請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84639完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳秀熙(Hsiu-Hsi Chen) | |
| dc.contributor.author | Zhi-Hui Wang | en |
| dc.contributor.author | 王智慧 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:18:37Z | - |
| dc.date.copyright | 2022-10-07 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-15 | |
| dc.identifier.citation | 國民營養健康狀況變遷調查成果報告2017-2020年 https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=3999&pid=15562&sid=11145 Adediran A, Uche E, Akinbami A, Dada A, Wakama T, Damulak D, Ajibola S, Okwegbuna O. Hemoglobin and Ferritin Concentrations in Subjects with Metabolic Syndrome. Nutr Metab Insights. 2015 May 25;8:15-9. doi: 10.4137/NMI.S23302. PMID: 26056471; PMCID: PMC4445885. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998 Jul;15(7):539-53. doi: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S. PMID: 9686693. Alberti KG, Zimmet P, Shaw J; IDF Epidemiology Task Force Consensus Group. The metabolic syndrome--a new worldwide definition. Lancet. 2005 Sep 24-30;366(9491):1059-62. doi: 10.1016/S0140-6736(05)67402-8. PMID: 16182882. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC Jr; International Diabetes Federation Task Force on Epidemiology and Prevention; Hational Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; International Association for the Study of Obesity. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009 Oct 20;120(16):1640-5. doi: 10.1161/CIRCULATIONAHA.109.192644. Epub 2009 Oct 5. PMID: 19805654. Al Falluji N, Lawrence-Nelson J, Kostis JB, Lacy CR, Ranjan R, Wilson AC; Myocardial Infarction Data Acquisition system (MIDAS #8) Study Group. Effect of anemia on 1-year mortality in patients with acute myocardial infarction. Am Heart J. 2002 Oct;144(4):636-41. doi: 10.1067/mhj.2002.124351. PMID: 12360159. Aoki I, Taniyama M, Toyama K, Homori M, Ishikawa K. Stimulatory effect of human insulin on erythroid progenitors (CFU-E and BFU-E) in human CD34+ separated bone marrow cells and the relationship between insulin and erythropoietin. Stem Cells. 1994 May;12(3):329-38. doi: 10.1002/stem.5530120309. PMID: 7521243. Arora, S. . Molecular Basis of Insulin Resistance and Its Relation to Metabolic Syndrome. In: Arora, S. , editor. Insulin Resistance [Internet]. London: IntechOpen; 2012 [cited 2022 Apr 14]. Available from: https://www.intechopen.com/chapters/41438 doi: 10.5772/54620 Bai J, Xun P, Morris S, Jacobs DR Jr, Liu K, He K. Chromium exposure and incidence of metabolic syndrome among American young adults over a 23-year follow-up: the CARDIA Trace Element Study. Sci Rep. 2015 Oct 22;5:15606. doi: 10.1038/srep15606. PMID: 26489690; PMCID: PMC4614983. Balkau B, Charles MA. Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR). Diabet Med. 1999 May;16(5):442-3. doi: 10.1046/j.1464-5491.1999.00059.x. PMID: 10342346. Barbieri, M., Ragno, E., Benvenuti, E. et al. New aspects of the insulin resistance syndrome: impact on haematological parameters. Diabetologia 44, 1232–1237 (2001). https://doi.org/10.1007/s001250100634 Bersch N, Groopman JE, Golde DW. Natural and biosynthetic insulin stimulates the growth of human erythroid progenitors in vitro. J Clin Endocrinol Metab. 1982 Dec;55(6):1209-11. doi: 10.1210/jcem-55-6-1209. PMID: 6752170. Bishop, Christopher M. (2006). Pattern recognition and machine learning. New York :Springer Caetano SJ, Sonpavde G, Pond GR. C-statistic: A brief explanation of its construction, interpretation and limitations. Eur J Cancer. 2018 Feb;90:130-132. doi: 10.1016/j.ejca.2017.10.027. Epub 2017 Dec 5. PMID: 29221899. Chan CL, Chen CL, Ting HW. An excellent mortality prediction model based on support vector machine (SVM)-a pilot study. 2010 International Symposium on Computer, Communication, Control and Automation (3CA). Vol. 1. IEEE, 2010. Chao, T. H., et al. (2017). 'A Combined Cross-sectional and Longitudinal Study on Predicting Metabolic Syndrome and Cardiovascular Disease by Using Haemoglobin in the Elderly.' West Indian Medical Journal 66(1): 65-71. Chen TH, Chiu YH, Luh DL, Yen MF, Wu HM, Chen LS, Tung TH, Huang CC, Chan CC, Shiu MN, Yeh YP, Liou HH, Liao CS, Lai HC, Chiang CP, Peng HL, Tseng CD, Yen MS, Hsu WC, Chen CH; Taiwan Community-Based Integrated Screening Group. Community-based multiple screening model: design, implementation, and analysis of 42,387 participants. Cancer. 2004 Apr 15;100(8):1734-43. doi: 10.1002/cncr.20171. PMID: 15073864. Chiang PH, Liu CL, Lin MH, Peng LN, Chen LK, Chen JD, Hou SM. Survival benefits of metabolic syndrome among older men aged 75 years and over in Taiwan. J Nutr Health Aging. 2012;16(6):520-4. doi: 10.1007/s12603-011-0344-6. PMID: 22659989. Chung GE, Yim JY, Kim D, Kwak MS, Yang JI, Chung SJ, Yang SY, Kim JS. Associations between hemoglobin concentrations and the development of incidental metabolic syndrome or nonalcoholic fatty liver disease. Dig Liver Dis. 2017 Jan;49(1):57-62. doi: 10.1016/j.dld.2016.10.004. Epub 2016 Oct 17. PMID: 27810399. Cuesta M, Fuentes M, Rubio M, Bordiu E, Barabash A, Garcia de la Torre N, Rojo-Martinez G, Valdes S, Soriguer F, Vendrell JJ, Urrutia IM, Ortega E, Montanya E, Menendez E, Lago-Sampedro A, Gomis R, Goday A, Castell C, Badia-Guillen R, Girbés J, Gaztambide S, Franch-Nadal J, Delgado Álvarez E, Chaves FJ, Castano L, Calle-Pascual AL. Incidence and regression of metabolic syndrome in a representative sample of the Spanish population: results of the cohort di@bet.es study. BMJ Open Diabetes Res Care. 2020 Oct;8(1):e001715. doi: 10.1136/bmjdrc-2020-001715. PMID: 33051280; PMCID: PMC7554469. Culleton BF, Manns BJ, Zhang J, Tonelli M, Klarenbach S, Hemmelgarn BR. Impact of anemia on hospitalization and mortality in older adults. Blood. 2006 May 15;107(10):3841-6. doi: 10.1182/blood-2005-10-4308. Epub 2006 Jan 10. PMID: 16403909. Denny SD, Kuchibhatla MN, Cohen HJ. Impact of anemia on mortality, cognition, and function in community-dwelling elderly. Am J Med. 2006 Apr;119(4):327-34. doi: 10.1016/j.amjmed.2005.08.027. PMID: 16564775. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005 Apr 16-22;365(9468):1415-28. doi: 10.1016/S0140-6736(05)66378-7. PMID: 15836891. Einhorn D, Reaven GM, Cobin RH, Ford E, Ganda OP, Handelsman Y, Hellman R, Jellinger PS, Kendall D, Krauss RM, Neufeld ND, Petak SM, Rodbard HW, Seibel JA, Smith DA, Wilson PW. American College of Endocrinology position statement on the insulin resistance syndrome. Endocr Pract. 2003 May-Jun;9(3):237-52. PMID: 12924350. Ellinger VC, Carlini LT, Moreira RO, Meirelles RM. Relation between insulin resistance and hematological parameters in a Brazilian sample. Arq Bras Endocrinol Metabol. 2006 Feb;50(1):114-7. doi: 10.1590/s0004-27302006000100016. Epub 2006 Apr 17. PMID: 16628283. Endres HG, Wedding U, Pittrow D, Thiem U, Trampisch HJ, Diehm C. Prevalence of anemia in elderly patients in primary care: impact on 5-year mortality risk and differences between men and women. Curr Med Res Opin. 2009 May;25(5):1143-58. doi: 10.1185/03007990902860325. PMID: 19317606. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA. 2001 May 16;285(19):2486-97. doi: 10.1001/jama.285.19.2486. PMID: 11368702. Ford ES. Prevalence of the metabolic syndrome defined by the International Diabetes Federation among adults in the U.S. Diabetes Care. 2005 Nov;28(11):2745-9. doi: 10.2337/diacare.28.11.2745. PMID: 16249550. Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 2002;287:356-9. Fluss R, Faraggi D, Reiser B. Estimation of the Youden Index and its associated cutoff point. Biom J. 2005 Aug;47(4):458-72. González-Domínguez Á, Visiedo-García FM, Domínguez-Riscart J, González-Domínguez R, Mateos RM, Lechuga-Sancho AM. Iron Metabolism in Obesity and Metabolic Syndrome. Int J Mol Sci. 2020 Aug 1;21(15):5529. doi: 10.3390/ijms21155529. PMID: 32752277; PMCID: PMC7432525. Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenfant C; American Heart Association; National Heart, Lung, and Blood Institute. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004 Jan 27;109(3):433-8. doi: 10.1161/01.CIR.0000111245.75752.C6. PMID: 14744958. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr, Spertus JA, Costa F; American Heart Association; National Heart, Lung, and Blood Institute. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005 Oct 25;112(17):2735-52. doi: 10.1161/CIRCULATIONAHA.105.169404. Epub 2005 Sep 12. Erratum in: Circulation. 2005 Oct 25;112(17):e297. Erratum in: Circulation. 2005 Oct 25;112(17):e298. PMID: 16157765. Grundy SM. Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol 2008;28:629-36. Hadaegh F, Hasheminia M, Lotfaliany M, Mohebi R, Azizi F, Tohidi M. Incidence of metabolic syndrome over 9 years follow-up; the importance of sex differences in the role of insulin resistance and other risk factors. PLoS One 2013;8:e76304. Haruyama Y, Nakagawa A, Kato K, Motoi M, Sairenchi T, Umesawa M, Uematsu A, Kudou Y, Kobashi G. Incidence of Metabolic Syndrome in Young Japanese Adults in a 6-Year Cohort Study: The Uguisudani Preventive Health Large-Scale Cohort Study (UPHLS). J Epidemiol. 2020 May 5;30(5):219-226. doi: 10.2188/jea.JE20180246. Epub 2019 May 11. PMID: 31080190; PMCID: PMC7153962. Hashimoto Y, Tanaka M, Kimura T, Kitagawa N, Hamaguchi M, Asano M, Yamazaki M, Oda Y, Toda H, Nakamura N, Fukui M. Hemoglobin concentration and incident metabolic syndrome: a population-based large-scale cohort study. Endocrine. 2015 Nov;50(2):390-6. doi: 10.1007/s12020-015-0587-9. Epub 2015 Apr 12. PMID: 25863486. He S, Gu H, Yang J, Su Q, Li X, Qin L. Hemoglobin concentration is associated with the incidence of metabolic syndrome. BMC Endocr Disord. 2021 Mar 19;21(1):53. doi: 10.1186/s12902-021-00719-4. PMID: 33740939; PMCID: PMC7980652. He Y, Li Y, Bai G, Zhang J, Fang Y, Zhao L, Zhao W, Yang X, Ding G. Prevalence of metabolic syndrome and individual metabolic abnormalities in China, 2002-2012. Asia Pac J Clin Nutr. 2019;28(3):621-633. doi: 10.6133/apjcn.201909_28(3).0023. PMID: 31464410. Honda T, Chen S, Yonemoto K, Kishimoto H, Chen T, Narazaki K, Haeuchi Y, Kumagai S. Sedentary bout durations and metabolic syndrome among working adults: a prospective cohort study. BMC Public Health. 2016 Aug 26;16(1):888. doi: 10.1186/s12889-016-3570-3. PMID: 27562190; PMCID: PMC5000401. Honda Y, Watanabe T, Otaki Y, Tamura H, Nishiyama S, Takahashi H, Arimoto T, Shishido T, Miyamoto T, Shibata Y, Konta T, Kawasaki R, Daimon M, Ueno Y, Kato T, Kayama T, Kubota I. Gender differences in the impact of anemia on subclinical myocardial damage and cardiovascular mortality in the general population: The Yamagata (Takahata) study. Int J Cardiol. 2018 Feb 1;252:207-212. doi: 10.1016/j.ijcard.2017.11.019. Epub 2017 Nov 10. PMID: 29133274. Houschyar KS, Lüdtke R, Dobos GJ, Kalus U, Broecker-Preuss M, Rampp T, Brinkhaus B, Michalsen A. Effects of phlebotomy-induced reduction of body iron stores on metabolic syndrome: results from a randomized clinical trial. BMC Med. 2012 May 30;10:54. doi: 10.1186/1741-7015-10-54. PMID: 22647517; PMCID: PMC3386865. Hsu CW, Chang CC, Lin CJ. A practical guide to support vector classification. 2003: 1396-1400. Huang LL, Dou D-M, Liu N, et al. Association of erythrocyte parameters with metabolic syndrome in the Pearl River Delta region of China: a cross sectional study. BMJ Open 2018;8:e019792. doi:10.1136/bmjopen-2017-019792 International Diabetes Federation. The IDF consensus worldwide definition of the metabolic syndrome, 2006. https://www.idf.org/e-library/consensus-statements/60-idfconsensus-worldwide-definitionof-the-metabolic-syndrome.html Izaks GJ, Westendorp RGJ, Knook DL. The Definition of Anemia in Older Persons. JAMA. 1999;281(18):1714–1717. doi:10.1001/jama.281.18.1714 Ju SY, Lee JY, Kim DH. Association of metabolic syndrome and its components with all-cause and cardiovascular mortality in the elderly: A meta-analysis of prospective cohort studies. Medicine (Baltimore) 2017;96:e8491. Kahn R, Buse J, Ferrannini E, Stern M, American Diabetes A, European Association for the Study of D. The metabolic syndrome: time for a critical appraisal: joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2005;28:2289-304. Kosiborod M, Curtis JP, Wang Y, Smith GL, Masoudi FA, Foody JM, Havranek EP, Krumholz HM. Anemia and outcomes in patients with heart failure: a study from the National Heart Care Project. Arch Intern Med. 2005 Oct 24;165(19):2237-44. doi: 10.1001/archinte.165.19.2237. PMID: 16246989. Kurtz, A., Jelkmann, W. and Bauer, C. (1983), Insulin stimulates erythroid colony formation independently of erythropoietin. British Journal of Haematology, 53: 311-316. https://doi.org/10.1111/j.1365-2141.1983.tb02025.x Lawler PR, Filion KB, Dourian T, Atallah R, Garfinkle M, Eisenberg MJ. Anemia and mortality in acute coronary syndromes: a systematic review and meta-analysis. Am Heart J. 2013 Feb;165(2):143-53.e5. doi: 10.1016/j.ahj.2012.10.024. Epub 2012 Dec 4. PMID: 23351816. Lee CH, Shih AZL, Woo YC, Fong CHY, Leung OY, Janus E, et al. (2016) Optimal Cut-Offs of Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) to Identify Dysglycemia and Type 2 Diabetes Mellitus: A 15-Year Prospective Study in Chinese. PLoS ONE 11(9): e0163424. https://doi.org/10.1371/journal.pone.0163424 Lee PC, Kini AS, Ahsan C, Fisher E, Sharma SK. Anemia is an independent predictor of mortality after percutaneous coronary intervention. J Am Coll Cardiol. 2004 Aug 4;44(3):541-6. doi: 10.1016/j.jacc.2004.04.047. PMID: 15358017. Lin JD, Chiou WK, Chang HY, Liu FH, Weng HF, Liu TH. Association of hematological factors with components of the metabolic syndrome in older and younger adults. Aging Clin Exp Res. 2006 Dec;18(6):477-84. doi: 10.1007/BF03324847. PMID: 17255636. Lindenfeld J. Prevalence of anemia and effects on mortality in patients with heart failure. Am Heart J. 2005 Mar;149(3):391-401. doi: 10.1016/j.ahj.2004.08.039. PMID: 15864227. Liu Z, Sun R, Li J, Cheng W, Li L. Relations of Anemia With the All-Cause Mortality and Cardiovascular Mortality in General Population: A Meta-Analysis. Am J Med Sci. 2019 Sep;358(3):191-199. doi: 10.1016/j.amjms.2019.05.016. Epub 2019 Jun 8. PMID: 31331612. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985 Jul;28(7):412-9. doi: 10.1007/BF00280883. PMID: 3899825. Moore JX, Chaudhary N, Akinyemiju T. Metabolic Syndrome Prevalence by Race/Ethnicity and Sex in the United States, National Health and Nutrition Examination Survey, 1988-2012. Prev Chronic Dis. 2017 Mar 16;14:E24. doi: 10.5888/pcd14.160287. PMID: 28301314; PMCID: PMC5364735. Nolan PB, Carrick-Ranson G, Stinear JW, Reading SA, Dalleck LC. Prevalence of metabolic syndrome and metabolic syndrome components in young adults: A pooled analysis. Prev Med Rep 2017;7:211-5. Noble WS. What is a support vector machine? Nat Biotechnol. 2006 Dec;24(12):1565-7. Palaniappan L, Carnethon MR, Wang Y, et al. Predictors of the incident metabolic syndrome in adults: the Insulin Resistance Atherosclerosis Study. Diabetes Care 2004;27:788-93. Patel KV, Harris TB, Faulhaber M, Angleman SB, Connelly S, Bauer DC, Kuller LH, Newman AB, Guralnik JM. Racial variation in the relationship of anemia with mortality and mobility disability among older adults. Blood. 2007 Jun 1;109(11):4663-70. doi:10.1182/blood-2006-10-055384. Epub 2007 Feb 6. PMID: 17284526; PMCID: PMC1885520. Penninx BW, Pahor M, Woodman RC, Guralnik JM. Anemia in old age is associated with increased mortality and hospitalization. J Gerontol A Biol Sci Med Sci. 2006 May;61(5):474-9. doi: 10.1093/gerona/61.5.474. PMID: 16720744. Perrine SP, Greene MF, Lee PD, Cohen RA, Faller DV. Insulin stimulates cord blood erythroid progenitor growth: evidence for an aetiological role in neonatal polycythaemia. Br J Haematol. 1986 Nov;64(3):503-11. doi: 10.1111/j.1365-2141.1986.tb02206.x. PMID: 3539174. Pimenta AM, Toledo E, Rodriguez-Diez MC, Gea A, Lopez-Iracheta R, Shivappa N, Hébert JR, Martinez-Gonzalez MA. Dietary indexes, food patterns and incidence of metabolic syndrome in a Mediterranean cohort: The SUN project. Clin Nutr. 2015 Jun;34(3):508-14. doi: 10.1016/j.clnu.2014.06.002. Epub 2014 Jun 16. PMID: 24975512; PMCID: PMC4870043. Ranasinghe P, Mathangasinghe Y, Jayawardena R, Hills AP, Misra A. Prevalence and trends of metabolic syndrome among adults in the asia-pacific region: a systematic review. BMC Public Health. 2017 Jan 21;17(1):101. doi: 10.1186/s12889-017-4041-1. PMID: 28109251; PMCID: PMC5251315. Ratajczak, J., Zhang, Q., Pertusini, E. et al. The role of insulin (INS) and insulin-like growth factor-I (IGF-I) in regulating human erythropoiesis. Studies in vitro under serum-free conditions – comparison to other cytokines and growth factors. Leukemia 12, 371–381 (1998). https://doi.org/10.1038/sj.leu.2400927 Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988 Dec;37(12):1595-607. doi: 10.2337/diab.37.12.1595. PMID: 3056758. Shang P, Shu Z, Wang Y, Li N, Du S, Sun F, Xia Y, Zhan S. Veganism does not reduce the risk of the metabolic syndrome in a Taiwanese cohort. Asia Pac J Clin Nutr. 2011;20(3):404-10. PMID: 21859659. Shin D, Kongpakpaisarn K, Bohra C. Trends in the prevalence of metabolic syndrome and its components in the United States 2007-2014. Int J Cardiol. 2018 May 15;259:216-219. doi: 10.1016/j.ijcard.2018.01.139. Epub 2018 Feb 19. PMID: 29472026. Shu, D.H., Ransom, T.P., O'Connell, C.M. et al. Anemia is an independent risk for mortality after acute myocardial infarction in patients with and without diabetes. Cardiovasc Diabetol 5, 8 (2006). https://doi.org/10.1186/1475-2840-5-8 Tapio J, Vähänikkilä H, Kesäniemi YA, Ukkola O, Koivunen P. Higher hemoglobin levels are an independent risk factor for adverse metabolism and higher mortality in a 20-year follow-up. Sci Rep. 2021 Oct 7;11(1):19936. doi: 10.1038/s41598-021-99217-9. PMID: 34620927; PMCID: PMC8497471. Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). Final report. Circulation. 2002;106:3143–3421. Tsao YC, Li WC, Yeh WC, Ueng SW, Chiu SY, Chen JY. The Association between Metabolic Syndrome and Related Factors among the Community-Dwelling Indigenous Population in Taiwan. Int J Environ Res Public Health. 2020 Dec 2;17(23):8958. doi: 10.3390/ijerph17238958. PMID: 33276457; PMCID: PMC7730304. Wangping J, Ke H, Shengshu W, Yang S, Shanshan Y, Wenzhe C, Yao H, Miao L. Associations Between Anemia, Cognitive Impairment, and All-Cause Mortality in Oldest-Old Adults: A Prospective Population-Based Cohort Study. Front Med (Lausanne). 2021 Feb 10;8:613426. doi: 10.3389/fmed.2021.613426. PMID: 33644094; PMCID: PMC7902775. Wu TH, Fann JC, Chen SL, Yen AM, Wen CJ, Lu YR, Chen HH, Chiu SY, Liou HH. Gradient Relationship between Increased Mean Corpuscular Volume and Mortality Associated with Cerebral Ischemic Stroke and Ischemic Heart Disease: A Longitudinal Study on 66,294 Taiwanese. Sci Rep. 2018 Nov 8;8(1):16517. doi: 10.1038/s41598-018-34403-w. PMID: 30409990; PMCID: PMC6224537. Verplancke T, Van Looy S, Benoit D, Vansteelandt S, Depuydt P, De Turck F, Decruyenaere J. Support vector machine versus logistic regression modeling for prediction of hospital mortality in critically ill patients with haematological malignancies. BMC Med Inform Decis Mak. 2008 Dec 5;8:56 Vitool Lohsoonthorn, Wiroj Jiamjarasrungsi, Michelle A. Williams, Association of hematological parameters with clustered components of metabolic syndrome among professional and office workers in Bangkok, Thailand, Diabetes & Metabolic Syndrome: Clinical Research & Reviews, Volume 1, Issue 3, 2007, Pages 143-149, ISSN 1871-4021, https://doi.org/10.1016/j.dsx.2007.05.002. Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004 Jun;27(6):1487-95. doi: 10.2337/diacare.27.6.1487. PMID: 15161807. Wang YY, Lin SY, Liu PH, Cheung BM, Lai WA. Association between hematological parameters and metabolic syndrome components in a Chinese population. J Diabetes Complications. 2004 Nov-Dec;18(6):322-7. doi: 10.1016/S1056-8727(04)00003-0. PMID: 15531181. Wen CJ, Lee YS, Lin WY, Huang HL, Yao CA, Sung PK, Huang KC. The metabolic syndrome increases cardiovascular mortality in Taiwanese elderly. Eur J Clin Invest. 2008 Jul;38(7):469-75. doi: 10.1111/j.1365-2362.2008.01965.x. Epub 2008 May 23. PMID: 18505405. Whaley-Connell A, McCullough PA, Sowers JR. The role of oxidative stress in the metabolic syndrome. Rev Cardiovasc Med. 2011;12(1):21-9. doi: 10.3909/ricm0555. PMID: 21546885. Womack VY, De Chavez PJ, Albrecht SS, Durant N, Loucks EB, Puterman E, Redmond N, Siddique J, Williams DR, Carnethon MR. A Longitudinal Relationship Between Depressive Symptoms and Development of Metabolic Syndrome: The Coronary Artery Risk Development in Young Adults Study. Psychosom Med. 2016 Sep;78(7):867-73. doi: 10.1097/PSY.0000000000000347. PMID: 27490849; PMCID: PMC5003718. Wu TW, Chan HL, Hung CL, Lu IJ, Wang SD, Wang SW, Wu YJ, Wang LY, Yeh HI, Wei YH; MAGNET Study Investigator. Differential patterns of effects of age and sex on metabolic syndrome in Taiwan: implication for the inadequate internal consistency of the current criteria. Diabetes Res Clin Pract. 2014 Aug;105(2):239-44. doi: 10.1016/j.diabres.2014.04.027. Epub 2014 Apr 30. PMID: 24933651. Yen YF, Hu HY, Lin IF, Lai YJ, Su VY, Pan SW, Ting WY, Su WJ. Associations of Metabolic Syndrome and its Components With Mortality in the Elderly: A Cohort Study of 73,547 Taiwanese Adults. Medicine (Baltimore). 2015 Jun;94(23):e956. doi: 10.1097/MD.0000000000000956. PMID: 26061328; PMCID: PMC4616481. Zairis MN, Patsourakos NG, Georgilas AT, Melidonis A, Argyrakis KS, Prekates AA, Mytas DZ, Karidis KS, Batika PC, Fakiolas CN, Foussas SG. Anemia and early mortality in patients with decompensation of chronic heart failure. Cardiology. 2011;119(3):125-30. doi: 10.1159/000330494. Epub 2011 Sep 10. PMID: 21912126. Zakai NA, Katz R, Hirsch C, Shlipak MG, Chaves PH, Newman AB, Cushman M. A prospective study of anemia status, hemoglobin concentration, and mortality in an elderly cohort: the Cardiovascular Health Study. Arch Intern Med. 2005 Oct 24;165(19):2214-20. doi: 10.1001/archinte.165.19.2214. PMID: 16246985. Zhou B; Coorperative Meta-Analysis Group Of China Obesity Task Force. [Predictive values of body mass index and waist circumference to risk factors of related diseases in Chinese adult population]. Zhonghua Liu Xing Bing Xue Za Zhi. 2002 Feb;23(1):5-10. Chinese. PMID: 12015100. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84639 | - |
| dc.description.abstract | 背景: 過去已有研究報告陳述血紅素濃度與代謝症候群之間的關聯,但兩者間的雙向關係尚未被釐清。此外,低血紅素合併代謝症候群與全死因死亡間的相關性也甚少研究探討。本研究欲運用社區長期追蹤世代研究資料對血紅素濃度與代謝症候群雙向關係及兩因子與全死因死亡相關性進行探究。 方法: 本研究將三個台灣社區共97460名在2000年至2009年參與社區整合式篩檢者(年齡大於20歲以上)納入這個世代研究,我們設計一項前瞻性追蹤世代研究,包括兩個世代追蹤,其一由初始時無貧血的參與者組成,另一個則是由初始時無代謝症候群的參與者組成。在追蹤期間確定了代謝症候群和貧血的事件病例,並採用寇克斯比例風險回歸模型與調整相關干擾因子以評估代謝症候群對貧血的影響,另一方面,利用寇克斯比例風險回歸模型與調整了相關干擾因子來評估貧血對代謝症候群的影響。使用Kaplan-Meier 方法來估計四組的存活曲線。寇克斯比例風險回歸模型推估共變數(年齡、性別、吸菸、飲酒、嚼檳榔及基礎線貧血或代謝症候群狀態) 對存活時間的影響,以及採用監督式機器學習方法中的支援向量機、邏輯式迴歸分析及貝氏網絡三種方法,以產生預測貧血及代謝症候群的發病與否的模型。最後針對貧血或代謝症候群有無追蹤死亡至2012年,利用寇克斯比例風險回歸模型以評估貧血或代謝症候群對全死因死亡影響,亦以支援向量機及邏輯式迴歸機器學習方法建構貧血及代謝症候群對全死因死亡的預測模型。 結果: 與沒有代謝症候群的個案相比,患有代謝症候群的受試者貧血發生的風險降低了 8%。[調整後風險比=0.92 (95%信賴區間0.87-0.97)]。與沒有貧血的參與者相比,患有貧血的參與者發生代謝症候群的風險降低了18%。 [調整後的風險比=0.82 (95%信賴區間0.78-0.86)] 執行統合分析結果發現,貧血與代謝症候群之間存在負相關,於固定效應模型的勝算比為0.79 (95%信賴區間: 0.76-0.83) ,而在隨機效應模型中的勝算比為0.77 (95%信賴區間: 0.34- 1.24),雖然後者沒有統計顯著。以監督式機器學習方法(支援向量機、邏輯式迴歸分析及貝氏網絡)預測代謝症候群發病及貧血發生的風險,發現貝氏網路模型作預測貧血風險其預測能力C統計值為0.617,於三者中表現最佳,而支援向量機預測代謝症候群風險預測能力達0.639,於三者中表現最佳。追蹤期間無貧血或代謝症候群者的全死因死亡率最低,有貧血或代謝症候群者死亡率次之,死亡率最高的族群是有貧血合併代謝症候群的參與者,勝算比為2.18 (95%信賴區間:1.94- 2.45)。考量年齡、性別、吸菸、飲酒、嚼檳、貧血及代謝症候群因子,利用支援向量機預測能力達0.841。 結論: 這是第一個以族群為基礎的世代研究來評估貧血與代謝症候群的雙向關係及其對全死因死亡影響的研究。此研究結果對這兩種疾病在個人化醫療上具有重要意義。 | zh_TW |
| dc.description.abstract | Background Previous studies have reported the association between hemoglobin (Hb) levels and metabolic syndrome (MetS), but its temporal sequence based on a population-based study has been not elucidated yet. Also, the association of all-cause mortality with Hb and MetS has rarely been addressed. The study was aimed to assess the bidirectional relationship between Hb and MetS and reveal the association between Hb/MetS and all-cause mortality based on a longitudinal community-based study cohort. Methods After enrolling the 97460 screening participants (aged greater than 20 years old) in a cohort of over eight years, a prospective follow-up cohort study was designed by following the two normal cohorts over nine years (during 2000 to 2009), including two normal cohorts, anemia-free and free of metabolic syndrome (MetS) at baseline. The incident cases of metabolic syndrome and anemia was ascertained. Cox proportional hazards regression model was adopted to assess the effect of metabolic syndrome on anemia and vice versa with adjustment for other relevant confounding factors. Based on the baseline, participants were divided into four groups---- no anemia or metabolic syndrome, anemia, metabolic syndrome, and anemia accompanying metabolic syndrome. Kaplan-Meier method was used to estimate the survival curves of these four groups. Cox proportional hazards regression model was applied to estimate the effect of covariates (age, sex, smoking, alcohol consumption, betel quid chewing, and baseline status of anemia or metabolic syndrome) on survival. Three supervised machine learning methods including support vector machine (SVM), logistic regression analysis and Bayesian network were used to generate models for predicting the development of anemia or metabolic syndrome. Deaths were ascertained by follow-up until the end of 2012. Cox proportional hazards regression model was used to assess the effect of Hb and MetS on all-cause mortality. SVM and logistic regression method were applied to construct the all-cause death predictive models. Results Subjects with MetS as opposed free of Mets yielded an 8% decreased risk for incident anemia. [adjusted hazard ratio =0.92 (95% CI 0.87-0.97)] making allowance for other confounding factors. Participants with anemia versus free of anemia yielded an 18% decreased risk for incident metabolic syndrome. [adjusted hazard ratio =0.82 (95% CI 0.78-0.86)] after considering other confounding factors. The negative association between anemia and MetS based on Meta-analysis has been corroborated by the fixed-effect model (OR=0.79, 95% CI: 0.76-0.83) and the random effect model (OR=0.77, 95% CI: 0.34-1.24) although the latter was not statistically significant. Using supervised machine learning methods (SVM, logistic regression analysis and Bayesian network) to predict the risk of metabolic syndrome and anemia, revealed that C statistic (Area Under Curve) prediction of risk of anemia was 0.617 using Bayesian network, which was the best among them. The highest C statistic (0.639) for prediction the risk of anemia using SVM was found. During the follow-up period, those without anemia or MetS at baseline had the lowest all-cause mortality rate followed by those with baseline anemia or metabolic syndrome, and the group with the highest mortality was participants with baseline anemia and metabolic syndrome. Compared with those without anemia or MetS, the adjusted hazard ratio was 2.18 (95%CI: 1.95-2.45) for subjects with anemia and MetS. Conclusion This is the first study to report both causal temporal sequences between anemia and Mets and association of all-cause mortality with anemia and MetS based on a large population-based cohort data. Our findings have a significant implication in personalized medical care for both diseases. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:18:37Z (GMT). No. of bitstreams: 1 U0001-1409202205453900.pdf: 1162106 bytes, checksum: 26a361518e8f799628855111e131d7b2 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝……………………………………………………………………………………...i 中文摘要………………………………………………………………………………...ii 英文摘要………………………………………………………………………………..iv 第一章 緒論………………………………………………………………………….....1 第二章 文獻回顧…………………………………………………………………….....2 第一節 代謝症候群的定義………………………………………….....................2 第二節 代謝症候群的描述性流行病學……………………………………….....9 第三節 胰島素阻抗與血紅素上升……………………………………...............16 第四節 關於血紅素濃度與代謝症候群發生的關聯性的過去研究…………...18 第五節 肥胖、發炎狀態與貧血的關聯性……………………………………...22 第六節 貧血與死亡率…………………………………………………………...23 第三章 材料與方法………………………………………………………...................30 第一節 研究人群………………………………………………………………...30 第二節 資料收集………………………………………………………………...30 第三節 代謝症候群的診斷標準…………………………………………….…..31 第四節 研究設計………………………………………………………………...31 第五節 統計分析………………………………………………………………...35 第四章 結果…………………………………………………………………………...37 第一節 研究族群的特徵………………………………………………………...37 第二節 代謝症候群對新發生貧血的影響………………………………...........39 第三節 貧血對代謝症候群發病的影響…………………………………...........39 第四節 關於血紅素偏低與代謝症候群的關聯性的統合分析發現…………...39 第五節 貧血與代謝症候群的死亡風險………………………………………...40 第六節 以監督式機器學習方法預測代謝症候群或貧血發生的風險………...42 第七節 以監督式機器學習方法預測死亡風險………………………………...43 第五章 討論與結論…………………………………………………………………...58 圖目錄………………………………………………………………………………….ix 表目錄………………………………………………………………………………….x 參考文獻……………………………………………………………………………….63 圖一 雙向時序流程圖: 代謝症候群對貧血發生率的影響…………………………33 圖二 雙向時序流程圖: 貧血對代謝症候群發生率的影響…………………………34 圖三 貧血和代謝症候群全死因死亡率……………………………………...............51 圖四 支援向量機預測代謝症候群因子相對重要性………………………………...52 圖五 支援向量機預測貧血因子相對重要性………………………………………...53 圖六 兩個預測模型的最優貝氏網路………………………………………………...54 圖七 支援向量機預測全死亡因子相對重要性……………………………………...55 圖八 支援向量機模型預測全死因死亡……………………………………………...56 圖九 邏輯式迴歸模型預測全死因死亡……………………………………………...57 表一 雙向世代的基準特性…………………………………………………………...38 表二 貧血發病風險的單變量和多變量的寇克斯回歸分析………………………...44 表三 代謝症候群發病風險的單變量和多變量的寇克斯回歸分析………………...45 表四 血液血紅素值與代謝症候群的統合分析……………………………………...46 表五 依基線貧血和代謝症候群狀態劃分的世代人口學特徵……………………...47 表六 整體死亡率風險的單變量和多變量的寇克斯回歸分析……………………...48 表七 三種監督式機器學習於預測貧血或代謝症候群的C統計值(曲線下面積)...49 表八 機器學習預測全死因死亡模型比較…………………………………………...50 | |
| dc.language.iso | zh-TW | |
| dc.subject | 貧血 | zh_TW |
| dc.subject | 雙向關係 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 代謝症候群 | zh_TW |
| dc.subject | 血紅素 | zh_TW |
| dc.subject | machine learning | en |
| dc.subject | hemoglobin | en |
| dc.subject | anemia | en |
| dc.subject | metabolic syndrome | en |
| dc.subject | bidirectional relationship | en |
| dc.title | 代謝症候群與低血紅素雙向時序及全死因關係研究 | zh_TW |
| dc.title | Metabolic Syndrome and Lowered Hemoglobin Concentrations: A Bidirectional Relationship and the Association of All-cause Mortality Study | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳祈玲(Chi-Ling Chen),邱月暇(Yueh-Hsia Chiu) | |
| dc.subject.keyword | 血紅素,貧血,代謝症候群,雙向關係,機器學習, | zh_TW |
| dc.subject.keyword | hemoglobin,anemia,metabolic syndrome,bidirectional relationship,machine learning, | en |
| dc.relation.page | 70 | |
| dc.identifier.doi | 10.6342/NTU202203383 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-09-16 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-10-07 | - |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1409202205453900.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
