請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84608
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 姚皓傑 (Hau-Jie Yau) | |
dc.contributor.author | Ping-Chen Ho | en |
dc.contributor.author | 何秉臻 | zh_TW |
dc.date.accessioned | 2023-03-19T22:17:27Z | - |
dc.date.copyright | 2022-10-04 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-20 | |
dc.identifier.citation | Ahmadlou, M., Houba, J.H.W., van Vierbergen, J.F.M., Giannouli, M., Gimenez, G.A., van Weeghel, C., Darbanfouladi, M., Shirazi, M.Y., Dziubek, J., Kacem, M., et al. (2021). A cell type-specific cortico-subcortical brain circuit for investigatory and novelty- seeking behavior. Science 372. 10.1126/science.abe9681. Almada, R.C., and Coimbra, N.C. (2015). Recruitment of striatonigral disinhibitory and nigrotectal inhibitory GABAergic pathways during the organization of defensive behavior by mice in a dangerous environment with the venomous snake Bothrops alternatus (Reptilia, Viperidae). Synapse 69, 299-313. 10.1002/syn.21814. Almada, R.C., Genewsky, A.J., Heinz, D.E., Kaplick, P.M., Coimbra, N.C., and Wotjak, C.T. (2018). Stimulation of the Nigrotectal Pathway at the Level of the Superior Colliculus Reduces Threat Recognition and Causes a Shift From Avoidance to Approach Behavior. Front Neural Circuits 12, 36. 10.3389/fncir.2018.00036. Barbano, M.F., Wang, H.L., Zhang, S., Miranda-Barrientos, J., Estrin, D.J., Figueroa- Gonzalez, A., Liu, B., Barker, D.J., and Morales, M. (2020). VTA Glutamatergic Neurons Mediate Innate Defensive Behaviors. Neuron 107, 368-382 e368. 10.1016/j.neuron.2020.04.024. Brischoux, F., Chakraborty, S., Brierley, D.I., and Ungless, M.A. (2009). Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc Natl Acad Sci U S A 106, 4894-4899. 10.1073/pnas.0811507106. Cai, P., Chen, H.Y., Tang, W.T., Hu, Y.D., Chen, S.Y., Lu, J.S., Lin, Z.H., Huang, S.N., Hu, L.H., Su, W.K., et al. (2022a). A glutamatergic basal forebrain to midbrain circuit mediates wakefulness and defensive behavior. Neuropharmacology 208, 108979. 10.1016/j.neuropharm.2022.108979. Cai, X., Li, L., Liu, W., Du, N., Zhao, Y., Han, Y., Liu, C., Yin, Y., Fu, X., Sheng, D., et al. (2022b). A dual-channel optogenetic stimulator selectively modulates distinct defensive behaviors. iScience 25, 103681. 10.1016/j.isci.2021.103681. Carrive, P. (1993). The periaqueductal gray and defensive behavior: functional representation and neuronal organization. Behav Brain Res 58, 27-47. 10.1016/0166- 4328(93)90088-8. Chou, X.L., Wang, X., Zhang, Z.G., Shen, L., Zingg, B., Huang, J., Zhong, W., Mesik, L., Zhang, L.I., and Tao, H.W. (2018). Inhibitory gain modulation of defense behaviors by zona incerta. Nature communications 9, 1151. 10.1038/s41467-018-03581-6. Comoli, E., Ribeiro-Barbosa, E.R., and Canteras, N.S. (2003). Predatory hunting and exposure to a live predator induce opposite patterns of Fos immunoreactivity in the PAG. Behav Brain Res 138, 17-28. 10.1016/s0166-4328(02)00197-3. Daftary, S.S., Panksepp, J., Dong, Y., and Saal, D.B. (2009). Stress-induced, glucocorticoid-dependent strengthening of glutamatergic synaptic transmission in midbrain dopamine neurons. Neurosci Lett 452, 273-276. 10.1016/j.neulet.2009.01.070. de Git, K.C.G., Hazelhoff, E.M., Nota, M.H.C., Schele, E., Luijendijk, M.C.M., Dickson, S.L., van der Plasse, G., and Adan, R.A.H. (2021). Zona incerta neurons projecting to the ventral tegmental area promote action initiation towards feeding. J Physiol 599, 709- 724. 10.1113/JP276513. de Jong, J.W., Afjei, S.A., Pollak Dorocic, I., Peck, J.R., Liu, C., Kim, C.K., Tian, L., Deisseroth, K., and Lammel, S. (2019). A Neural Circuit Mechanism for Encoding Aversive Stimuli in the Mesolimbic Dopamine System. Neuron 101, 133-151 e137. 10.1016/j.neuron.2018.11.005. Deng, H., Xiao, X., and Wang, Z. (2016). Periaqueductal Gray Neuronal Activities Underlie Different Aspects of Defensive Behaviors. J Neurosci 36, 7580-7588. 10.1523/JNEUROSCI.4425-15.2016. DesJardin, J.T., Holmes, A.L., Forcelli, P.A., Cole, C.E., Gale, J.T., Wellman, L.L., Gale, K., and Malkova, L. (2013). Defense-like behaviors evoked by pharmacological disinhibition of the superior colliculus in the primate. J Neurosci 33, 150-155. 10.1523/JNEUROSCI.2924-12.2013. Hennigan, K., D'Ardenne, K., and McClure, S.M. (2015). Distinct midbrain and habenula pathways are involved in processing aversive events in humans. J Neurosci 35, 198- 208. 10.1523/JNEUROSCI.0927-14.2015. Hormigo, S., Zhou, J., and Castro-Alamancos, M.A. (2020). Zona Incerta GABAergic Output Controls a Signaled Locomotor Action in the Midbrain Tegmentum. eNeuro 7. 10.1523/ENEURO.0390-19.2020. Ilango, A., Kesner, A.J., Keller, K.L., Stuber, G.D., Bonci, A., and Ikemoto, S. (2014). Similar roles of substantia nigra and ventral tegmental dopamine neurons in reward and aversion. J Neurosci 34, 817-822. 10.1523/jneurosci.1703-13.2014. James, M.D., MacKenzie, F.J., Tuohy-Jones, P.A., and Wilson, C.A. (1987). Dopaminergic neurones in the zona incerta exert a stimulatory control on gonadotrophin release via D1 dopamine receptors. Neuroendocrinology 45, 348-355. 10.1159/000124758. Jennings, J.H., Sparta, D.R., Stamatakis, A.M., Ung, R.L., Pleil, K.E., Kash, T.L., and Stuber, G.D. (2013). Distinct extended amygdala circuits for divergent motivational states. Nature 496, 224-228. 10.1038/nature12041. Kolmac, C., and Mitrofanis, J. (1999). Distribution of various neurochemicals within the zona incerta: an immunocytochemical and histochemical study. Anat Embryol (Berl) 199, 265-280. 10.1007/s004290050227. Lammel, S., Lim, B.K., Ran, C., Huang, K.W., Betley, M.J., Tye, K.M., Deisseroth, K., and Malenka, R.C. (2012). Input-specific control of reward and aversion in the ventral tegmental area. Nature 491, 212-217. 10.1038/nature11527. Lammel, S., Steinberg, E.E., Foldy, C., Wall, N.R., Beier, K., Luo, L., and Malenka, R.C. (2015). Diversity of transgenic mouse models for selective targeting of midbrain dopamine neurons. Neuron 85, 429-438. 10.1016/j.neuron.2014.12.036. Li, Z., Rizzi, G., and Tan, K.R. (2021). Zona incerta subpopulations differentially encode and modulate anxiety. Sci Adv 7, eabf6709. 10.1126/sciadv.abf6709. Martinez-Gonzalez, C., Wang, H.L., Micklem, B.R., Bolam, J.P., and Mena-Segovia, J. (2012). Subpopulations of cholinergic, GABAergic and glutamatergic neurons in the pedunculopontine nucleus contain calcium-binding proteins and are heterogeneously distributed. Eur J Neurosci 35, 723-734. 10.1111/j.1460-9568.2012.08002.x. Matsumoto, M., and Hikosaka, O. (2009). Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459, 837-841. 10.1038/nature08028. Mitrofanis, J. (2005). Some certainty for the 'zone of uncertainty'? Exploring the function of the zona incerta. Neuroscience 130, 1-15. 10.1016/j.neuroscience.2004.08.017. Mitrofanis, J., Ashkan, K., Wallace, B.A., and Benabid, A.L. (2004). Chemoarchitectonic heterogeneities in the primate zona incerta: clinical and functional implications. J Neurocytol 33, 429-440. 10.1023/B:NEUR.0000046573.28081.dd. Nair-Roberts, R.G., Chatelain-Badie, S.D., Benson, E., White-Cooper, H., Bolam, J.P., and Ungless, M.A. (2008). Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience 152, 1024-1031. 10.1016/j.neuroscience.2008.01.046. Pobbe, R.L., and Zangrossi, H., Jr. (2008). Involvement of the lateral habenula in the regulation of generalized anxiety- and panic-related defensive responses in rats. Life Sci 82, 1256-1261. 10.1016/j.lfs.2008.04.012. Pobbe, R.L., and Zangrossi, H., Jr. (2010). The lateral habenula regulates defensive behaviors through changes in 5-HT-mediated neurotransmission in the dorsal periaqueductal gray matter. Neurosci Lett 479, 87-91. 10.1016/j.neulet.2010.05.021. Qi, J., Zhang, S., Wang, H.L., Barker, D.J., Miranda-Barrientos, J., and Morales, M. (2016). VTA glutamatergic inputs to nucleus accumbens drive aversion by acting on GABAergic interneurons. Nat Neurosci 19, 725-733. 10.1038/nn.4281. Ranaldi, R. (2014). Dopamine and reward seeking: the role of ventral tegmental area. Rev Neurosci 25, 621-630. 10.1515/revneuro-2014-0019. Root, D.H., Barker, D.J., Estrin, D.J., Miranda-Barrientos, J.A., Liu, B., Zhang, S., Wang, H.L., Vautier, F., Ramakrishnan, C., Kim, Y.S., et al. (2020). Distinct Signaling by Ventral Tegmental Area Glutamate, GABA, and Combinatorial Glutamate-GABA Neurons in Motivated Behavior. Cell Rep 32, 108094. 10.1016/j.celrep.2020.108094. Root, D.H., Estrin, D.J., and Morales, M. (2018). Aversion or Salience Signaling by Ventral Tegmental Area Glutamate Neurons. iScience 2, 51-62. 10.1016/j.isci.2018.03.008. Root, D.H., Mejias-Aponte, C.A., Qi, J., and Morales, M. (2014). Role of glutamatergic projections from ventral tegmental area to lateral habenula in aversive conditioning. J Neurosci 34, 13906-13910. 10.1523/JNEUROSCI.2029-14.2014. Saal, D., Dong, Y., Bonci, A., and Malenka, R.C. (2003). Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 37, 577-582. 10.1016/s0896-6273(03)00021-7. Shang, C., Chen, Z., Liu, A., Li, Y., Zhang, J., Qu, B., Yan, F., Zhang, Y., Liu, W., Liu, Z., et al. (2018). Divergent midbrain circuits orchestrate escape and freezing responses to looming stimuli in mice. Nat Commun 9, 1232. 10.1038/s41467-018-03580-7. Steinberg, E.E., Gore, F., Heifets, B.D., Taylor, M.D., Norville, Z.C., Beier, K.T., Foldy, C., Lerner, T.N., Luo, L., Deisseroth, K., and Malenka, R.C. (2020). Amygdala-Midbrain Connections Modulate Appetitive and Aversive Learning. Neuron 106, 1026-1043 e1029. 10.1016/j.neuron.2020.03.016. Supko, D.E., Uretsky, N.J., and Wallace, L.J. (1991). Activation of AMPA/kainic acid glutamate receptors in the zona incerta stimulates locomotor activity. Brain Res 564, 159-163. 10.1016/0006-8993(91)91367-a. Takahashi, L.K., Nakashima, B.R., Hong, H., and Watanabe, K. (2005). The smell of danger: a behavioral and neural analysis of predator odor-induced fear. Neurosci Biobehav Rev 29, 1157-1167. 10.1016/j.neubiorev.2005.04.008. Tan, K.R., Yvon, C., Turiault, M., Mirzabekov, J.J., Doehner, J., Labouèbe, G., Deisseroth, K., Tye, K.M., and Lüscher, C. (2012). GABA neurons of the VTA drive conditioned place aversion. Neuron 73, 1173-1183. 10.1016/j.neuron.2012.02.015. Tegtmeier, C., Angen, O., and Ahrens, P. (2000). Comparison of bacterial cultivation, PCR, in situ hybridization and immunohistochemistry as tools for diagnosis of Haemophilus somnus pneumonia in cattle. Vet Microbiol 76, 385-394. 10.1016/s0378- 1135(00)00259-5. Tervo, D.G., Hwang, B.Y., Viswanathan, S., Gaj, T., Lavzin, M., Ritola, K.D., Lindo, S., Michael, S., Kuleshova, E., Ojala, D., et al. (2016). A Designer AAV Variant PermitsEfficient Retrograde Access to Projection Neurons. Neuron 92, 372-382. 10.1016/j.neuron.2016.09.021. Tonelli, L., and Chiaraviglio, E. (1995). Dopaminergic neurons in the zona incerta modulates ingestive behavior in rats. Physiol Behav 58, 725-729. 10.1016/0031- 9384(95)00128-6. Tovote, P., Esposito, M.S., Botta, P., Chaudun, F., Fadok, J.P., Markovic, M., Wolff, S.B., Ramakrishnan, C., Fenno, L., Deisseroth, K., et al. (2016). Midbrain circuits for defensive behaviour. Nature 534, 206-212. 10.1038/nature17996. Valenti, O., Lodge, D.J., and Grace, A.A. (2011). Aversive stimuli alter ventral tegmental area dopamine neuron activity via a common action in the ventral hippocampus. J Neurosci 31, 4280-4289. 10.1523/JNEUROSCI.5310-10.2011. van Zessen, R., Phillips, J.L., Budygin, E.A., and Stuber, G.D. (2012). Activation of VTA GABA neurons disrupts reward consumption. Neuron 73, 1184-1194. 10.1016/j.neuron.2012.02.016. Venkataraman, A., Brody, N., Reddi, P., Guo, J., Gordon Rainnie, D., and Dias, B.G. (2019). Modulation of fear generalization by the zona incerta. Proc Natl Acad Sci U S A 116, 9072-9077. 10.1073/pnas.1820541116. Wang, H.L., and Morales, M. (2009). Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Eur J Neurosci 29, 340-358. 10.1111/j.1460-9568.2008.06576.x. Wang, X., Chou, X., Peng, B., Shen, L., Huang, J.J., Zhang, L.I., and Tao, H.W. (2019). A cross-modality enhancement of defensive flight via parvalbumin neurons in zona incerta. Elife 8. 10.7554/eLife.42728. Wang, X., Chou, X.L., Zhang, L.I., and Tao, H.W. (2020). Zona Incerta: An Integrative Node for Global Behavioral Modulation. Trends Neurosci 43, 82-87. 10.1016/j.tins.2019.11.007. Yamaguchi, T., Wang, H.L., and Morales, M. (2013). Glutamate neurons in the substantia nigra compacta and retrorubral field. Eur J Neurosci 38, 3602-3610. 10.1111/ejn.12359. Yang, H., de Jong, J.W., Cerniauskas, I., Peck, J.R., Lim, B.K., Gong, H., Fields, H.L., and Lammel, S. (2021). Pain modulates dopamine neurons via a spinal-parabrachial- mesencephalic circuit. Nat Neurosci 24, 1402-1413. 10.1038/s41593-021-00903-8. Yao, L., Li, Y., Diao, Z., Di, Y., Wu, M., Wei, C., Qian, Z., Liu, Z., Han, J., Fan, J., et al. (2021). Stress Controllability Modulates Basal Activity of Dopamine Neurons in the Substantia Nigra Compacta. eNeuro 8. 10.1523/ENEURO.0044-21.2021. Zhang, S.P., Bandler, R., and Carrive, P. (1990). Flight and immobility evoked by excitatory amino acid microinjection within distinct parts of the subtentorial midbrain periaqueductal gray of the cat. Brain Res 520, 73-82. 10.1016/0006-8993(90)91692-a. Zhang, X., and van den Pol, A.N. (2017). Rapid binge-like eating and body weight gain driven by zona incerta GABA neuron activation. Science 356, 853-859. 10.1126/science.aam7100. Zhao, Z.D., Chen, Z., Xiang, X., Hu, M., Xie, H., Jia, X., Cai, F., Cui, Y., Chen, Z., Qian, L., et al. (2019). Zona incerta GABAergic neurons integrate prey-related sensory signals and induce an appetitive drive to promote hunting. Nat Neurosci 22, 921-932. 10.1038/s41593-019-0404-5. Zhou, Z., Liu, X., Chen, S., Zhang, Z., Liu, Y., Montardy, Q., Tang, Y., Wei, P., Liu, N., Li, L., et al. (2019). A VTA GABAergic Neural Circuit Mediates Visually Evoked Innate Defensive Responses. Neuron 103, 473-488 e476. 10.1016/j.neuron.2019.05.027. Zingg, B., Chou, X.L., Zhang, Z.G., Mesik, L., Liang, F., Tao, H.W., and Zhang, L.I. (2017). AAV-Mediated Anterograde Transsynaptic Tagging: Mapping Corticocollicular Input- Defined Neural Pathways for Defense Behaviors. Neuron 93, 33-47. 10.1016/j.neuron.2016.11.045. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84608 | - |
dc.description.abstract | 在自然界環境中,當動物接收到獎勵相關或是危險刺激時,他們會做出對應的舉 動以獲得獎勵或是迴避危險。有越來越多的研究顯示位於中腦的腹側背蓋區以及 黑質區不僅僅可以調控動機行為之外,也可以調控防禦行為。近幾年的研究也發 現大腦未定區同樣可以調節防禦行為。雖然已知腹側背蓋區以及黑質區有神經投 射到未定區,但是對於這些連結的功能目前還不清楚。因此在本研究中,我想要 研究從中腦到未定區的神經連結,瞭解此神經連結是由哪些種類的神經細胞參與 其中,其可以傳遞哪些資訊,誘發哪些行為,和透過哪些下游腦區來執行功能。 為此,我結合了雙病毒逆行標定方法以及原位雜交(RNAscope)技術來研究投射 到未定區的中腦神經細胞的化學表型,我發現會投射到未定區的腹側背蓋區神經 細胞組成大多是麩胺酸神經元以及少部分的γ-氨基丁酸神經元。此外會投射到未 定區的黑質區神經細胞則是由大部分的γ-氨基丁酸神經元以及少部分的多巴胺神 經元所組成。我進一步的利用小鼠壓力模型與結合神經活動之功能性標定免疫染 色方法,發現投射到未定區的中腦神經細胞在壓力情境下會被活化而參與其中。 接下來我專注於研究黑質區到未定區這條神經迴路,發現投射到未定區的黑質區 神經細胞會受威脅刺激的活化而參與其中。透過利用興奮性光遺傳學以及不同行 為模式組合,我發現當活化黑質區到未定區這條神經迴路時,可以導致嫌惡感並 且促進威脅刺激所引發的防禦行為。最後,我繪製了由黑質區所支配的未定區神 經細胞下游投射圖,發現當黑質區到未定區這條神經迴路被活化時,有幾個與防 禦行為相關的腦區也會被徵召而參與其中。總而來說,我的研究發現了一條新的 調節機制,透過黑質區到未定區這條神經迴路來調控動機與防禦行為。 | zh_TW |
dc.description.abstract | In nature,when animals perceive reward-related or danger stimuli, they show corresponding responses to retrieve the reward or avoid the threat. Accumulated evidence has shown that the ventral tegmental area (VTA) and substantia nigra (SN) in the midbrain can not only modulate motivational behaviors but also regulate defensive behaviors. Recent studies have indicated that zona incerta (ZI) plays an important role in regulating defensive behaviors. Although both VTA and SN send projections to the ZI, the functional roles of midbrain-to-ZI connections remain elusive. Thus, in the present study, I would like to investigate the midbrain-to-ZI connection and examine what cellular phenotypes are involved in the pathway, what information midbrain-to-ZI input relays, what behavioral outcome the midbrain-to-ZI input results in and what downstream brain region the midbrain-to-ZI input may recruit. To this end, I combined the dual viral retrograde targeting approach with in situ hybridization (RNAscope) technique to study the neurochemical phenotypes of midbrain cells projecting to the ZI. I found that ZI- projecting VTA neurons consisted mostly of glutamatergic and a small population of GABAergic neurons, whereas ZI-projecting SN neurons consisted mostly of GABAergic and some dopaminergic neurons. I further adapted a mouse model of stress and performed neural activity-dependent marker c-Fos immunostaining and found that ZI-projecting midbrain neurons were significantly involved in restraint stress. I focused on SN-to-ZI input and found that ZI-projecting SN neurons were significantly engaged by threat stimulus. By combining an excitatory optogenetic approach with different behavioral tasks, I found that activation of SN-to-ZI pathway was aversive and promoted threat- induced defensive behavior. Lastly, I mapped the downstream projections of SN- innervated ZI cells and found several regions relevant to defensive behavior were functionally recruited when the SN-to-ZI input was activated. Altogether, my study has revealed a novel regulation of substantia nigra onto the ZI in aversion and defensive behavior. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:17:27Z (GMT). No. of bitstreams: 1 U0001-2009202211530000.pdf: 14149430 bytes, checksum: dd7ef02ca3972a0d8e649ddbb67b226c (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 口試審定書 ......................................... 1 致謝.................................2 中文摘要 .............................................. 3 Abstract ...................................................... 4 Introduction .......................................... 8 The midbrain neurons are engaged by aversive stimuli...................................................... 8 The midbrain neurons can drive motivational behaviors. .................................................. 9 The VTA and SN are involved in defensive behavior........................................................ 10 The function of the zona incerta ........................................................................................ 11 The connection between midbrain and ZI .......................................................................... 12 Results.................................................................. 14 Identification of ZI-projecting midbrain inputs ................................................. 14 Neurochemical phenotyping of ZI-projecting midbrain neurons ..................... 14 Examining the involvement of VTA or SN afferent inputs to the ZI in artificial restraint stress. ................................... 15 Examining the involvement of SN afferent inputs to the ZI in TMT stimuli. ................. 16 Cellular phenotyping of SN-innervated ZI cells................................................................. 17 The examination of behavioral roles of the SN-to-ZI input .............................................. 17 Downstream mapping of SN-innervated ZI cells ............................................................... 21 Downstream regions recruited by SN-to-ZI pathway activation...................................... 22 Discussion ............................................................. 24 The neuronal connection from midbrain to ZI .................................................................. 24 The functional involvement of ZI-projecting midbrain cell.............................................. 25 The photoactivation of SN-to-ZI pathway can lead to aversive and increase the defensive behavior........................................................ 25 The histological mapping of SN-to-ZI downstream regions and it’s functional recruitment by photoactivation. ................................. 27 Future Directions .................................. 31 Significance..................... 32 Materials and Methods ................................ 33 Mice ...................... 33 Stereotaxic surgeries .............................................. 33 Optogenetics.............. 34 Behavioral Assays......................................... 34 Food intake test ........................... 35 Restraint stress paradigm................................................... 35 Real-time conditioned place preference .......................... 36 Open field test ................................... 36 Defensive behavior test ........................................... 36 Immunohistochemistry ............... 37 RNA in situ hybridization (RNA scope)........................... 39 Data analysis ........................................... 39 Tables............................................... 41 Figures ........................................................ 42 Supplementary ........................................ 59 References....................................................... 64 | |
dc.language.iso | en | |
dc.title | 功能性探討自中腦區到未定區之神經輸入 | zh_TW |
dc.title | Functional characterization of afferent inputs from the ventral midbrain to the zona incerta | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王培育(Pei-Yu Wang),林士傑(Shih-Chieh Lin),閔明源(Ming-Yuan Min),楊世斌(Shi-Bing Yang) | |
dc.subject.keyword | 防禦行為,壓力,腹側被蓋區,黑質區,未定區,光遺傳學, | zh_TW |
dc.subject.keyword | defensive behavior,stress,ventral tegmental area,substantia nigra,zona increta,optogenetic, | en |
dc.relation.page | 69 | |
dc.identifier.doi | 10.6342/NTU202203630 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-09-20 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 腦與心智科學研究所 | zh_TW |
dc.date.embargo-lift | 2022-10-04 | - |
顯示於系所單位: | 腦與心智科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2009202211530000.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 13.82 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。