請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84666
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳明賢(Ming-Shiang Wu) | |
dc.contributor.author | Hsuan-Ho Lin | en |
dc.contributor.author | 林宣合 | zh_TW |
dc.date.accessioned | 2023-03-19T22:19:43Z | - |
dc.date.copyright | 2022-10-13 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-13 | |
dc.identifier.citation | 1. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021 May;71(3):209-249 2. Zauber AG, Winawer SJ, O’Brien MJ, et al. Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths. N Engl J Med 2012;366:687–96. 3. Winawer SJ, Zauber AG, Ho MN, et al. Prevention of colorectal cancer by colonoscopic polypectomy. The National Polyp Study Workgroup. N Engl J Med 1993;329:1977–81. 4. Lieberma D et al. Progress and challenges in colorectal cancer screening and surveillance. Gastroenterology. 2010 Jun;138(6):2115-26 5. Rex DK et al. Colorectal cancer screening: Recommendations for physicians and patients from the U.S. Multi-Society Task Force on Colorectal Cancer. Gastrointest Endosc. 2017 Jul;86(1):18-33 6. Bjerrum A, Milter MC, Andersen O, et al. Risk stratification and detection of new colorectal neoplasms after colorectal cancer screening with faecal occult blood test: experience from a Danish screening cohort. Eur J Gastroenterol Hepatol. 2015;27:1433-1437 7. Fairley KJ, Li J, Komar M, et al. Predicting the risk of recurrent adenoma and incident colorectal cancer based on findings of the baseline colonoscopy. Clin Transl Gastroenterol.2014;5:e64. doi: 10.1038/ctg.2014.11 8. Good NM, Macrae FA, Young GP, et al. Ideal colonoscopic surveillance intervals to reduce incidence of advanced adenoma and colorectal cancer. J Gastroenterol Hepatol.2015;30:1147-1154 9. Jang HW, Park SJ, Hong SP, et al. Risk factors for recurrent high-risk polyps after the removal of high-risk polyps at initial colonoscopy. Yonsei Med J. 2015;56:1559-1565. 10. Park SK, Song YS, Jung YS, et al. Do surveillance intervals in patients with more than five adenomas at index colonoscopy be shorter than those in patients with three to four adenomas? A Korean Association for the Study of Intestinal Disease study. J Gastroenterol Hepatol. 2017;32:1026-1031 11. van Heijningen EMB, Lansdorp–Vogelaar I, Kuipers EJ, et al. Features of adenoma and colonoscopy associated with recurrent colorectal neoplasia based on a large communitybased study. Gastroenterology. 2013;144:1410-1418 12. Brenner H, Chang-Claude J, Jansen L, et al. Role of colonoscopy and polyp characteristics in colorectal cancer after colonoscopic polyp detection: a population-based case–control study. Ann Intern Med. 2012;157:225-232 13. van Enckevort C, de Graaf A, Hollema H, et al. Predictors of colorectal neoplasia after polypectomy: based on initial and consecutive findings. Neth J Med. 2014;72:139-145 14. Lee JK, Jensen CD, Levin TR, et al. Long-term risk of colorectal cancer and related deaths after a colonoscopy with normal findings. JAMA Intern Med 2019;179:153-60 15. Gupta, S., Lieberman, D., Anderson, J.C. et al, Recommendations for follow-up after colonoscopy and polypectomy: a consensus update by the US Multisociety Task Force on Colorectal Cancer. Gastroenterology. 2020;91:463–485.e5 16. Hassan Cesare et al. Post-polypectomy colonoscopy surveillance: ESGE Guideline… Endoscopy 2013; 45: 842–851 17. Lakoff J, Paszat LF, Saskin R, et al. Risk of developing proximal versus distal colorectal cancer after a negative colonoscopy: a population-based study. Clin Gastroenterol Hepatol 2008;6:1117–1121; quiz 1064 18. Bressler B, Paszat LF, Chen Z, et al. Rates of new or missed colorectal cancers after colonoscopy and their risk factors: a population-based analysis. Gastroenterology 2007;132:96–102 19. Govindarajan A, Rabeneck L, Yun L, et al. Population-based assessment of the outcomes in patients with postcolonoscopy colorectal cancers. Gut 2016;65:971–976 20. Rabeneck L, Paszat LF, Saskin R. Endoscopist specialty is associated with incident colorectal cancer after a negative colonoscopy. Clin Gastroenterol Hepatol 2010;8:275–279 21. Sanduleanu S, le Clercq CM, Dekker E, et al. Definition and taxonomy of interval colorectal cancers: a proposal for standardising nomenclature. Gut 2015;64:1257–1267 22. Leddin D, Enns R, Hilsden R, et al. Colorectal cancer surveillance after index colonoscopy: guidance from the Canadian Association of Gastroenterology. Can J Gastroenterol 2013;27:224–228 23. Rabeneck L, Paszat LF. Circumstances in which colonoscopy misses cancer. Frontline Gastroenterol 2010;1:52–58 24. Baxter NN, Goldwasser MA, Paszat LF, et al. Association of colonoscopy and death from colorectal cancer. Ann Intern Med 2009;150:1–8 25. Baxter NN, Sutradhar R, Forbes SS, et al. Analysis of administrative data finds endoscopist quality measures associated with postcolonoscopy colorectal cancer. Gastroenterology 2011;140:65–72 26. Rutter MD, Beintaris I, Valori R, et al. World Endoscopy Organization Consensus Statements on Post-Colonoscopy and Post-Imaging Colorectal Cancer. Gastroenterology 2018;155:909–925 27. Anderson R, Burr NE, Valori R. Causes of Post-Colonoscopy Colorectal Cancers Based on World Endoscopy Organization System of Analysis. Gastroenterology 2020;158:1287–1299 28. Kruse GR, Khan SM, Zaslavsky AM, et al. Overuse of colonoscopy for colorectal cancer screening and surveillance. J Gen Intern Med. 2015;30(3) 277-83 29. Murphy CC, Sandler RS, Grubber JM, et al. Underuse and overuse of colonoscopy for repeat screening and surveillance in the Veterans health administration. Clin Gastroenterol Hepatol.2016;14:436-44.e1 30. Saini SD, Powell AA, Dominitz JA, et al. Developing and testing anelectronic measure of screening colonoscopy overuse in a large integrated healthcare system. J Gen Intern Med. 2016;31 Suppl 1:53-60 31. Mittal S, Lin Y-L, Tan A, et al. Limited life expectancy among a subgroup of Medicare beneficiaries receiving screening colonoscopies. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 2014;12(3):443-450. 32. Schoen RE, Pinsky PF, Weissfeld JL, et al. Utilization of Surveillance Colonoscopy in Community Practice. Gastroenterology. 2010;138:73-81 33. Oh CK, Aniwan S, Piyachaturawat P, et al. Adherence to Surveillance Guidelines after the Removal of Colorectal Polyps: A Multinational, Multicenter, Prospective Survey, Gut Liver 2021;15:878-886 34. Wieszczy P, Kaminski MF, Franczyk R, et al. Colorectal Cancer Incidence and Mortality After Removal of Adenomas During Screening Colonoscopies. Gastroenterology 2020;158:875–883 35. Hol L, van Leerdam ME, van Ballegooijen M, et al. Screening for colorectal cancer: randomised trial comparing guaiac-based and immunochemical faecal occult blood testing and fl exible sigmoidoscopy. Gut 2010; 59: 62–68. 36. Parra-Blanco A, Gimeno-García AZ, Quintero E, et al. Diagnostic accuracy of immunochemical versus guaiac faecal occult blood tests for colorectal cancer screening. J Gastroenterol 2010; 45: 703–12. 37. Zorzi M, Fedato C, Grazzini G, et al. High sensitivity of five colorectal screening programmes with faecal immunochemical test in the Veneto Region, Italy. Gut 2010; published online Dec 30. DOI:10.1136/gut.2010.223982. 38. Terhaar sive Droste JS, Oort FA, van der Hulst RW, et al. Higher fecal immunochemical test cutoff levels: lower positivity rates but still acceptable detection rates for early-stage colorectal cancers. Cancer Epidemiol Biomarkers Prev 2011; 20: 272–80. 39. Chiu HM, Chen SL, Yen AM, et al. Effectiveness of fecal immunochemical testing in reducing colorectal cancer mortality from the One Million Taiwanese Screening Program. Cancer 2015;121:3221–9. 40. Chiu HM. et al Long-term effectiveness of faecal immunochemical test screening for proximal and distal colorectal cancers. Gut. 2021 Dec;70(12):2321-2329 41. Wong JCT, Chiu HM, Kim HS, et al. Adenoma detection rates in colonoscopies for positive fecal immunochemical tests versus direct screening colonoscopies. Gastrointest Endosc 2019;89:607-13 42. Hsu WF, Cheng SY, Shun CT, et al. Higher risk of advanced histology in adenoma less than 10 mm in fecal immunochemical test screening: Implication for management. J Gastroenterol Hepatol. 2020 ;35:1738-1745. 43. Chiu SY-H, Chuang SL, Chen SL-S, et al. Faecal haemoglobin concentration influences risk prediction of interval cancers resulting from inadequate colonoscopy quality: analysis of the Taiwanese Nationwide Colorectal Cancer Screening Program. Gut 2017;66:293–300. 44. Chen LS, Yen AM-F, Sherry Chiu YH, et al. Baseline faecal occult blood concentration as a predictor of incident colorectal neoplasia: longitudinal follow-up of a Taiwanese population-based colorectal cancer screening cohort. Lancet Oncol 2011; 12: 551–58 45. Grobbee EJ, Schreuders EH, Hansen BE, et al. Association Between Concentrations of Hemoglobin Determined by Fecal Immunochemical Tests and Long-term Development of Advanced Colorectal Neoplasia. Gastroenterology 2017;153:1251 – 1259 46. Lee YC, Chen SL-S, Yen AM-F, et al, Association Between Colorectal Cancer Mortality and Gradient Fecal Hemoglobin Concentration in Colonoscopy Noncompliers. Natl Cancer Inst (2017) 109(5): djw269 47. Hamilton SR, Aaltonen LA. Pathology and genetics of tumours of the digestive system. World Health Organization classification of tumours. Lyon: IARC Press, 2000. 48. Cubiella J, Vega P, Salve M, et al. Development and external validation of a faecal immunochemical test-based prediction model for colorectal cancer detection in symptomatic patients. BMC Medicine (2016) 14:128 49. Cubiella J, Digby J, Rodriguez-Alonso L, et al. The fecal hemoglobin concentration, age and sex test score: Development and external validation of a simple prediction tool for colorectal cancer detection in symptomatic patients. Int. J. Cancer: 140, 2201–2211 (2017) 50. Herrero JM, Vega P, Salve M. et al. Symptom or faecal immunochemical test based referral criteria for colorectal cancer detection in symptomatic patients: a diagnostic tests study. BMC Gastroenterology (2018) 18:155 51. Park CH, Jung YS, Kim NH, et al. Usefulness of risk stratification models for colorectal cancer based on fecal hemoglobin concentration and clinical risk factors. Gastrointest Endosc. 2019 Jun; 89(6): 1204–1211 52. Peng SM, Hsu WF, Wang YW et al. Faecal immunochemical test after negative colonoscopy may reduce the risk of incident colorectal cancer in a population-based screening programme. Gut. 2020 Sep 28:gutjnl-2020-320761 53. Siege R, Lindsey a torre, Soerjomataram I, et al. Global patterns and trends in colorectal cancer incidence in young adults. Gut 2019;68:2179–2185 54. Joseph J.Y. Sung, Han-Mo Chiu, Kyu-Won Jung et al.Increasing Trend in Young-Onset Colorectal Cancer in Asia: More Cancers in Men and More Rectal Cancers. Am J Gastroenterol 2019;114:322–329 55. Fedewa SA, Siegel RL, Goding Sauer A, et al. Colorectal cancer screening patterns after the American Cancer Society's recommendation to initiate screening at age 45 years. Cancer. 2019 doi: 10.1002/cncr.32662 56. Burke CA,Lieberman D and Feuerstein JD. et al. AGA Clinical Practice Update on Approach to the Use of Noninvasive Colorectal Cancer Screening Options: Commentary. Gastroenterology 2022;162:952–956 57. Vatn MH, Stalsberg H. The prevalence of polyps of the large intestine in Oslo:an autopsy study. Cancer 1982;49(4):819e25. 58. Brenner H, Altenhofen L, Stock C, et al. Incidence of colorectal adenomas: birth cohort analysis among 4.3 million participants of screening colonoscopy. Cancer Epidemiol Biomarkers Prev 2014;23(9):1920e7. 59. Waldmann E, Heinze G, Ferlitsch A, et al. Risk factors cannot explain the higher prevalence rates of precancerous colorectal lesions in men. Br J Cancer 2016;115(11):1421e9. 60. Wallace K, Baron JA, Karagas MR, et al. The association of physical activity and body mass index with the risk of large bowel polyps. Cancer Epidemiol Biomark Prev. 2005;14:2082–2086. 61. Slattery M. Physical activity and colorectal cancer. SportsMed 2004;34:239 – 52 62. Friedenreich CM, Orenstein MR. Physical activity and cancer prevention: etiologic evidence and biological mechanisms. J Nutr 2002;132:3456 – 64S. 63. Botteri E, Iodice S, Raimondi S, et al. Cigarette smoking and adenomatous polyps: a meta-analysis. Gastroenterology 2008;134(2):388e95. 64. Bailie L, Loughrey MB, Coleman HG. Lifestyle risk factors for serrated colorectal polyps: a systematic review and meta-analysis. Gastroenterology 2017;152(1):92e104. 65. Giovannucci E. An updated review of the epidemiological evidence that cigarette smoking increases risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev 2001;10(7):725e31. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84666 | - |
dc.description.abstract | 研究背景論述: 癌症仍為近年來台灣十大死因之首,其中大腸直腸惡性腫瘤之發生率,一直是癌症排行中名列前茅的。糞便免疫潛血法檢測已經是許多國家的標準篩檢工具,台灣也自2004年開始提供檢測,並在2010年擴大到全國篩檢,於2013年將篩檢範圍定在50-75歲之一般民眾。如糞便免疫潛血法檢測出陽性,則建議接受大腸內視鏡檢查。在台灣現行大腸癌篩檢指引中,如果篩檢大腸鏡結果為陰性,則視同其糞便免疫潛血檢測為偽陽性,將與糞便免疫潛血檢測為陰性的民眾一樣,維持兩年後再一次的糞便免疫潛血檢測。 然而,許多實證上的研究顯示,即使在糞便免疫潛血檢測定量上很低的族群,絕對數值越高,仍然可預測後續腺瘤及進行性腺瘤的發生率也顯著地越高。但在國際上現行已發表之研究,僅就免疫法糞便潛血的數值做後續之追蹤分析,並沒有納入任何糞便潛血檢測時基準大腸鏡檢查的資訊。 因此在此前提下,此回溯性研究將收集在本院同時有糞便免疫潛血檢測結果,且當次大腸鏡檢查為陰性的族群,去看糞便免疫潛血檢測的結果,在第一次大腸鏡檢為陰性的狀況下,後續長期追蹤是否會出現進行性腺瘤或大腸癌發生率的差異。希望藉由同時分析多項已知與大腸息肉相關的風險因子,找出是否需針對此兩種族群,來訂定不同的追蹤大腸內視鏡之頻率,以求可以更早發現進行性腺瘤(癌前病變),更早地在可以痊癒的前提下接受妥善的治療。 研究方法: 本研究為一回溯性研究。收集自2010年到2018年,年齡為45至75歲,同時有接受大腸鏡及糞便潛血免疫法檢驗(檢體需在大腸鏡前兩天內取得),且該次大腸鏡檢查為陰性之族群。收集基本資料內與後續大腸直腸息肉產生相關的因子,包含年齡、性別、身體質量指數、抽菸及糞便潛血免疫法數值之結果,並追蹤這些族群在日後做追蹤大腸鏡出現大腸息肉之情形,進一步分析可能影響異時性大腸直腸癌和大腸進行性線瘤出現的危險因子。 結果與討論: 在總共4567位收案者中,共有678位在追蹤性大腸鏡中有出現異時性大腸息肉;其中共有592位(87.3%)是非進行性腺瘤、81位(12%)是進行性腺瘤、5位(0.7%)是大腸直腸癌;而糞便免疫潛血陽性的在有息肉的678位裡則有49(7.2%)位。 將有出現異時性大腸進行性腺瘤跟無進行性線瘤的族群進行比較,平均年齡(p=0.05)、糞便免疫潛血數值(p<0.001)、糞便免疫潛血陽性比例(p<0.001)及BMI值(p=0.04),均有顯著較高。而藉由Cox regression的單變項分析可得知,僅糞便免疫潛血陽性與BMI≥25此兩項,有顯著地產生較高出現異時性大腸進行性腺瘤的風險,風險比(Harzard ratio)分別為4.16(95%信賴區間=2.26-7.66)和1.56(95%信賴區間=1.02-2.39)。然而若是進行多變項分析,則僅有糞便免疫潛血陽性此項目出現顯著較高的校正後風險比(adjusted hazard ratio (aHR):3.95((95%信賴區間=2.13-7.35)。而將糞便免疫潛血陽性的群體做次族群分析,盡量地依數值高低分成三等份,分別為數值100-199ng/ml(62人)、數值200-399ng/ml(48人)及數值≥400ng/ml(54人),各別的aHR則為1.5(95%信賴區間=1.02-2.39)、5.90(95%信賴區間=2.13-16.33)和6.02(95%信賴區間=2.59-13.97)。 結論: 在第一次糞便免疫潛血陽性的族群,即使在正常的第一次大腸鏡之後,後續產生異時性大腸進行性腺瘤的風險仍然較潛血陰性的族群高。而風險更是在糞便免疫潛血數值≥200 ng/ml時,更為顯著。然而,能否將此結論於臨床端及篩檢端應用,仍有待後續進一步驗證。 | zh_TW |
dc.description.abstract | Background: Higher fecal hemoglobin concentration (FHbC) is associated with advanced neoplasm at diagnostic colonoscopy but whether baseline FHbC could be a predictor of metachronous advanced neoplasia(AN) after a negative colonoscopy remains unclear. We aim to elucidate the association between baseline FHbC and the subsequent risk of AN, in order to tailor the surveillance after negative colonoscopy. Method: Those who received both screening (baseline) and surveillance colonoscopy from 2010 to 2018 in National Taiwan University Hospital with negative baseline colonoscopic findings were enrolled. We analyzed those 4,567 consecutive subjects who had concurrently received fecal immunochemical test(FIT) and with negative baseline colonoscopy. Stool samples were collected within two days prior to the baseline colonoscopy. Demographic and clinical information, including gender, age, FHbC, body mass index, and smoking at the timing of baseline colonoscopy were analyzed. FHbC ≥100 ng/ml was defined as high FHbC and FHbC<100 ng/ml was defined as low FHbC group. Besides, we divided high FHbC groups into subgroups averagely. Comparison of metachronous AN risk between FHbC subgroups was conducted using Kaplan-Meier analysis for univariate analysis and Cox-regression models for multivariable analysis. Results: Of those 4,567 subjects, a total of 678 subjects had metachronous colorectal neoplasm at surveillance colonoscopy. among them, 592(87.3%), 81(12.0%), and 5(0.7%) subjects had non-advanced adenoma (non-AA), advanced adenoma (AA), and invasive cancer, respectively. There were 49(7.2%) subjects had FHbC of 100 ng/mL or higher among the metachronous CRN group. Comparing the group of metachronous AN to group of non-AN, the mean age (p=0.05), level of FHbC(<0.001), proportion of high FHbC (p<0.001) and BMI (p=0.04) were significantly higher. The Kaplan-Meier analysis revealed that subjects with high FHbC and BMI≥25 had significantly higher risk of metachronous AN at surveillance colonoscopy with hazard ratio(HR) of 4.16(95%CI=2.26-7.66) and 1.56(95%CI=1.02-2.39) respectively. In the multivariate analysis, only high FHbC was associated with significantly higher risk of metachronous AN, with adjusted hazard ratio (aHR) of 3.95 (95%CI=2.13-7.35). In the subgroup of FHbC(100-199; n=62), FHbC(200-399,n=48) and FHbC(≥400,n=54), the aHR was 1.50(95%CI=0.36-6.15), 5.90(95%CI=2.13-16.33) and 6.02 (95%CI=2.59-13.97) respectively. Conclusion: Subjects who had higher baseline FHbC(especially ≥200) had a significantly higher risk for developing metachronous AN at surveillance after negative baseline colonoscopy. Tailored surveillance interval based on FHbC may be beneficial but requires further study. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:19:43Z (GMT). No. of bitstreams: 1 U0001-1109202222133600.pdf: 1311521 bytes, checksum: a065e8c1889f6c227771276525a9a63e (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 誌謝 ……………………………………………………………………………………ii 中文摘要……………………………………………………………………………iii 英文摘要……………………………………………………………………………v 第一章 Introduction 1.1 Current colorectal cancer screening and surveillance guideline ………………1 1.2 Post colonoscopy colorectal cancer (PCCRC) ………………………………3 1.3 Over-utilizing the colonoscopy resources ……………………………………3 1.4 FHbC level with metachronous colorectal neoplasm …………………………4 1.5 Hypothesis and aim ……………………………………………………………7 第二章 Materials and Methods 2.1 Study population and study design ……………………………………………7 2.2 Colonoscopy……………………………………………………………………8 2.3 Fecal immunochemical test ……………………………………………………8 2.4 Histological diagnosis………………………………………………………… 9 2.5 Statistical Analysis ……………………………………………………………9 第三章 Results 3.1 Participants and baseline characteristics ……………………………………10 3.2 Metachronous colorectal neoplasia and advanced neoplasia ………………10 3.3 Risk factors of advanced neoplasia occurrence in surveillance colonoscopy .11 3.4 Occurrence of metachronous AN in different subgroups of high FHbC ……11 第四章 Discussion……………………………………………………………………12 第五章 Study strengths and limitation………………………………………………13 第六章 Future perspectives and conclusion……………………………………………14 第七章 Tables…………………………………………………………………………15 第八章 Figures 8.1 Figure 1. The diagram of enrollment…………………………………………17 8.2 Figure 2. Baseline Fecal immunochemical test level and incidence of AN in surveillance colonoscopy ………………………………………………………18 8.3 Figure 3. The AN incidence of FHbC subgroups in surveillance colonoscopy19 第九章 References……………………………………………………………20 | |
dc.language.iso | en | |
dc.title | 應用糞便免疫潛血法量性數值於正常篩檢大腸鏡後之精準追蹤 | zh_TW |
dc.title | Higher Fecal Hb Concentration Predicts Risk of Metachronous Advanced Neoplasia at Surveillance in Subjects With Negative Baseline Colonoscopy | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 邱瀚模(Han-Mo Chiu) | |
dc.contributor.oralexamcommittee | 劉俊人(Chun-Jen Liu),張吉仰(Chi-Yang Chang),吳政毅(Jeng-Yih Wu) | |
dc.subject.keyword | 大腸直腸腫瘤,異時性大腸進行性腺瘤,糞便潛血免疫法, | zh_TW |
dc.subject.keyword | colorectal neoplasm,metachronous advanced neoplasia,fecal hemoglobin concentration, | en |
dc.relation.page | 25 | |
dc.identifier.doi | 10.6342/NTU202203291 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-09-14 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
dc.date.embargo-lift | 2022-10-13 | - |
顯示於系所單位: | 臨床醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1109202222133600.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.28 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。