Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84661
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor闕志達(Tzi-Dar Chiueh)
dc.contributor.authorYu-Hao Liuen
dc.contributor.author劉育豪zh_TW
dc.date.accessioned2023-03-19T22:19:31Z-
dc.date.copyright2022-09-16
dc.date.issued2022
dc.date.submitted2022-09-13
dc.identifier.citation[1] Ericsson. “Mobile data traffic outlook.” ericsson.com. https://www.ericsson.com/en/reports-and-papers/mobility-report/dataforecasts/mobile-traffic-forecast (accessed June. 16, 2022). [2] RCR Wireless News. “How does support for unlicensed spectrum with NR-U transform what 5G can do for you?.” rcrwireless.com. https://www.rcrwireless.com/20200616/5g/how-does-support-for-unlicensed-spectrum-with-nr-u-transform-what-5g-can-do-for-you (accessed June. 16, 2022). [3] 陳冠榮. “5G 釋照競標拍板定案,5 大電信衝刺網路建設、力拚第三季開台.” technews.tw. https://technews.tw/2020/02/25/the-first-time-5g-spectrum-auction-in-taiwan/ (accessed June. 16, 2022). [4] L. Wang et al., 'Spatial-Reuse-Based Efficient Coexistence for Cellular and WiFi Systems in the Unlicensed Band,' IEEE Internet Things J., vol. 9, no. 3, pp. 1885-1898, 1 Feb. 2022. [5] RCR Wireless News. “How does support for unlicensed spectrum with NR-U transform what 5G can do for you?.” rcrwireless.com. https://www.rcrwireless.com/20200616/5g/how-does-support-for-unlicensed-spectrum-with-nr-u-transform-what-5g-can-do-for-you (accessed June. 16, 2022). [6] KP. “5G NR: Resource Grid.” howltestuffworks.blogspot.com. http://howltestuffworks.blogspot.com/2019/10/5g-nr-resource-grid.html (accessed June. 16, 2022). [7] 3GPP. 5G NR User Equipment (UE) radio transmission and reception Part 1: Range 1 Standalone, 3GPP TS 38.101-1 version 15.3.0 Release 15, (2018), 3GPP, Accessed: June. 16, 2022. [Online]. Available: https://www.etsi.org/deliver/etsi_ts/138100_138199/13810101/15.03.00_60/ts_13810101v150300p.pdf [8] 5G NR Physical channels and modulation, 3GPP TS 38.211 version 15.8.0 Release 15, (2020), 3GPP, Accessed: June. 16, 2022. [Online]. Available: https://www.etsi.org/deliver/etsi_ts/138200_138299/138211/15.08.00_60/ts_138 211v150800p.pdf [9] ShareTechnote. “5G/NR – Frame Structure.” sharetechnote.com. https://www.sharetechnote.com/html/5G/5G_FrameStructure.html (accessed June. 20,2022). [10] MATLAB. “NR PDSCH Resource Allocation and DM-RS and PT-RS Reference Signals.” mathworks.com. https://www.mathworks.com/help/5g/ug/nr-pdsch-resource-allocation-and-dmrs-and-ptrs-reference-signals.html#NewRadioPDSCHReferenceSignalsExample-3 (accessed June. 20, 2022). [11] KP. “5G:NR Primary Synchronization Signal (PSS).” howltestuffworks.blogspot.com. http://howltestuffworks.blogspot.com/2019/10/5g-nr-primary-synchronization-signal-pss.html (accessed June. 21, 2022). [12] IEEE 802.11ax TECHNOLOGY INTRODUCTION, Rohde&Schwarz GmbH&Co. KG, Accessed: June. 16, 2022. [Online]. Available: https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/premiumdownloads/premium_dl_brochures_and_datasheets/premium_dl_whitepaper/IEEE-802-11ax-Technology-Introduction_wp_3609-9470-52_v0100.pdf. [13] WLAN 802.11n/ac and 802.11ax Modulation Analysis 89600 VSA Software, KEYSIGHT TECHNOLOGIES, Accessed June. 21, 2022 [Online]. Available: https://www.keysight.com/us/en/assets/7018-05705/technical-overviews/5992-2247.pdf [14] E. Khorov, A. Kiryanov, A. Lyakhov and G. Bianchi, 'A Tutorial on IEEE 802.11ax High Efficiency WLANs,' in IEEE Communications Surveys & Tutorials 21.1(2018), pp. 197-216. [15] MATLAB. “WLAN PPDU Structure.” mathworks.com. https://www.mathworks.com/help/wlan/gs/wlan-ppdu-structure.html#buytqq7-9_sep_mw_biblio_80211-2020 (accessed June. 21, 2022). [16] IEEE Standard for Information Technology--Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks--Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 1: Enhancements for High-Efficiency WLAN, IEEE Standard 802.11ax-2021, 2021. [17] LTE-U與LAA發展趨勢介紹, (2015), 財團法人電信技術中心, Accessed June. 22, 2022. [Online]. Available: http://140.117.164.10/CN_2018/180604/TTC-LTE-U%20and%20LAA%E7%99%BC%E5%B1%95%E8%B6%A8%E5%8B%A2.pdf [18] R. Kwan et al., “Fair co-existence of Licensed Assisted Access LTE (LAA-LTE) and Wi-Fi in unlicensed spectrum,” in Proc. 7th Comput. Sci. Electron. Eng. Conf. (CEEC), Colchester, U.K., Sep. 2015, pp. 13–18. [19] B. L. Ng, H. Si, A. Papasakellariou, and J. C. Zhang, ‘‘Unified access in licensed and unlicensed bands in LTE–A pro and 5G,’’ APSIPA Trans. Signal Inf. Process., vol. 6, pp. 1–7, Jul. 2017. [20] Havish Koorapaty. “3GPP technologies in unlicensed spectrum: A contributor to the common good.” ericsson.com. https://www.ericsson.com/en/blog/2020/9/3gpp-technologies-unlicensed-spectrum (accessed June. 22, 2022). [21] H. M. Ji and E. Killian, “Fast parallel CRC algorithm and implementation on a configurable processor,” in Proc. IEEE Int. Conf. Commun. Conf. (ICC), vol. 3. New York, NY, USA, 2002, pp. 1813–1817. [22] 5G NR Multiplexing and channel coding, (2020), 3GPP, Accessed June.25, 2022. [Online]. Available: https://www.etsi.org/deliver/etsi_ts/138200_138299/138212/15.09.00_60/ts_138212v150900p.pdf [23] Xilinx. “Soft-Decision FEC Integrated Block v1.1.” xilinx.com. https://docs.xilinx.com/viewer/book-attachment/Q5jIVEMHpXE~m9HwzIp6Gg/zhpqfZSHVNu_ijv9vsJPZw (accessed June. 25, 2022). [24] Xilinx. “Fast Fourier Transform v9.1.” xilinx.com. https://docs.xilinx.com/viewer/book-attachment/jKn_d6EeSeSm4b25FBbCOA/KtJ2q9rEZvP4hqj3BbbU_Q (accessed June. 25, 2022). [25] Xilinx. “Zynq UltraScale+ RFSoC ZCU111 Evaluation Kit.” xilinx.com. https://www.xilinx.com/products/boards-and-kits/zcu111.html (accessed June. 25, 2022). [26] Xilinx. “XILINX ZYNQ RFSoC.” xilinx.com. https://www.xilinx.com/products/silicon-devices/soc/rfsoc.html (accessed June. 25, 2022). [27] National Instruments. “Advantages of Direct RF Sampling Architectures.” ni.com. https://www.ni.com/zh-tw/innovations/white-papers/18/advantages-of-direct-rf-sampling-architectures.html (accessed June. 27, 2022). [28] Zynq UltraScale+ RFSoC RF Data Comverter Evaluation Tool (ZCU111) User Guide, Xilinx. Accessed June. 27, 2022. [Online]. Available: https://www.xilinx.com/content/dam/xilinx/support/documents/boards_and_kits/zcu111/2018_3/ug1287-zcu111-rfsoc-eval-tool.pdf [29] Zynq UltraScale+ RFSoC RF Data Converter 2.1 LogiCORE IP Product Guide PG269 (v2.1), Xilinx. Accessed June 27, 2022. [Online]. Available: https://www.xilinx.com/support/documentation/ip_documentation/usp_rf_data_c onverter/v2_1/pg269-rf-data-converter.pdf [30] National Instruments. “USRP-2943.” ni.com. https://www.ni.com/zh-tw/support/model.usrp-2943.html (accessed June. 28, 2022). [31] Ettus. “OctoClock-G CDA-2990.” ettus.com. https://www.ettus.com/all-products/octoclock-g/ (accessed June. 28, 2022). [32] NI. “What Is the RF Architecture Used on USRP-RIO?.” knowledge.ni.com. https://knowledge.ni.com/KnowledgeArticleDetails?id=kA00Z0000019Y9TSAU&l=zh-TW (accessed June. 28, 2022). [33] Ettus. “Synchronization and MIMO Capability with USRP Devices.” kb.ettus.com. https://kb.ettus.com/Synchronization_and_MIMO_Capability_with_USRP_Devices (accessed June. 28, 2022). [34] Shreyas Trivedi. “Wi-Fi 6 OFDMA: Resource unit (RU) allocations and mappings.” blogs.cisco.com. https://blogs.cisco.com/networking/wi-fi-6-ofdma-resource-unit-ru-allocations-and-mappings (accessed June. 28, 2022). [35] Wikipedia. “Window function.” en.wikipedia.org. https://en.wikipedia.org/wiki/Window_function#Dolph%E2%80%93Chebyshev_window (accessed June. 28, 2022). [36] NI. “Introduction to 802.11ax High-Efficiency Wireless.” ni.com. https://www.ni.com/zh-tw/innovations/white-papers/16/introduction-to-802-11ax-high-efficiency-wireless.html (accessed June.28, 2022). [37] Ettus. “USRP Hardware Driver and USRP Manual.” ettus.com. https://files.ettus.com/manual/ (accessed June.28, 2022). [38] R. Schmidt, 'Multiple emitter location and signal parameter estimation,' IEEE Trans. Antennas Propag., vol. 34, no. 3, pp. 276-280, March 1986. [39] Chi Wan Sung and Wing Shing Wong, 'A distributed fixed-step power control algorithm with quantization and active link quality protection,' IEEE Trans. Veh. Technol., vol. 48, no. 2, pp. 553-562, March 1999, doi: 10.1109/25.752580.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84661-
dc.description.abstract近年來隨著科技不斷進步,人們對於連網需求日益增加,但是同一時間內頻譜資源是有限的,因此電信商需要取得更多頻譜資源以服務使用者,加上2020年美國聯邦通訊委員會 (Federal Communication Commission, FCC) 公布了位於6 GHz,頻寬為1200 MHz的未授權頻帶供給Wi-Fi技術以及其他使用者使用,所以將以往只使用在授權頻帶上的通訊技術拓展到未授權頻帶上使用漸漸受到重視,在未授權頻帶上通訊雖然能夠獲取更多頻譜資源,但須要面臨受其他通訊技術干擾的風險,例如藍芽、Wi-Fi等,而FCC公布的頻帶主要給Wi-Fi技術使用,因此如何與Wi-Fi技術共存儼然成為重要議題,本論文引入空間多工 (Spatial Multiplexing) 概念,透過波束成型技術降低5G NR對Wi-Fi技術的干擾,讓兩系統在碰撞情況下也能夠各自解調成功,達成5G NR、Wi-Fi在同頻帶共存。 第二章首先分別介紹5G NR以及Wi-Fi 6標準,接著簡介何謂未授權頻譜以及現有使用在未授權頻譜上的通訊技術,最後就是介紹本論文主要使用的最小變異量無失真響應 (Minimum Variance Distortionless Response, MVDR) 波束成型演算法。 第三章我們說明基於5G新無線電 (New Radio, NR) 標準所實作的八天線具波束成型硬體發射機,並將其整合在賽靈思射頻系統單晶片,搭配MVDR波束成型演算法,在集中訊號給5G UE的同時降低干擾Wi-Fi終端 (Station)。5G接收機則是使用國家儀器軟體無線電 (NI USRP 2943R) 搭配四天線陣列以及合成 (Combining) 技術,我們透過真實空氣通道 (Over The Air, OTA) 驗證其相比單天線可以提高4 ~ 5 dB SINR。最後為了驗證MVDR波束成型在共存系統之可行性,我們成功在OTA環境下達成5G、Wi-Fi同一時間在同頻段可以各自服務兩個使用者,總體峰值傳輸率 (Peak Data Rate) 達到162.33 Mbps。 第四章中,我們將說明本文透過窗函數進行改良的MVDR演算法,並且實際在真實通道下比較不同窗函數的空間濾波特性,包括主波瓣強度,旁瓣抑制程度等,最後是將其實際應用在5G、Wi-Fi共存系統中,並在不同情境下比較各種窗函數MVDR波束成型係數之頻譜效率。 第五章我們將5G NR-U、Wi-Fi系統共存更貼近真實情境,我們在5G基地台假設Wi-Fi接收機角度未知,因此設計波束成型係數前需要透過STA上行訊號估計到達方位角 (Angle of Arrival Estimation, AoA Estimation),我們使用一片Xilinx RFSoC開發四天線接收機,透過RFSoC接收STA上行訊號後,傳回Host PC估計方位角,再根據估計之方位角計算波束成型係數。除此之外,我們在5G NR-U基地台引入功率控制技術, 動態調整5G發射功率以維持系統間共存,同時我們針對傳統的固定步階功率控制 (Fixed-step Power Control) 演算法穩定性不足的問題進行修正,提出了基於歷史的 (History-Based) 固定步階功率控制,相比在5G基地台只使用波束成型技術,最多可以提升5G能源效率75%、Wi-Fi能源效率83%,最終我們在空氣通道下驗證了具備共存裝置追蹤與功率控制技術之5G NR-U基地台,除了能夠在1.2秒內追蹤共存裝置外,透過功率控制技術能夠在Wi-Fi AP發射功率改變下維持兩系統共存。zh_TW
dc.description.abstractIn recent years, as technology advances, people’s demand for connectivity is increasing. However, spectrum resources are limited at the same time, so telecom operators need to obtain more spectrum resources to serve users. In 2020, FCC announced the unlicensed band at 6 GHz with a bandwidth of 1200 MHz for Wi-Fi technology and other users. As a result, there is a growing interest in expanding the use of communication technologies that were previously only in licensed frequency bands to unlicensed bands. Communication in an unlicensed band provides access to more spectrum resources, but runs the risk of interference from other communication technologies, for example, Wi-Fi, Bluetooth, etc. Because Wi-Fi primarily uses the FCC-announced unlicensed band, coexistence with Wi-Fi technology has become an important topic. This paper introduces the concept of Spatial Multiplexing to mitigate the impact of 5G NR on Wi-Fi via beamforming technology, allowing both systems to successfully demodulate under collision and achieve the coexistence of 5G NR and Wi-Fi in the same frequency band. Chapter 2 will first introduce the 5G and Wi-Fi 6 standards. We introduce the unlicensed spectrum and the existing technologies used in the unlicensed spectrum, and finally, we present Minimum Variance Distortionless Response (MVDR) beamforming algorithm used in this paper. In Chapter 3, we explain the implementation of an eight-antenna beamforming hardware transmitter based on the 5G New Radio standard. It was integrated into Xilinx RFSoC with the MVDR beamforming to reduce interference with Wi-Fi receivers while concentrating the signals to the 5G UE. The 5G receiver uses the National Instruments Software Defined Radio (NI USRP 2943R) with a four-antenna array and combining technique. It is verified in the Over the Air (OTA) to improve SINR by 4 to 6 dB over a single antenna. Finally, to validate the feasibility of MVDR beamforming in the coexistence system, we successfully achieved 5G and Wi-Fi in the OTA, each of which can serve two users in the same frequency band simultaneously, with an overall peak data rate of 162.33 Mbps. In Chapter 4, we will introduce the improved MVDR algorithm by window functions, and compare the spatial filtering properties of different window functions in the OTA, including the main lobe power and sidelobe suppression, etc. Finally, we will apply it to the 5G and Wi-Fi coexistence system and compare the spectrum efficiency of various window function MVDR beamforming weights under different scenarios. In Chapter 5, we bring the coexistence of 5G NR-U and Wi-Fi systems closer to the actual situation. We assume the Wi-Fi STA’s azimuth angle is unknown at 5G BS. As a result, before calculating beamforming weights, we must estimate the Angle of Arrival of the Wi-Fi STA using the STA uplink signal. Therefore, we develop a four-antenna receiver with one Xilinx RFSoC. A four-antenna receiver receives the uplink signal sent by Wi-Fi STA and estimates the Angle of Arrival by the host PC. Then, the host PC recalculates beamforming weights based on the estimated azimuth angle. Furthermore, we introduce power control techniques in the 5G NR-U BS to dynamically adjust 5G Tx power to maintain system coexistence. To address the lack of stability of the traditional fixed-step power control algorithm, we proposed history-based fixed-step power control. Compared to using only beamforming technology in the 5G NR-U base station, the 5G energy efficiency is up by 75%, and the Wi-Fi energy efficiency is up by 83%. Ultimately, we validated the 5G NR-U BS with Wi-Fi device tracking and power control technology in OTA. In addition to tracking the coexistence device in 1.2 seconds, the power control technology can maintain the coexistence between the two systems as the Wi-Fi AP transmitting power changes.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:19:31Z (GMT). No. of bitstreams: 1
U0001-1209202221180200.pdf: 14081788 bytes, checksum: 3f665f34e9145ccd2668332a4c455167 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝 i 摘要 iii Abstract v 目錄 ix 圖目錄 xiii 表目錄 xix 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目標 3 1.3 論文組織與貢獻 6 第二章 MVDR 波束成型技術與NR-U標準簡介 9 2.1 3GPP 5G NR標準簡介 9 2.1.1 訊框架構(Radio Frame Structure) 9 2.1.2 波形參數(Numerology) 11 2.1.3 解調參考訊號 (Demodulation Reference Signal, DM-RS) 14 2.1.4 同步訊號(Synchronization Signal) 19 2.2 WLAN 802.11ax系統規格簡介 21 2.2.1 WLAN 802.11ax簡介 21 2.2.2 前導訊號 (Preamble) 23 2.3 NR-U技術簡介 25 2.3.1 未授權頻譜 (Unlicensed Spectrum) 25 2.3.2 錨式 (Anchored) NR-U 26 2.3.3 獨立式 (Standalone) NR-U 27 2.4 MVDR波束成型技術 30 2.4.1 均勻線性陣列(Uniform Linear Array, ULA)與引導向量(Steering Vector) 30 2.4.2 MVDR波束成型 35 2.5 第二章總結 39 第三章 5G NR-U發射機平台與系統架構 41 3.1 具備波束成型OFDM硬體發射機 41 3.1.1 循環冗餘校驗編碼器 (CRC Encoder) 42 3.1.2 加擾器 (Scrambler) 44 3.1.3 低密度奇偶校驗編碼器 (LDPC Encoder) 44 3.1.4 星座點映射器 (Constellation Mapper) 46 3.1.5 解調參考訊號及同步訊號區塊分配器 (DM-RS and SSB Allocator) 46 3.1.6 反向快速傅立業轉換 (Inverse Fast Fourier Transform, IFFT) 50 3.1.7 循環前綴插入 (Cyclic Prefix Insertion) 50 3.1.8 波束成型器 (Beamformer) 51 3.2 發射端賽靈思射頻系統單晶片之系統整合 52 3.2.1 賽靈思射頻系統單晶片 (Xilinx RFSoC) 介紹 52 3.2.2 八天線發射機系統整合 58 3.3 四天線接收端軟體無線電系統 60 3.3.1 軟體無線電 (Software-Defined Radio, SDR) 介紹 61 3.3.2 接收端系統整合 63 3.3.2.1 接收端系統架構 63 3.3.2.2 等增益合成器 (Equal Gain Combiner, EGC) 64 3.3.2.3 四天線接收端解碼流程 68 3.3.3 四天線接收機OTA展示 70 3.4 5G NR-U與Wi-Fi系統共存之波束成型設計與OTA實現 75 3.4.1 共存情境A展示規格 75 3.4.2 共存情境A展示環境及解碼表現 78 3.4.3 共存情境B展示規格 81 3.4.4 共存情境B展示環境及解碼表現 83 3.5 第三章總結 88 第四章 應用於5G NR-U與Wi-Fi系統共存之基於窗函數的MVDR波束成型設計 91 4.1 基於窗函數的引導向量波束成型設計 91 4.2 基於窗函數的MVDR波束成型設計 97 4.3 基於窗函數的MVDR波束成型應用於共存系統之OTA實現 99 4.3.1 波束方向圖量測結果 100 4.3.2 OTA解碼表現 101 4.4 不同共存情境下基於窗函數的MVDR波束成型量測結果與討論 104 4.4.1 頻譜效率 (Spectral Efficiency) 104 4.4.2 基於不同的窗函數MVDR波束成型頻譜效益比較 105 4.5 第四章總結 113 第五章 應用於5G NR-U與Wi-Fi系統共存之共存裝置追蹤與功率控制技術 115 5.1 WLAN 802.11ax上行訊號 116 5.2 賽靈思射頻系統單晶片作為接收端 120 5.2.1 RFDC IP用於接收機 121 5.2.2 5G接收機系統平台 122 5.3 到達方位角估計 123 5.3.1 載波訊號相位校正 124 5.3.2 方位角估計結果 126 5.4 功率控制技術 128 5.4.1 固定步階功率控制 (Fixed-Step Power Control) 128 5.4.2 基於歷史的固定步階功率控制 (History-Based Fixed-Step Power Control) 131 5.4.3 功率控制實驗結果 132 5.4.4 功率控制技術之能源效率 140 5.5 具備共存裝置追蹤與功率控制之NR-U基地台系統設計 143 5.6 共存裝置追蹤與功率控制應用於5G NR-U與Wi-Fi系統共存之OTA實現 146 5.6.1 展示規格 146 5.6.2 OTA展示環境與成果 148 5.7 第五章總結 153 第六章 結論與展望 157 參考文獻 161
dc.language.isozh-TW
dc.subject第五代行動通訊新無線電之全硬體正交分頻多工發射機zh_TW
dc.subject到達方位角估計zh_TW
dc.subject空氣通道zh_TW
dc.subject賽靈思射頻系統單晶片zh_TW
dc.subject功率控制zh_TW
dc.subject波束成型zh_TW
dc.subject異質網路共存zh_TW
dc.subject未授權頻譜之新無線電技術zh_TW
dc.subjectHeterogeneous Network Coexistenceen
dc.subjectPower Controlen
dc.subjectAngle of Arrival Estimation (AoA Estimation)en
dc.subjectOver-the-Air (OTA)en
dc.subjectXilinx RFSoCen
dc.subject5G NR OFDM hardware transmitteren
dc.subjectBeamformingen
dc.subjectNew Radio Unlicensed (NR-U)en
dc.title具備波束成型與功率控制技術之第五代行動通訊與WiFi網路共存的設計與實現zh_TW
dc.titleDesign and Implementation of 5G NR-U and WiFi Coexistence by Beamforming and Power Controlen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡佩芸(Pei-Yun Tsai),黃元豪(Yuan-Hao Huang),馬席彬(Hsi-Pin Ma),賴以威(I-Wei Lai)
dc.subject.keyword未授權頻譜之新無線電技術,異質網路共存,波束成型,第五代行動通訊新無線電之全硬體正交分頻多工發射機,賽靈思射頻系統單晶片,空氣通道,到達方位角估計,功率控制,zh_TW
dc.subject.keywordNew Radio Unlicensed (NR-U),Heterogeneous Network Coexistence,Beamforming,5G NR OFDM hardware transmitter,Xilinx RFSoC,Over-the-Air (OTA),Angle of Arrival Estimation (AoA Estimation),Power Control,en
dc.relation.page166
dc.identifier.doi10.6342/NTU202203325
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
dc.date.embargo-lift2022-09-16-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1209202221180200.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
13.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved