Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84585
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇國棟(Guo-Dung J. Su)
dc.contributor.authorTeng-Wei Huangen
dc.contributor.author黃騰緯zh_TW
dc.date.accessioned2023-03-19T22:16:34Z-
dc.date.copyright2022-09-30
dc.date.issued2022
dc.date.submitted2022-09-20
dc.identifier.citation[1] A. Sarkar and B. K. Singh, 'A review on performance,security and various biometric template protection schemes for biometric authentication systems,' Multimedia Tools and Applications, vol. 79, no. 37-38, pp. 27721-27776, 2020, doi: 10.1007/s11042-020-09197-7. [2] M. Tartagni and R. Guerrieri, 'A Fingerprint Sensor Based on the Feedback Capacitive Sensing Scheme,' IEEE Journal of Solid-State Circuits, vol. 33, no. 1, pp. 133 - 142, 1998, doi: 10.1109/4.654945. [3] H. Akkerman et al., 'Large-area Optical Fingerprint Sensors for Next Generation Smartphones,' Journal of the Society for Information Display, vol. 50, no. 1, pp. 1000-1003, 2019, doi: 10.1002/sdtp.13095. [4] C. Peng, M. Chen, and X. Jiang, 'Under-Display Ultrasonic Fingerprint Recognition With Finger Vessel Imaging,' IEEE Sensors Journal, vol. 21, no. 6, pp. 7412-7419, 2021, doi: 10.1109/jsen.2021.3051975. [5] X. Wu et al., 'Large-Area Optical Fingerprint for OLED based on LTPS Technology,' society for information display, vol. 52, no. 1, pp. 1361-1363, 2021. [6] D. Tordera et al., 'A High‐Resolution Thin‐Film Fingerprint Sensor Using a Printed Organic Photodetector,' Advanced Materials Technologies, vol. 4, no. 11, 2019, doi: 10.1002/admt.201900651. [7] T. Nakagawa et al., 'Image sensor with In-pixel calculation using crystalline IGZO FET in display,' Japanese Journal of Applied Physics, vol. 59, no. SG, 2020, doi: 10.7567/1347-4065/ab650e. [8] J. Kim et al., 'Effect of IGZO thin films fabricated by Pulsed-DC and RF sputtering on TFT characteristics,' Materials Science in Semiconductor Processing, vol. 120, 2020, doi: 10.1016/j.mssp.2020.105264. [9] T. Goto et al., 'LTPS Thin-Film Transistors Fabricated Using New Selective Laser Annealing System,' IEEE Transactions on Electron Devices, vol. 65, no. 8, pp. 3250-3256, 2018, doi: 10.1109/ted.2018.2846412. [10] Y.-H. Tai, Y.-F. Kuo, and Y.-H. Lee, 'Photosensitivity Analysis of Low-Temperature Poly-Si Thin-Film Transistor Based on the Unit-Lux-Current,' IEEE Transactions on Electron Devices, vol. 56, no. 1, pp. 50-56, 2009, doi: 10.1109/ted.2008.2009026. [11] G. Yoon, D. Kim, I. Park, B. Jin, and J. S. Lee, 'Fabrication and Characterization of Nanonet-Channel LTPS TFTs Using a Nanosphere-Assisted Patterning Technique,' Micromachines (Basel), vol. 12, no. 7, Jun 24 2021, doi: 10.3390/mi12070741. [12] W. S. Wong, S. Raychaudhuri, R. Lujan, S. Sambandan, and R. A. Street, 'Hybrid Si nanowire/amorphous silicon FETs for large-area image sensor arrays,' Nano Lett, vol. 11, no. 6, pp. 2214-8, Jun 8 2011, doi: 10.1021/nl200114h. [13] H. ISHIBE, 'Under-display-type fingerprint authentication sensor module and under-display-type fingerprint authentication device,' U.S. Patent Appl. 17 / 271,118, Nov. 4 , 2021, [14] X. J. Zhang, X. Zhou, Z. X. Yang, L. X. Zhang, W. Huang, and L. Chen, 'High-throughput and controllable manufacturing of liquid crystal polymer planar microlens array for compact fingerprint imaging,' Opt Express, vol. 30, no. 2, pp. 3101-3112, Jan 17 2022, doi: 10.1364/OE.448944. [15] T. Yang et al., 'Compact compound-eye imaging module based on the phase diffractive microlens array for biometric fingerprint capturing,' Opt Express, vol. 27, no. 5, pp. 7513-7522, Mar 4 2019, doi: 10.1364/OE.27.007513. [16] K. Kim et al., 'Ultrathin arrayed camera for high-contrast near-infrared imaging,' Opt Express, vol. 29, no. 2, pp. 1333-1339, Jan 18 2021, doi: 10.1364/OE.409472. [17] B. X. Wang, J. X. Zheng, J. Y. Qi, M. R. Guo, B. R. Gao, and X. Q. Liu, 'Integration of Multifocal Microlens Array on Silicon Microcantilever via Femtosecond-Laser-Assisted Etching Technology,' Micromachines (Basel), vol. 13, no. 2, Jan 29 2022, doi: 10.3390/mi13020218. [18] J. Yang, S. Schleusner, R. Fabick, M. Denker, T. Pham, and Q. Chen, 'Microlens Collimation Film with Near-Infrared Spectral Filter for Large-Area Fingerprint Sensor,' society for information display, vol. 52, no. 1, pp. 485-487, 2021. [19] K. Sasagawa, M. Mitani, T. Sugiyama, T. Noda, T. Tokuda, and J. Ohta, 'Implantable Image Sensor with Light Guide Array Plate for Bioimaging,' Japanese Journal of Applied Physics, vol. 49, no. 4, 2010, doi: 10.1143/jjap.49.04dl03. [20] H. Kawano, 'Lensless image scanner using multilayered aperture array for noncontact imaging,' Optical Engineering, vol. 55, no. 10, 2016, doi: 10.1117/1.OE.55.10. [21] HIOK-NAMTAY and E. T. DO, 'Light guide array for an image sensor,' U.S. Patent Appl. 12/806,192, Feb. 10, 2011, [22] E. Hecht, in Optics, 5th Ed.: Pearson Education, 1998. [23] D. K. Cheng, in Field and wave electromagnetics, 2th Ed. Prentice Hall: Pearson Education, 1989. [24] S. Chang and A. K. Bowden, 'Review of methods and applications of attenuation coefficient measurements with optical coherence tomography,' J Biomed Opt, vol. 24, no. 9, pp. 1-17, Sep 2019, doi: 10.1117/1.JBO.24.9.090901. [25] G. Hong et al., 'A Brief History of OLEDs-Emitter Development and Industry Milestones,' Adv Mater, vol. 33, no. 9, p. e2005630, Mar 2021, doi: 10.1002/adma.202005630. [26] G. He, O. Schneider, D. Qin, X. Zhou, M. Pfeiffer, and K. Leo, 'Very high-efficiency and low voltage phosphorescent organic light-emitting diodes based on a p-i-n junction,' Journal of Applied Physics, vol. 95, no. 10, pp. 5773-5777, 2004, doi: 10.1063/1.1702143. [27] H. Kim et al., 'Indium tin oxide thin films for organic light-emitting devices,' Applied Physics Letters, vol. 74, no. 23, pp. 3444-3446, 1999, doi: 10.1063/1.124122. [28] S. H. Cho et al., 'Spectrally tunable infrared plasmonic F,Sn:In2O3 nanocrystal cubes,' J Chem Phys, vol. 152, no. 1, p. 014709, Jan 7 2020, doi: 10.1063/1.5139050. [29] L. Jae Sang, C. Seongpil, K. Sang-Mo, and L. Sang Yeol, 'High-Performance a-IGZO TFT With ZrO2 Gate Dielectric Fabricated at Room Temperature,' IEEE Electron Device Letters, vol. 31, no. 3, pp. 225-227, 2010, doi: 10.1109/led.2009.2038806. [30] Y. Jianke et al., 'Electrical and Photosensitive Characteristics of a-IGZO TFTs Related to Oxygen Vacancy,' IEEE Transactions on Electron Devices, vol. 58, no. 4, pp. 1121-1126, 2011, doi: 10.1109/ted.2011.2105879. [31] B. Geffroy, P. le Roy, and C. Prat, 'Organic light-emitting diode (OLED) technology: materials, devices and display technologies,' Polymer International, vol. 55, no. 6, pp. 572-582, 2006, doi: 10.1002/pi.1974. [32] Y. Xu, J. Peng, J. Jiang, W. Xu, W. Yang, and Y. Cao, 'Efficient white-light-emitting diodes based on polymer codoped with two phosphorescent dyes,' Applied Physics Letters, vol. 87, no. 19, 2005, doi: 10.1063/1.2119407. [33] Donghwa Shin, Younghyun Kim, and N. Chang, 'Dynamic Voltage Scaling of OLED Displays ' presented at the The 48th Annual Design Automation Conference, 2011. [34] I. Yagi et al., 'A flexible full‐color AMOLED display driven by OTFTs,' journal of the society for imformation display, vol. 16, no. 1, pp. 15-20, 2012. [35] S. I. Bae, K. Kim, K. W. Jang, H. K. Kim, and K. H. Jeong, 'High Contrast Ultrathin Light‐Field Camera Using Inverted Microlens Arrays with Metal–Insulator–Metal Optical Absorber,' Advanced Optical Materials, vol. 9, no. 6, 2021, doi: 10.1002/adom.202001657.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84585-
dc.description.abstract  近年來,由於觸控裝置的發展日漸成熟。為了迎合市場的需求,科技發展的方向也逐漸轉往不同的便利性功能,例如本論文所探討之與生物辨識相關的技術概念「屏下指紋辨識器FoD(Frigenprint on Display)」。此技術將手機裝置與一濾訊裝置做結合,其中濾訊裝置包含了微透鏡陣列(Micro-lens array)、黑色矩陣(Black Matrix)以及最下方之光感測器(Photo Detector)來達到屏幕上之按壓指紋的影像辨識。而本論文主要探討在此裝置的設計下,其光路之濾訊設計的遮擋層及微透鏡設計對指紋辨識的影響程度為何。   本論文使用Zemax光學追跡軟體模擬結合了指紋辨識光路之手機以及手指指紋按壓在屏幕上之接觸情形。軟體以光學上較著名的菲涅耳方程式(Fresnel equation)及吸收穿透率;各層介面之間的介面反射、透射作為最基本的運算方式,並且提供材料自定義之設計方式,供使用者模擬各種實際存在的材料。並透過軟體內Ray trace功能模擬指紋訊號到達感測器的情形作為最後的成效數據。   除了以指紋辨識裝置原型作為參考外,本論文也嘗試在黑色矩陣上使用例如摻黑的光阻材料SU-8及金屬鉻(Cr)等不同材料作為孔徑設計,經由分析後了解指紋辨識需要遮罩提昇MTF以及微透鏡提升RV。孔洞遮擋層的厚度越薄;並且其穿透率越低越好,最後在實驗中推測鉻金屬(Cr)是相當符合以上條件的材料。zh_TW
dc.description.abstractIn recent years, touch device has developed to a mature stage. Cater to the market’s needs; people turned the developing direction of technology to convenience functions. Like the Biometric technology discussed in this thesis and called “FoD(Fingerprint on display)”. This technology combines the smartphone and an optical filter design, which contain the micro-lens array, black matrix, and photodetector to recognize the fingerprint on the touchscreen. This thesis mainly discusses how the aperture and microlens influent the fingerprint image in this design. This thesis used the optical ray tracing software “ZEMAX” to simulate a smartphone with FoD and a touching finger. The software uses the calculation methods, such as Fresnel’s equation, optical absorbance, transmittance, and reflectance properties, to compute all surfaces’ transmitting situation. Also, some functions allow users to define their material to simulate any material that precisely exists in nature. And in the final, we use the “ray tracing” in the Zemax to simulate the last fingerprint image data in the sensor. Besides, we use the smartphone prototype with FoD and attempt to replace the black matrix with different material as black-doping photoresist “SU-8” or metal “Cr”. After we analyzed, we concluded that the fingerprint recognition aperture improves MTF value, and microlens improves RV value. The thickness of the apertures is as thin as better, and its transmittance is most important. And Cr is a better material choice that fits the conditions for aperture in this paper.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:16:34Z (GMT). No. of bitstreams: 1
U0001-1709202222194600.pdf: 3372300 bytes, checksum: 8c2aae7862e07ad25eb6cdce2ce464e7 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES viii LIST OF TABLE xi Chapter 1 Introduction 12 1.1 Fingerprint Recognition Technology 12 1.1.1 Importance of Biometric Technologies 12 1.1.2 Fingerprint recognition on smartphones 13 1.1.3 Full-screen fingerprint detection 14 1.2 Motivation 15 1.3 Research Synopsis 16 Chapter 2 Principle of Fingerprint recognition 18 2.1 Optical laws 18 2.1.1 Snell’s law 18 2.1.2 Total internal reflection 20 2.1.3 Maxwell’s equation and attenuation coefficient 22 2.1.4 Lens maker’s formula 23 2.1.5 Fresnel’s equation 26 2.2 OLED Light source 30 2.2.1 Features of OLED display 30 2.2.2 OLED device structure 31 2.2.3 Colors of OLED 32 2.2.4 Driving circuits of the OLED device 33 Chapter 3 Simulation Methodology 36 3.1 Simulation Workflow 36 3.2 Material definition in Zemax 37 3.2.1 Metal definition 37 3.2.2 Glass definition 40 3.3 Optical simulation and analyzation 42 3.3.1 Ray tracing in Zemax 42 3.3.2 Matlab analyzation 43 3.4 Simulation structure 45 Chapter 4 Results and discussion 49 4.1 Calculation of RV and MTF 49 4.2 Compare Microlens and Filter aperture design 53 4.3 Optimization for microlens and aperture structure 57 4.4 Influence on the thickness of the aperture 59 4.5 Compare different materials as aperture 62 Chapter 5 Conclusion 68 REFERENCE 70
dc.language.isoen
dc.subject吸收率zh_TW
dc.subject屏下指紋辨識zh_TW
dc.subject遮擋層zh_TW
dc.subject光跡追蹤zh_TW
dc.subject黑色矩陣zh_TW
dc.subjectblock layeren
dc.subjectFingerprint on Displayen
dc.subjectblack matrixen
dc.subjectabsorbanceen
dc.subjectray tracingen
dc.title指紋辨識光路設計─孔洞遮罩及微透鏡之分析探討zh_TW
dc.titleOptical design for fingerprint recognition ─ the analysis of aperture and microlens structuresen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王倫(Lon A. Wang),吳忠幟(Chung-chih Wu),蔡睿哲(Jui-che Tsai)
dc.subject.keyword屏下指紋辨識,黑色矩陣,吸收率,光跡追蹤,遮擋層,zh_TW
dc.subject.keywordFingerprint on Display,black matrix,absorbance,ray tracing,block layer,en
dc.relation.page72
dc.identifier.doi10.6342/NTU202203516
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-21
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
dc.date.embargo-lift2022-09-30-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1709202222194600.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved