yao, M., & Kow, Y. W. (1996). Cleavage of insertion/deletion mismatches, flap and pseudo-Y DNA structures by deoxyinosine 3′-endonuclease from Escherichia coli. Journal of Biological Chemistry, 271(48), 30672-30676. Zharkov, D. O. (2008). Base excision DNA repair. Cellular and Molecular Life Sciences, 65(10), 1544-1565. doi:10.1007/s00018-008-7543-2 Zou, Y., & Van Houten, B. (1999). Strand opening by the UvrA2B complex allows dynamic recognition of DNA damage. The EMBO journal, 18(17), 4889-4901. Tikhomirova, A., Beletskaya, I. V., & Chalikian, T. V. (2006). Stability of DNA duplexes containing GG, CC, AA, and TT mismatches. Biochemistry, 45(35), 10563-10571. 吳卓遠 (2017) 細菌第一型DNA聚合酶校對外切酶參與第五型核酸內切酶修復之體內證明 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84667 | - |
dc.description.abstract | 在正常的生理情況下,腺嘌呤(Adenine, A)可能會因為自發性脫胺作用產亞黃嘌呤(hypoxanthine, Hx),在DNA上則稱為脫氧肌苷(deoxyinosine, dI)。如果dI無法及時被DNA修復系統移除,細胞持續利用dI作為模板股進行DNA複製則傾向於誤置C,最終會導致A: T to G: C transition mutation的結果。 研究發現在大腸桿菌主要是由第五型核酸內切酶系統進行dI的修復。於修復系統中,第五型核酸內切酶(endonuclease V, Endo V)會辨識DNA上的dI並在5’端第二個磷酸酯鍵進行切割,由第一型DNA聚合酶(polymerase, PolI)將dI移除,隨後合成正確鹼基配對的核苷酸,最後再藉由接合酶(ligase)把缺口黏合。為了更深入研究第五型核酸內切酶修復系統,本研究製備G-I, T-I, A-I配對並於5’端帶有C-C標誌的DNA受質,透過in vitro和in vivo的方式進行修復分析。 含有dI的DNA受質是使用來自phagemid的lesion containing strand DNA、template strand DNA和含有dI之人工合成寡核酸共同組成。我們將dI的位置設計在NheI限制酶識別序列中,分別產生G-I, T-I, A-I損傷形式。當dI存在時,NheI對此序列的水解會受到影響;若dI成功被修復,NheI可以將DNA受質完全水解。在in vitro repair assay中,測定修復反應後NheI水解的程度即可進行修復的定量。在in vivo repair assay中,抽取dI受質轉型後單一菌落質體進行限制酶分析,如被NheI完全水解為修復,如NheI僅水解半數DNA則為不修復。我們也利用細菌對於C-C配對錯誤修復的不敏感,將C-C marker置於重疊的AflII和XhoI限制酵素識別位置,則可以用來扣除in vivo assay常發生的template strand loss與lesion strand loss等副反應結果。 我們利用Endo V nicking assay來檢測dI受質的品質,結果顯示100ng G-I、T-I和A-I超螺旋受質經過1U Endo V作用後,可完全轉成nicked form。接著進行Endo V滴定試驗以觀察在不同unit數的Endo V作用下,不同dI配對的受質劑量依賴性的現象(dose dependency),結果顯示G-I、T-I受質有劑量依賴性,而A-I受質要使用0.5 U Endo V進行反應才觀察到A-I的受質被Endo V作用變成nicked form。三種dI受質以含有第五型核酸內切酶,第一型核酸聚合酶及DNA連接酶的純化蛋白修復系統進行測試,dI也可以成功被修復且G-I受質的修復效率最佳。將G-I, T-I, A-I受質藉由轉型作用送入大腸桿菌BW25113和JW5547中進行細菌體內修復試驗。發現在BW25113野生株in vivo修復比率分別為:G-I為34%,T-I為26%,A-I為31.42%,相對應JW5547突變株in vivo背景雜訊為:G-I為5%,T-I為3%,A-I為4%。 | zh_TW |
dc.description.abstract | Under physiological condition, adenine could spontaneously deaminates to generate hypoxanthine. In DNA, hypoxanthine is called deoxyinosine (dI). An A: T to G: C transition mutation would occur if dI was not repaired before DNA replication. In previous study, it was found that dI lesion was mainly repaired by endonuclease V (Endo V) repair pathway in E. coli Endo V recognized dI lesion and incised on the second phosphodiester bond 5’ to the lesion. Polymerase I (PolI) removed dI by 5’-3’ exonuclease activity and synthesized correct nucleotides, then ligase sealed the nick. To further study Endo V repair pathway, G-I, T-I and A-I substrate with 5’ C-C marker were designed and used in the in vitro and in vivo assay system. The dI substrate was composed of phagemid-based lesion containing strand DNA, template strand DNA and dI containing oligo. The dI lesion was designed in the NheI recognition sequence and the existence of dI would interrupt NheI digestion. The degree of substrate digested by NheI was used to evaluate repair efficiency in the in vitro repair assay. In the in vivo repair assay, dI substate was after transformed into E. coli and the phagemid was then extracted by alkaline lysis and analyzed by AflII, XhoI and NheI digestion. If dI substrate was repaired, DNA could be completely digested by NheI. If dI substrate was not repaired, DNA was incompletely digested by NheI. Bacteria was unsensitive to C-C mismatch, therefore C-C marker was inserted into overlapped AflII and XhoI recognition sequences and used to evaluate template strand loss and lesion strand loss. The quality of dI substrate was determined by Endo V nicking assay, and the result showed that 100ng G-I, T-I and A-I substrate were completely nicked by 1U Endo V. In Endo V titration tests, G-I and T-I substrate repair was dose-dependent to Endo V. But it was not observed in A-I substrate repair. In the in vitro repair assay using purified protein systems, different kinds of dI substrates were successfully repaired by Endo V, PolI and ligase. In the in vivo repair condition, the repair efficiency was 34% to G-I, 6% to T-I and 32% to A-I in E. coli BW25113. The repair efficiency in the nfi- strain JW5547 was 5% to G-I, 3% to T-I and 4% to A-I. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:19:45Z (GMT). No. of bitstreams: 1 U0001-1409202211521900.pdf: 28569251 bytes, checksum: 7b7853f2a55e749833c6aebff728d332 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract v 總目次 vii List of Figures x List of Table xi 縮寫表 xii 第一章 研究背景 1 1. 核酸與基因損傷 1 2. 亞黃嘌呤 1 3. DNA修復機制 2 4. 第五型核酸內切酶 3 5. 第一型DNA聚合酶 5 6. 亞黃嘌呤修復 7 7. 研究動機與目的 8 第二章 實驗材料與方法 10 2.1 菌株 10 2.2 載體 10 2.3 酵素 11 2.4 人工合成寡核苷酸及引子 12 2.5 建構lesion containing strand DNA 14 2.6 建構template strand DNA 14 2.7 大量製備lesion containing strand DNA 15 2.8 單股環狀template strand DNA的製備 17 2.9 含有dI受質的製備 18 2.10 使用不同配對dI受質進行Endo V nicking assay 20 2.11 對含有dI受質進行限制酶敏感度分析 20 2.12 純化蛋白質之系統修復實驗 21 2.13 細菌體內修復試驗 21 第三章 結果 23 3.1 pBSK質體製備 23 3.2 建構lesion containing strand DNA與製備 23 3.3 建構Template strand DNA與製備 23 3.4 含dI受質的製備 24 3.5 使用不同dI配對的受質進行Endo V nicking assay 25 3.6 使用不同dI配對的受質進行Endo V滴定試驗(titration) 26 3.11 含I受質限制酶敏感度分析 27 3.12 含dI受質純化蛋白質之Endo V系統修復試驗 28 3.7 細菌體內之修復試驗 29 第四章 討論 32 1. 含有dI受質 32 2. 不同dI配對受質於細菌體內之修復實驗 32 3. 進行不同dI配對受質Endo V滴定試驗 34 4. 不同dI配對受質於純化蛋白質系統之修復實驗 35 附錄 60 參考文獻 65 | |
dc.language.iso | zh-TW | |
dc.title | 建構第五型核酸內切酶修復試管中及生物體試驗之含亞黃嘌呤受質 | zh_TW |
dc.title | Construction of deoxyinosine substrates for Endonuclease V assay both in vitro and in vivo | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許濤(Todd Hsu),蔡芷季(Jyy-Jih Tsai),郭靜穎(Ching-Ying Kuo),蘇剛毅(Su Kang-Yi) | |
dc.subject.keyword | 亞黃嘌呤,脫氧肌苷,第五型核酸內切酶,第一型核酸聚合酶,細胞內修復試驗,試管中試驗, | zh_TW |
dc.subject.keyword | hypoxanthine,deoxyinosine,endonuclease V,DNA polymerase I,in vitro assay,in vivo repair assay, | en |
dc.relation.page | 69 | |
dc.identifier.doi | 10.6342/NTU202203387 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-09-14 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
dc.date.embargo-lift | 2022-10-04 | - |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1409202211521900.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 27.9 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。