Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84619
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林淑華(Shu-Wha Lin)
dc.contributor.authorCheng-Yeh Yuen
dc.contributor.author游承燁zh_TW
dc.date.accessioned2023-03-19T22:17:52Z-
dc.date.copyright2022-10-04
dc.date.issued2022
dc.date.submitted2022-09-19
dc.identifier.citation1.LaPelusa, A. and H.D. Dave, Physiology, Hemostasis, in StatPearls. 2022: Treasure Island (FL). 2.Chapin, J.C. and K.A. Hajjar, Fibrinolysis and the control of blood coagulation. Blood Rev, 2015. 29(1): p. 17-24. 3.Chaudhry, R., S.M. Usama, and H.M. Babiker, Physiology, Coagulation Pathways, in StatPearls. 2022: Treasure Island (FL). 4.Palta, S., R. Saroa, and A. Palta, Overview of the coagulation system. Indian J Anaesth, 2014. 58(5): p. 515-23. 5.Grover, S.P. and N. Mackman, Intrinsic Pathway of Coagulation and Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019. 39(3): p. 331-338. 6.Josso, F. and O. Prou-Wartelle, Interaction of tissue factor and factor VII at the earliest phase of coagulation. Thromb Diath Haemorrh Suppl, 1965. 17: p. 35-44. 7.SOEDA, T., et al., Mechanisms of factor VIIa-catalyzed activation of factor VIII. Journal of Thrombosis and Haemostasis, 2010. 8(11): p. 2494-2503. 8.Gailani, D. and G.J. Broze, Jr., Factor XI activation in a revised model of blood coagulation. Science, 1991. 253(5022): p. 909-12. 9.Souto, J.C., et al., Genetic susceptibility to thrombosis and its relationship to physiological risk factors: the GAIT study. Genetic Analysis of Idiopathic Thrombophilia. Am J Hum Genet, 2000. 67(6): p. 1452-9. 10.Heit, J.A., et al., Familial segregation of venous thromboembolism. J Thromb Haemost, 2004. 2(5): p. 731-6. 11.Anderson, F.A. and H.B. Wheeler, Physician practices in the management of venous thromboembolism: A community-wide survey. Journal of Vascular Surgery, 1992. 16(5): p. 707-714. 12.Incidence of Idiopathic Deep Venous Thrombosis and Secondary Thromboembolism among Ethnic Groups in California. Annals of Internal Medicine, 1998. 128(9): p. 737-740. 13.Heit, J.A., et al., Relative Impact of Risk Factors for Deep Vein Thrombosis and Pulmonary Embolism: A Population-Based Study. Archives of Internal Medicine, 2002. 162(11): p. 1245-1248. 14.Brooks, E.G., et al., Valves of the deep venous system: an overlooked risk factor. Blood, 2009. 114(6): p. 1276-1279. 15.Closse, C., et al., Influence of hypoxia and hypoxia-reoxygenation on endothelial P-selectin expression. Haemostasis, 1996. 26 Suppl 4: p. 177-81. 16.Elyamany, G., A.M. Alzahrani, and E. Bukhary, Cancer-associated thrombosis: an overview. Clin Med Insights Oncol, 2014. 8: p. 129-37. 17.Lee, L.H., et al., Epidemiology of Cancer-Associated Thrombosis in Asia: A Systematic Review. Front Cardiovasc Med, 2021. 8: p. 669288. 18.Canonico, M.E., et al., Venous Thromboembolism and Cancer: A Comprehensive Review from Pathophysiology to Novel Treatment. Biomolecules, 2022. 12(2). 19.Khorana, A.A., et al., Cancer-associated venous thromboembolism. Nature Reviews Disease Primers, 2022. 8(1): p. 11. 20.Kasthuri, R.S., M.B. Taubman, and N. Mackman, Role of tissue factor in cancer. J Clin Oncol, 2009. 27(29): p. 4834-8. 21.Zwicker, J.I., et al., Tissue Factor–Bearing Microparticles and Thrombus Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011. 31(4): p. 728-733. 22.Kozwich, D.L., et al., Application of cancer procoagulant as an early detection tumor marker. Cancer, 1994. 74(4): p. 1367-76. 23.Casslén, B., et al., Plasminogen activators and plasminogen activator inhibitors in blood and tumour fluids of patients with ovarian cancer. Eur J Cancer, 1994. 30a(9): p. 1302-9. 24.Mezouar, S., et al., Role of platelets in cancer and cancer-associated thrombosis: Experimental and clinical evidences. Thromb Res, 2016. 139: p. 65-76. 25.Demers, M. and D.D. Wagner, NETosis: a new factor in tumor progression and cancer-associated thrombosis. Semin Thromb Hemost, 2014. 40(3): p. 277-83. 26.Sevestre, M.A. and S. Soudet, Epidemiology and risk factors for cancer-associated thrombosis. JMV-Journal de Médecine Vasculaire, 2020. 45(6, Supplement): p. 6S3-6S7. 27.Ferlay, J., et al., Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 2015. 136(5): p. E359-86. 28.Bariéty, M., [Tribute to Armand Trousseau (14 October 1801-23 June 1867)]. Bull Acad Natl Med, 1967. 151(31): p. 627-35. 29.Sun, W., et al., Clinical and Prognostic Significance of Coagulation Assays in Pancreatic Cancer Patients With Absence of Venous Thromboembolism. Am J Clin Oncol, 2015. 38(6): p. 550-6. 30.Khorana, A.A., et al., Tissue factor expression, angiogenesis, and thrombosis in pancreatic cancer. Clin Cancer Res, 2007. 13(10): p. 2870-5. 31.Kakkar, A.K., et al., Tissue factor expression correlates with histological grade in human pancreatic cancer. Br J Surg, 1995. 82(8): p. 1101-4. 32.Heinmöller, E., et al., Tumor cell-induced platelet aggregation in vitro by human pancreatic cancer cell lines. Scand J Gastroenterol, 1995. 30(10): p. 1008-16. 33.Kaur, S., et al., Mucins in pancreatic cancer and its microenvironment. Nat Rev Gastroenterol Hepatol, 2013. 10(10): p. 607-20. 34.Shao, B., et al., Carcinoma mucins trigger reciprocal activation of platelets and neutrophils in a murine model of Trousseau syndrome. Blood, 2011. 118(15): p. 4015-23. 35.Andrén-Sandberg, A., et al., Peaks in plasma plasminogen activator inhibitor-1 concentration may explain thrombotic events in cases of pancreatic carcinoma. Cancer, 1992. 69(12): p. 2884-7. 36.Geddings, J.E., et al., Tissue factor-positive tumor microvesicles activate platelets and enhance thrombosis in mice. J Thromb Haemost, 2016. 14(1): p. 153-66. 37.Thomas, G.M., et al., Tissue factor expressed by circulating cancer cell-derived microparticles drastically increases the incidence of deep vein thrombosis in mice. Journal of Thrombosis and Haemostasis, 2015. 13(7): p. 1310-1319. 38.Wang, J.-G., et al., Tumor-derived tissue factor activates coagulation and enhances thrombosis in a mouse xenograft model of human pancreatic cancer. Blood, 2012. 119(23): p. 5543-5552. 39.Hisada, Y., et al., Plasminogen activator inhibitor 1 and venous thrombosis in pancreatic cancer. Blood Adv, 2021. 5(2): p. 487-495. 40.Wu, M.-C., G.K. Arimura, and A.A. Yunis, Purification and characterization of a plasminogen activator secreted by cultured human pancreatic carcinoma cells. Biochemistry, 1977. 16(9): p. 1908-1913. 41.Tesselaar, M.E., et al., Microparticle-associated tissue factor activity: a link between cancer and thrombosis? J Thromb Haemost, 2007. 5(3): p. 520-7. 42.Wang, J.G., et al., Tumor-derived tissue factor activates coagulation and enhances thrombosis in a mouse xenograft model of human pancreatic cancer. Blood, 2012. 119(23): p. 5543-52. 43.Woei-A-Jin, F.J.S.H., et al., Tissue factor-bearing microparticles and CA19.9: two players in pancreatic cancer-associated thrombosis? British Journal of Cancer, 2016. 115(3): p. 332-338. 44.Boone, B.A., et al., Chloroquine reduces hypercoagulability in pancreatic cancer through inhibition of neutrophil extracellular traps. BMC Cancer, 2018. 18(1): p. 678. 45.Yu, M., et al., Phosphatidylserine-exposing blood cells, microparticles and neutrophil extracellular traps increase procoagulant activity in patients with pancreatic cancer. Thrombosis Research, 2020. 188: p. 5-16. 46.Shim, Y.J., et al., Polyphosphate expression by cancer cell extracellular vesicles mediates binding of factor XII and contact activation. Blood Adv, 2021. 5(22): p. 4741-4751. 47.Nickel, K.F., et al., The polyphosphate-factor XII pathway drives coagulation in prostate cancer-associated thrombosis. Blood, 2015. 126(11): p. 1379-89. 48.Roeise, O., et al., Studies on components of the contact phase system in patients with advanced gastrointestinal cancer. Cancer, 1990. 65(6): p. 1355-9. 49.Walker, G.E., et al., Factor VIII as a potential player in cancer pathophysiology. Journal of Thrombosis and Haemostasis, 2022. 20(3): p. 648-660. 50.Pan, J., et al., Glycosaminoglycans and activated contact system in cancer patient plasmas. Prog Mol Biol Transl Sci, 2010. 93: p. 473-95. 51.Rousseau, A., et al., Cancer cells BXPC3 and MCF7 differentially reverse the inhibition of thrombin generation by apixaban, fondaparinux and enoxaparin. Thromb Res, 2015. 136(6): p. 1273-9. 52.Hisada, Y., et al., The Intrinsic Pathway does not Contribute to Activation of Coagulation in Mice Bearing Human Pancreatic Tumors Expressing Tissue Factor. Thromb Haemost, 2021. 53.Von Willebrand factor, in Meyler's Side Effects of Drugs (Sixteenth Edition), J.K. Aronson, Editor. 2016, Elsevier: Oxford. p. 502-503. 54.Sadler, J.E., BIOCHEMISTRY AND GENETICS OF VON WILLEBRAND FACTOR. Annual Review of Biochemistry, 1998. 67(1): p. 395-424. 55.Patmore, S., S.P.S. Dhami, and J.M. O'Sullivan, Von Willebrand factor and cancer; metastasis and coagulopathies. J Thromb Haemost, 2020. 18(10): p. 2444-2456. 56.Dunbar, A., et al., Genomic profiling identifies somatic mutations predicting thromboembolic risk in patients with solid tumors. Blood, 2021. 137(15): p. 2103-2113. 57.Obermeier, H.L., et al., The role of ADAMTS-13 and von Willebrand factor in cancer patients: Results from the Vienna Cancer and Thrombosis Study. Res Pract Thromb Haemost, 2019. 3(3): p. 503-514. 58.Cruz, M.A., et al., Mapping the Glycoprotein Ib-binding Site in the von Willebrand Factor A1 Domain *. Journal of Biological Chemistry, 2000. 275(25): p. 19098-19105. 59.Chen, J., et al., Modifying murine von Willebrand factor A1 domain for in vivo assessment of human platelet therapies. Nature Biotechnology, 2008. 26(1): p. 114-119. 60.In 't Veld, S. and T. Wurdinger, Tumor-educated platelets. Blood, 2019. 133(22): p. 2359-2364. 61.Tjon-Kon-Fat, L.A., et al., Platelet RNA in Cancer Diagnostics. Semin Thromb Hemost, 2018. 44(2): p. 135-141. 62.Yan, M. and P. Jurasz, The role of platelets in the tumor microenvironment: From solid tumors to leukemia. Biochim Biophys Acta, 2016. 1863(3): p. 392-400. 63.Palacios-Acedo, A.-L., et al., Platelet and Cancer-Cell Interactions Modulate Cancer-Associated Thrombosis Risk in Different Cancer Types. Cancers, 2022. 14(3): p. 730. 64.Hanada, K., et al., Human pancreatic phospholipase A2 stimulates the growth of human pancreatic cancer cell line. FEBS Lett, 1995. 373(1): p. 85-7. 65.Gubbala, V.B., et al., Eicosanoids in the Pancreatic Tumor Microenvironment—A Multicellular, Multifaceted Progression. Gastro Hep Advances, 2022. 1(4): p. 682-697. 66.Rucker, D. and A.S. Dhamoon, Physiology, Thromboxane A2, in StatPearls. 2022, StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.: Treasure Island (FL). 67.Palacios-Acedo, A.L., et al., P2RY12-Inhibitors Reduce Cancer-Associated Thrombosis and Tumor Growth in Pancreatic Cancers. Front Oncol, 2021. 11: p. 704945. 68.Stark, K., et al., Distinct Pathogenesis of Pancreatic Cancer Microvesicle–Associated Venous Thrombosis Identifies New Antithrombotic Targets In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018. 38(4): p. 772-786. 69.游益興 and I.S. Yu, Thromboxane A2合成酶剔除鼠功能研究 Investigation of thromboxane A2 synthase knockout mice. 70.Patterson, K.A., et al., Rosuvastatin reduced deep vein thrombosis in ApoE gene deleted mice with hyperlipidemia through non-lipid lowering effects. Thromb Res, 2013. 131(3): p. 268-76. 71.Brill, A., et al., von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood, 2011. 117(4): p. 1400-7. 72.von Brühl, M.L., et al., Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med, 2012. 209(4): p. 819-35. 73.Payne, H., et al., Mice with a deficiency in CLEC-2 are protected against deep vein thrombosis. Blood, 2017. 129(14): p. 2013-2020. 74.Wang, X., et al., Murine model of ferric chloride-induced vena cava thrombosis: evidence for effect of potato carboxypeptidase inhibitor. J Thromb Haemost, 2006. 4(2): p. 403-10. 75.Cooley, B.C., In vivo fluorescence imaging of large-vessel thrombosis in mice. Arterioscler Thromb Vasc Biol, 2011. 31(6): p. 1351-6. 76.Maroney, S.A., et al., Murine Hematopoietic Cell Tissue Factor Pathway Inhibitor Limits Thrombus Growth. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011. 31(4): p. 821-826. 77.Bi, L., et al., Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A. Nat Genet, 1995. 10(1): p. 119-21. 78.Lin, H.F., et al., A coagulation factor IX-deficient mouse model for human hemophilia B. Blood, 1997. 90(10): p. 3962-6. 79.Adair, B.D., et al., Structure-guided design of pure orthosteric inhibitors of αIIbβ3 that prevent thrombosis but preserve hemostasis. Nature Communications, 2020. 11(1): p. 398. 80.Stewart, J.C., Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem, 1980. 104(1): p. 10-4. 81.Duckers, C., et al., Residual platelet factor V ensures thrombin generation in patients with severe congenital factor V deficiency and mild bleeding symptoms. Blood, 2010. 115(4): p. 879-886. 82.Zhu, S., et al., Roles of Microvesicles in Tumor Progression and Clinical Applications. Int J Nanomedicine, 2021. 16: p. 7071-7090. 83.Yin, W., et al., An in situ inferior vena cava ligation-stenosis model to study thrombin generation rates with flow. Thrombosis Journal, 2022. 20(1): p. 30. 84.Vormittag, R., et al., High Factor VIII Levels Independently Predict Venous Thromboembolism in Cancer Patients. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009. 29(12): p. 2176-2181. 85.Kim, A.S., A.A. Khorana, and K.R. McCrae, Mechanisms and biomarkers of cancer-associated thrombosis. Transl Res, 2020. 225: p. 33-53. 86.Campello, E., et al., Contact System Activation and Cancer: New Insights in the Pathophysiology of Cancer-Associated Thrombosis. Thromb Haemost, 2018. 118(2): p. 251-265. 87.Brill, A., et al., von Willebrand factor–mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood, 2011. 117(4): p. 1400-1407. 88.Nicolay, J., et al., Cellular stress induces erythrocyte assembly on intravascular von Willebrand factor strings and promotes microangiopathy. Scientific Reports, 2018. 8. 89.Smeets, M.W.J., et al., Stasis Promotes Erythrocyte Adhesion to von Willebrand Factor. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017. 37(9): p. 1618-1627. 90.Chernysh, I.N., et al., The distinctive structure and composition of arterial and venous thrombi and pulmonary emboli. Scientific Reports, 2020. 10(1): p. 5112. 91.Geddings, J.E., et al., Tissue factor–positive tumor microvesicles activate platelets and enhance thrombosis in mice. Journal of Thrombosis and Haemostasis, 2016. 14(1): p. 153-166. 92.林昭怡, 以小鼠模型探討腫瘤微粒在癌症相關靜脈血栓之角色, in 醫學檢驗暨生物技術學研究所. 2020, 國立臺灣大學. 93.Bauer, M., et al., Dichotomous regulation of myosin phosphorylation and shape change by Rho-kinase and calcium in intact human platelets. Blood, 1999. 94(5): p. 1665-72. 94.Lian, L., et al., The relative role of PLCbeta and PI3Kgamma in platelet activation. Blood, 2005. 106(1): p. 110-7. 95.Norström, E. and G. Escolar, CHAPTER 36 - Natural anticoagulants and thrombophilia, in Blood and Bone Marrow Pathology (Second Edition), A. Porwit, J. McCullough, and W.N. Erber, Editors. 2011, Churchill Livingstone: Edinburgh. p. 583-595. 96.An, M., et al., Circulating Microvesicles from Pancreatic Cancer Accelerate the Migration and Proliferation of PANC-1 Cells. J Proteome Res, 2018. 17(4): p. 1690-1699. 97.Alavi, P., A.M. Rathod, and N. Jahroudi, Age-Associated Increase in Thrombogenicity and Its Correlation with von Willebrand Factor. J Clin Med, 2021. 10(18). 98.Albánez, S., et al., Age-Related Increases in Plasma Factor VIII and Von Willebrand Factor in a C57BL/6 Mouse Model Are Associated with Increased Factor VIII and Von Willebrand Factor Gene Expression and Reduced Expression of the Clearance Receptor, Stabilin-2. Blood, 2014. 124(21): p. 4228. 99.Campello, E., et al., The relationship between pancreatic cancer and hypercoagulability: a comprehensive review on epidemiological and biological issues. British Journal of Cancer, 2019. 121(5): p. 359-371. 100.Seppänen, H., et al., Pancreatic cancer patients express elevated FVIII levels and metastasis-associated fibrin turnover prior to their diagnosis. Pancreatology, 2015. 15(3, Supplement): p. S111. 101.Schellerer, V.S., et al., Is coagulation factor VIII a useful marker for colorectal carcinoma? The International Journal of Biological Markers, 2012. 27(1): p. 20-26. 102.Loof, T., C. Deicke, and E. Medina, The role of coagulation/fibrinolysis during Streptococcus pyogenes infection. Frontiers in cellular and infection microbiology, 2014. 4: p. 128.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84619-
dc.description.abstract癌症相關血栓(Cancer-associated thrombosis, CAT)為癌症病人的致死因素之一,發生率僅次於因癌症惡化而死亡,而胰臟癌發生CAT的機率相當高,因此探討胰臟癌相關靜脈血栓形成機制相當重要。先前研究指出,胰臟癌可能藉由癌細胞釋出的微囊胞(Microvesicles, MVs)上表現人類組織因子(Human tissue factor, TF)導致第七因子-組織因子複合體(TF-FVIIa complex)形成,造成凝血外在途徑活化產生血栓。臨床研究顯示癌症病患凝血內在途徑和血小板活化及溫韋伯氏因子(von Willebrand factor, VWF)增加,但其對於MVs誘導癌症血栓的影響機制未明。本研究使用低組織因子表現之胰臟癌細胞株MIAPACA 2(TF-)及過量表達TF的MIAPACA 2細胞株(TF+),以靜脈血栓模型的方式比較各細胞株所產生的MVs影響第八因子剔除、第九因子剔除、VWF點突變及TXA2合成酶剔除小鼠血栓表現的差異,以此研究腫瘤微粒誘導的血栓的機制。另以免疫缺陷的小鼠原位腫瘤模型研究內生性MVs對於胰臟癌血栓的影響。先前已建立定性、定量MVs及其TF活性的測定方法。在靜脈血栓模型中顯示TF+ MVs會促進野生型小鼠的血栓形成,但在第八因子缺損、第九因子缺損、TXA2合成酶剔除的小鼠MVs所誘導的血栓形成顯著下降,而在VWF點突變的組別沒有顯著差異; TF- MVs在野生型及各基因缺損的小鼠靜脈血栓模型則無促進血栓產生。比較肺栓塞嚴重程度及血栓指標表現推測第九因子對血栓形成的影響大於第八因子。腫瘤小鼠模型發現TF+ 腫瘤在野生型及第八因子缺損小鼠相較TF-腫瘤有較高的腫瘤重量及血栓指標,但在第八因子缺損下腫瘤大小及血栓指標差距顯著縮小。由上述結果推測TF是胰臟癌MVs誘導血栓形成中的關鍵角色,同時也會促進腫瘤發展;而凝血內在途徑因子則會影響MV誘導的靜脈血栓形成,且FIX的影響大於FVIII。血小板功能性亦會影響MVs誘導靜脈血栓形成,但VWF與血小板間之交互作用則較不具顯著影響力。zh_TW
dc.description.abstractCancer-associated thrombosis (CAT) is one of the leading causes of death in cancer patients, preceded only by the death of cancer development. Pancreatic cancer is the common cancer that develops CAT. Thus, it is important to investigate the mechanism of pancreatic cancer-associated thrombosis. Previous researches have shown that Tissue factor (TF) expressed by microvesicles (MVs) released from pancreatic cancer cells formed TF-FVII complex to activate the extrinsic coagulation pathway and induced thrombosis. At the same time, clinical evidence showed that the intrinsic pathway, platelet activation, and VWF increase in cancer patients, but the mechanism of these factors to affect MVs-induced thrombosis remained unclear. We utilize low TF expression MIAPACA 2 original cell and TF overexpressed cell line to investigate the effect of FVIII, FIX, VWF-platelet binding and TXA2 to MVs-induced thrombosis utilizing venous thrombosis model with factor-deficient mice. Furthermore, we used a tumor model with hemophilia A immuno-deficient mice to observe the effect of MVs to pancreatic cancer thrombosis. As the result, we set up quantitative and quantitative analysis method of MVs, and the activity assay of MV-TF expression. We observed significantly higher clotting tendency in WT mice venous thrombosis model injected TF+ MV compared to FVIII-deficient, FIX-deficient, and TXA2-ligand-deficient mice, and the VWF point mutation mice didn’t show the same significance. However, there were barely no clot formation in both WT and factor-deficient mice injected TF- MV. Compare the severity of pulmonary embolism (PE) and the expression of thrombosis marker thrombin-antithrombin complex, we presume that FIX is more important than FVIII in clot formation. In tumor mice model, mice bearing with TF+ tumor have larger tumor and higher thrombosis marker expression compared to those bearing with TF- tumor, but the significant gap of the tumor weight was unobserved under FVIII deficiency. To summarize our results, TF might be the key factor in pancreatic tumor MVs-induced thrombosis, and it promotes tumor growth, too. On the other hand, FVIII, FIX may affect MVs-induced venous thrombosis, and FIX has more important role than FVIII. Furthermore, the platelet functions might affect MVs-induced venous thrombosis, too; however, the binding between platelets and VWF has no significant effect.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:17:52Z (GMT). No. of bitstreams: 1
U0001-1609202217371700.pdf: 7763876 bytes, checksum: 5d80c941e6eec49163f63a8fefd8930a (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書……………………………………………………………… I 致謝………………………………………………………………………..………… II 中文摘要…………………………………………………………………………… III 英文摘要…………………………………………………………………………… IV 圖目錄……………………………………………………………………………… VIII 表目錄……………………………………………………………………………….IX 附錄………………………………………………………………………………… IX 中英對照表………………………………………………………………………… X 縮寫表……………………………………………………………………………….XII 一、 緒論 1.1 止血作用………………………………………………………………….1 1.2 凝血機制………………………………………………………………….1 1.3 靜脈血栓………………………………………………………………….2 1.4 臨床癌症相關靜脈血栓的形成機制…………………………………….2 1.5 胰臟癌相關血栓………………………………………………………….3 1.6 利用胰臟癌細胞進行之血栓研究……………………………………….3 1.7 癌症產生的腫瘤微囊胞及對癌症相關血栓的影響…………………….4 1.8 凝血內在途徑與癌症相關血栓的關聯性……………………………….4 1.9 溫韋伯氏因子(VWF)與癌症相關血栓的關聯性………………………………………………………………………….5 1.10 血小板與癌症相關血栓的關聯性……………………………………………………………………….5 1.11 研究血栓的動物模型...…………………………………………………6 1.12 研究動機及目的………………………………………………………...7 二、 實驗方法和材料 2.1 實驗動物………………………………………………………………….8 2.1.1 免疫功能正常小鼠 2.1.2 免疫功能缺陷小鼠 2.2 癌症細胞的培養………………………………………………………....8 2.2.1 於MIAPACA 2 細胞過量表達人類組織因子(TF) 2.2.2 細胞培養 2.2.3 細胞庫建立 2.2.4 細胞組織因子表現分析 2.3 腫瘤微囊胞製備及分離………………………………………………….9 2.4 腫瘤微囊胞大小分布定性分析………………………………………….9 2.5 腫瘤微囊胞型態分析…………………………………………………….9 2.6 腫瘤微囊胞脂質定量分析……………………………………………….9 2.7 腫瘤微囊胞蛋白定量分析……………………………………………….9 2.8 腫瘤微囊胞表面蛋白質西方墨點法分析……………………………...10 2.9 腫瘤微囊胞表面蛋白質流式細胞儀分析……………………………...10 2.10 腫瘤微囊胞人類組織因子活性分析………………………………….10 2.11 腫瘤微囊胞誘導靜脈血栓小鼠模型……………………………….....11 2.11.1 下腔靜脈窄縮模型 2.11.2 股骨靜脈閉鎖模型 2.11.3 下腔靜脈採血 2.12 胰臟癌原位注射小鼠模型…………………………………………....11 2.12.1 腫瘤原位注射模型 2.12.2 心臟採血 2.13 組織染色…………………………………………………………….....12 2.14 免疫組織染色……………………………………………………….....12 2.15 小鼠血栓指標偵測…………………………………………………….13 2.15.1 Thrombin-Antithrombin complex (TAT complex) ELISA 2.15.2 D-dimer ELISA 2.16 數據統計分析……………………………………………………….....13 三、 實驗結果 3.1 腫瘤微囊胞大小分布………………………………………………….14 3.2 腫瘤微囊胞型態……………………………………………………….14 3.3 腫瘤微囊胞磷脂質及蛋白定量……………………………………….14 3.4 腫瘤微囊胞表面蛋白質表現………………………………………….14 3.5 腫瘤微囊胞組織因子活性表現……………………………………….15 3.6 IVC stenosis模型對小鼠體內血栓指標表現之影響………………....15 3.7 腫瘤微囊胞對野生型小鼠及凝血相關因子缺陷小鼠形成下腔靜脈血栓之影響…………………………………………………………….....15 3.8 腫瘤微囊胞對野生型小鼠及凝血相關因子缺陷小鼠形成肺栓塞之影響……………………………………………………………………….16 3.9 腫瘤微囊胞對野生型小鼠及凝血相關因子缺陷小鼠血栓指標表現之影響…………………………………………………………………….16 3.10 腫瘤微囊胞對老年野生型小鼠、VWF KI小鼠及HA/VWF小鼠形成靜脈血栓的影響……………………………………………………….16 3.11 原位注射MIAPACA 2野生株細胞(Ori)及TF過量表達株(TF+)的NSG及A型血友病NSG小鼠(NSG-HA)腫瘤生長情形及血栓指標表現……………………………………………………………………….17 3.12 原位注射MIAPACA 2野生株細胞(Ori)及TF過量表達株(TF+)的NSG及A型血友病NSG小鼠(NSG-HA) IVC stasis血栓模型…….17 四、 討論……………………………………………………………………………….19 五、 結論和展望……………………………………………………………………….23 參考文獻……………………………………………………………………………….24 圖……………………………………………………………………………………….32 表……………………………………………………………………………………….60 附錄…………………………………………………………………………………….61
dc.language.isozh-TW
dc.title利用凝血相關小鼠模型探討胰臟腫瘤微囊胞誘導血栓的角色zh_TW
dc.titleInvestigating the role of pancreatic cancer tumor microvesicles-induced thrombosis utilizing coagulation-associated mouse modelen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊雅倩(Ya-Qian Yang),林淑容(Shu-Rung Lin),周聖傑(Sheng-Jie Zhou)
dc.subject.keyword癌症相關血栓,腫瘤微囊胞,胰臟癌,組織因子,外在凝血途徑,內在凝血途徑,溫韋伯氏因子,血小板,zh_TW
dc.subject.keywordcancer-associated thrombosis,tumor microvesicle,tissue factor,extrinsic pathway,intrinsic pathway,VWF,platelets,en
dc.relation.page65
dc.identifier.doi10.6342/NTU202203485
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
dc.date.embargo-lift2022-10-04-
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
U0001-1609202217371700.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
7.58 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved