請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84559完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐善慧(Shan-hui Hsu) | |
| dc.contributor.author | Li-Ting Juan | en |
| dc.contributor.author | 阮俐庭 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:15:38Z | - |
| dc.date.copyright | 2022-09-23 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-20 | |
| dc.identifier.citation | [1] H. Wang, S.C. Heilshorn, Adaptable hydrogel networks with reversible linkages for tissue engineering, Adv Mater 27(25) (2015) 3717-36. [2] A.J. Salgado, O.P. Coutinho, R.L. Reis, Bone Tissue Engineering: State of the Art and Future Trends, Macromolecular Bioscience 4(8) (2004) 743-765. [3] B.J. Blaiszik, S.L.B. Kramer, S.C. Olugebefola, J.S. Moore, N.R. Sottos, S.R. White, Self-Healing Polymers and Composites, Annual Review of Materials Research 40(1) (2010) 179-211. [4] K.S. Toohey, N.R. Sottos, J.A. Lewis, J.S. Moore, S.R. White, Self-healing materials with microvascular networks, Nat Mater 6(8) (2007) 581-5. [5] J.A. Syrett, C.R. Becer, D.M. Haddleton, Self-healing and self-mendable polymers, Polymer Chemistry 1(7) (2010). [6] A. Harada, Y. Takashima, M. Nakahata, Supramolecular polymeric materials via cyclodextrin-guest interactions, Acc Chem Res 47(7) (2014) 2128-40. [7] E.B. Murphy, F. Wudl, The world of smart healable materials, Progress in Polymer Science 35(1-2) (2010) 223-251. [8] W. Zou, J. Dong, Y. Luo, Q. Zhao, T. Xie, Dynamic Covalent Polymer Networks: from Old Chemistry to Modern Day Innovations, Adv Mater 29(14) (2017). [9] A. Memic, T. Colombani, L.J. Eggermont, M. Rezaeeyazdi, J. Steingold, Z.J. Rogers, K.J. Navare, H.S. Mohammed, S.A. Bencherif, Latest Advances in Cryogel Technology for Biomedical Applications, Advanced Therapeutics 2(4) (2019). [10] S.A. Bencherif, R.W. Sands, D. Bhatta, P. Arany, C.S. Verbeke, D.A. Edwards, D.J. Mooney, Injectable preformed scaffolds with shape-memory properties, Proc Natl Acad Sci U S A 109(48) (2012) 19590-5. [11] K. Bloch, A. Vanichkin, L.G. Damshkaln, V.I. Lozinsky, P. Vardi, Vascularization of wide pore agarose-gelatin cryogel scaffolds implanted subcutaneously in diabetic and non-diabetic mice, Acta Biomater 6(3) (2010) 1200-5. [12] M. Razavi, Y. Qiao, A.S. Thakor, Three-dimensional cryogels for biomedical applications, J Biomed Mater Res A 107(12) (2019) 2736-2755. [13] F. Ak, Z. Oztoprak, I. Karakutuk, O. Okay, Macroporous silk fibroin cryogels, Biomacromolecules 14(3) (2013) 719-27. [14] G. Erturk, B. Mattiasson, Cryogels-versatile tools in bioseparation, J Chromatogr A 1357 (2014) 24-35. [15] T.M.A. Henderson, K. Ladewig, D.N. Haylock, K.M. McLean, A.J. O'Connor, Cryogels for biomedical applications, J Mater Chem B 1(21) (2013) 2682-2695. [16] J.K.F. Suh, H.W. Matthew, Application of chitosan-based polysaccharide biomaterials., Biomaterials 21(24) (2000) 2589-2598. [17] Y. Liu, S.H. Hsu, Synthesis and Biomedical Applications of Self-healing Hydrogels, Front Chem 6 (2018) 449. [18] R.S. Trask, H.R. Williams, I.P. Bond, Self-healing polymer composites: mimicking nature to enhance performance, Bioinspir Biomim 2(1) (2007) P1-9. [19] Y. Li, X. Wang, Y. Wei, L. Tao, Chitosan-based self-healing hydrogel for bioapplications, Chinese Chemical Letters 28(11) (2017) 2053-2057. [20] B. Yang, Y. Zhang, X. Zhang, L. Tao, S. Li, Y. Wei, Facilely prepared inexpensive and biocompatible self-healing hydrogel: a new injectable cell therapy carrier, Polymer Chemistry 3(12) (2012). [21] T.C. Tseng, L. Tao, F.Y. Hsieh, Y. Wei, I.M. Chiu, S.H. Hsu, An Injectable, Self-Healing Hydrogel to Repair the Central Nervous System, Adv Mater 27(23) (2015) 3518-24. [22] K.-C. Cheng, C.-F. Huang, Y. Wei, S.-h. Hsu, Novel chitosan–cellulose nanofiber self-healing hydrogels to correlate self-healing properties of hydrogels with neural regeneration effects, NPG Asia Materials 11(1) (2019). [23] R.D. Pedde, B. Mirani, A. Navaei, T. Styan, S. Wong, M. Mehrali, A. Thakur, N.K. Mohtaram, A. Bayati, A. Dolatshahi-Pirouz, M. Nikkhah, S.M. Willerth, M. Akbari, Emerging Biofabrication Strategies for Engineering Complex Tissue Constructs, Adv Mater 29(19) (2017). [24] T.W. Lin, S.H. Hsu, Self-Healing Hydrogels and Cryogels from Biodegradable Polyurethane Nanoparticle Crosslinked Chitosan, Adv Sci (Weinh) 7(3) (2020) 1901388. [25] H. Schiff, Mittheilungen aus dem Universitätslaboratorium in Pisa: Eine neue Reihe organischer Basen, Justus Liebigs Annalen der Chemie 131(1) (1864) 118-119. [26] Z. Zhang, C. He, X. Chen, Hydrogels based on pH-responsive reversible carbon–nitrogen double-bond linkages for biomedical applications, Materials Chemistry Frontiers 2(10) (2018) 1765-1778. [27] J. Huang, Y. Deng, J. Ren, G. Chen, G. Wang, F. Wang, X. Wu, Novel in situ forming hydrogel based on xanthan and chitosan re-gelifying in liquids for local drug delivery, Carbohydr Polym 186 (2018) 54-63. [28] D.W.R. Balkenende, S.M. Winkler, P.B. Messersmith, Marine-Inspired Polymers in Medical Adhesion, Eur Polym J 116 (2019) 134-143. [29] S. Hafeez, H.W. Ooi, F.L.C. Morgan, C. Mota, M. Dettin, C. Van Blitterswijk, L. Moroni, M.B. Baker, Viscoelastic Oxidized Alginates with Reversible Imine Type Crosslinks: Self-Healing, Injectable, and Bioprintable Hydrogels, Gels 4(4) (2018). [30] L. Han, X. Lu, M. Wang, D. Gan, W. Deng, K. Wang, L. Fang, K. Liu, C.W. Chan, Y. Tang, L.T. Weng, H. Yuan, A Mussel-Inspired Conductive, Self-Adhesive, and Self-Healable Tough Hydrogel as Cell Stimulators and Implantable Bioelectronics, Small 13(2) (2017). [31] Q.Q. Wang, J.Y. Zhu, R.S. Reiner, S.P. Verrill, U. Baxa, S.E. McNeil, Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC, Cellulose 19(6) (2012) 2033-2047. [32] I. Siró, D. Plackett, Microfibrillated cellulose and new nanocomposite materials: a review, Cellulose 17(3) (2010) 459-494. [33] A.P. Mathew, K. Oksman, D. Pierron, M.-F. Harmad, Crosslinked fibrous composites based on cellulose nanofibers and collagen with in situ pH induced fibrillation, Cellulose 19(1) (2011) 139-150. [34] R. Dash, M. Foston, A.J. Ragauskas, Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers, Carbohydr Polym 91(2) (2013) 638-45. [35] B. Wang, A.J. Benitez, F. Lossada, R. Merindol, A. Walther, Bioinspired Mechanical Gradients in Cellulose Nanofibril/Polymer Nanopapers, Angew Chem Int Ed Engl 55(20) (2016) 5966-70. [36] Z. Fang, H. Zhu, Y. Yuan, D. Ha, S. Zhu, C. Preston, Q. Chen, Y. Li, X. Han, S. Lee, G. Chen, T. Li, J. Munday, J. Huang, L. Hu, Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells, Nano Lett 14(2) (2014) 765-73. [37] G. Zu, J. Shen, L. Zou, F. Wang, X. Wang, Y. Zhang, X. Yao, Nanocellulose-derived highly porous carbon aerogels for supercapacitors, Carbon 99 (2016) 203-211. [38] N. Mittal, R. Jansson, M. Widhe, T. Benselfelt, K.M.O. Hakansson, F. Lundell, M. Hedhammar, L.D. Soderberg, Ultrastrong and Bioactive Nanostructured Bio-Based Composites, ACS Nano 11(5) (2017) 5148-5159. [39] M. Roman, Toxicity of Cellulose Nanocrystals: A Review, Industrial Biotechnology 11(1) (2015) 25-33. [40] J. Catalan, E. Rydman, K. Aimonen, K.S. Hannukainen, S. Suhonen, E. Vanhala, C. Moreno, V. Meyer, D.D. Perez, A. Sneck, U. Forsstrom, C. Hojgaard, M. Willemoes, J.R. Winther, U. Vogel, H. Wolff, H. Alenius, K.M. Savolainen, H. Norppa, Genotoxic and inflammatory effects of nanofibrillated cellulose in murine lungs, Mutagenesis 32(1) (2017) 23-31. [41] Q. Meng, H. Li, S. Fu, L.A. Lucia, The non-trivial role of native xylans on the preparation of TEMPO-oxidized cellulose nanofibrils, Reactive and Functional Polymers 85 (2014) 142-150. [42] K.J. De France, T. Hoare, E.D. Cranston, Review of Hydrogels and Aerogels Containing Nanocellulose, Chemistry of Materials 29(11) (2017) 4609-4631. [43] A. Rees, L.C. Powell, G. Chinga-Carrasco, D.T. Gethin, K. Syverud, K.E. Hill, D.W. Thomas, 3D Bioprinting of Carboxymethylated-Periodate Oxidized Nanocellulose Constructs for Wound Dressing Applications, Biomed Res Int 2015 (2015) 925757. [44] N.E. Zander, H. Dong, J. Steele, J.T. Grant, Metal cation cross-linked nanocellulose hydrogels as tissue engineering substrates, ACS Appl Mater Interfaces 6(21) (2014) 18502-10. [45] M.I. Aranguren, N.E. Marcovich, W. Salgueiro, A. Somoza, Effect of the nano-cellulose content on the properties of reinforced polyurethanes. A study using mechanical tests and positron anihilation spectroscopy, Polymer Testing 32(1) (2013) 115-122. [46] Y.-L. Tsai, P. Theato, C.-F. Huang, S.-h. Hsu, A 3D-printable, glucose-sensitive and thermoresponsive hydrogel as sacrificial materials for constructs with vascular-like channels, Applied Materials Today 20 (2020). [47] R.D. Chen, C.F. Huang, S.H. Hsu, Composites of waterborne polyurethane and cellulose nanofibers for 3D printing and bioapplications, Carbohydr Polym 212 (2019) 75-88. [48] Q.F. Guan, H.B. Yang, Z.M. Han, Z.C. Ling, C.H. Yin, K.P. Yang, Y.X. Zhao, S.H. Yu, Sustainable Cellulose-Nanofiber-Based Hydrogels, ACS Nano 15(5) (2021) 7889-7898. [49] Y. Xia, Y. He, F. Zhang, Y. Liu, J. Leng, A Review of Shape Memory Polymers and Composites: Mechanisms, Materials, and Applications, Adv Mater 33(6) (2021) e2000713. [50] T. Xie, Tunable polymer multi-shape memory effect, Nature 464(7286) (2010) 267-70. [51] F. Pilate, A. Toncheva, P. Dubois, J.-M. Raquez, Shape-memory polymers for multiple applications in the materials world, European Polymer Journal 80 (2016) 268-294. [52] L. Yu, H. Shahsavan, G. Rivers, C. Zhang, P. Si, B. Zhao, Programmable 3D Shape Changes in Liquid Crystal Polymer Networks of Uniaxial Orientation, Advanced Functional Materials 28(37) (2018). [53] T. Chung, A. Romo-Uribe, P.T. Mather, Two-Way Reversible Shape Memory in a Semicrystalline Network, Macromolecules 41 (2008) 184-192. [54] Y.C. Chien, W.T. Chuang, U.S. Jeng, S.H. Hsu, Preparation, Characterization, and Mechanism for Biodegradable and Biocompatible Polyurethane Shape Memory Elastomers, ACS Appl Mater Interfaces 9(6) (2017) 5419-5429. [55] W. Lu, X. Le, J. Zhang, Y. Huang, T. Chen, Supramolecular shape memory hydrogels: a new bridge between stimuli-responsive polymers and supramolecular chemistry, Chem Soc Rev 46(5) (2017) 1284-1294. [56] L.J. Eggermont, Z.J. Rogers, T. Colombani, A. Memic, S.A. Bencherif, Injectable Cryogels for Biomedical Applications, Trends Biotechnol 38(4) (2020) 418-431. [57] C.Y. Fu, W.T. Chuang, S.H. Hsu, A Biodegradable Chitosan-Polyurethane Cryogel with Switchable Shape Memory, ACS Appl Mater Interfaces 13(8) (2021) 9702-9713. [58] D. Trache, A.F. Tarchoun, M. Derradji, T.S. Hamidon, N. Masruchin, N. Brosse, M.H. Hussin, Nanocellulose: From Fundamentals to Advanced Applications, Front Chem 8 (2020) 392. [59] L. Kumar Meena, H. Rather, D. Kedaria, R. Vasita, Polymeric microgels for bone tissue engineering applications – a review, International Journal of Polymeric Materials and Polymeric Biomaterials 69(6) (2019) 381-397. [60] M. Hedstrom, F. Plieva, I.Y. Galaev, B. Mattiasson, Monolithic macroporous albumin/chitosan cryogel structure: a new matrix for enzyme immobilization, Anal Bioanal Chem 390(3) (2008) 907-12. [61] W. Huang, Y. Wang, Z. Huang, X. Wang, L. Chen, Y. Zhang, L. Zhang, On-Demand Dissolvable Self-Healing Hydrogel Based on Carboxymethyl Chitosan and Cellulose Nanocrystal for Deep Partial Thickness Burn Wound Healing, ACS Appl Mater Interfaces 10(48) (2018) 41076-41088. [62] C.-F. Huang, J.-K. Chen, T.-Y. Tsai, Y.-A. Hsieh, K.-Y. Andrew Lin, Dual-functionalized cellulose nanofibrils prepared through TEMPO-mediated oxidation and surface-initiated ATRP, Polymer 72 (2015) 395-405. [63] K. Mou, J. Li, Y. Wang, R. Cha, X. Jiang, 2,3-Dialdehyde nanofibrillated cellulose as a potential material for the treatment of MRSA infection, J Mater Chem B 5(38) (2017) 7876-7884. [64] B. Sun, Q. Hou, Z. Liu, Y. Ni, Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive, Cellulose 22(2) (2015) 1135-1146. [65] J. Sirvio, U. Hyvakko, H. Liimatainen, J. Niinimaki, O. Hormi, Periodate oxidation of cellulose at elevated temperatures using metal salts as cellulose activators, Carbohydrate Polymers 83(3) (2011) 1293-1297. [66] Y.C. Kuo, S.C. Hung, S.H. Hsu, The effect of elastic biodegradable polyurethane electrospun nanofibers on the differentiation of mesenchymal stem cells, Colloids Surf B Biointerfaces 122 (2014) 414-422. [67] C.-T. Hsieh, C.-Y. Liao, N.-T. Dai, C.-S. Tseng, B.L. Yen, S.-h. Hsu, 3D printing of tubular scaffolds with elasticity and complex structure from multiple waterborne polyurethanes for tracheal tissue engineering, Applied Materials Today 12 (2018) 330-341. [68] U.J. Kim, Kuga, S., Wada, M., Okano, T., & Kondo, T. , Periodate oxidation of crystalline cellulose., Biomacromolecules 1(3) (2000) 488-492. [69] V.M. Gun'ko, I.N. Savina, S.V. Mikhalovsky, Cryogels: morphological, structural and adsorption characterisation, Adv Colloid Interface Sci 187-188 (2013) 1-46. [70] J.C. Courtenay, M.A. Johns, F. Galembeck, C. Deneke, E.M. Lanzoni, C.A. Costa, J.L. Scott, R.I. Sharma, Surface modified cellulose scaffolds for tissue engineering, Cellulose (Lond) 24(1) (2017) 253-267. [71] N. Kulkarni, S.D. Shinde, G.S. Jadhav, D.R. Adsare, K. Rao, M. Kachhia, M. Maingle, S.P. Patil, N. Arya, B. Sahu, Peptide-Chitosan Engineered Scaffolds for Biomedical Applications, Bioconjug Chem 32(3) (2021) 448-465. [72] M.A. Pattison, S. Wurster, T.J. Webster, K.M. Haberstroh, Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications, Biomaterials 26(15) (2005) 2491-500. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84559 | - |
| dc.description.abstract | 水凝膠是能夠吸收和保留大量水的聚合物網絡。冷凍凝膠是由單體或聚合物前體在適度冷凍的溶液中化學或物理交聯製成的大孔結構,具有高吸水性、結構耐久性和可壓縮性。關於形狀記憶冷凍凝膠的研究很少,也沒有冷凍凝膠基於纖維素交聯劑的研究。在這裡我們合成了具有醛基作為交聯劑的多功能奈米纖維 (MCNF),以生產殼聚醣水凝膠和冷凍凝膠。水凝膠(固含量 < 2%)具有自癒合+(損傷後約 100% 癒合)和剪切稀化特性,已通過流變學驗證。通過動態力學分析,冷凍凝膠顯示出高吸水率 (> 4300%) 和良好的可壓縮性。水凝膠和冷凍凝膠都是可注射的(分別通過 27 號和 18 號針頭)。特別是,冷凍凝膠(奈米纖維素:殼聚醣 1:6)揭示了熱誘導的形狀記憶,其機制通過原位小角 X 射線散射 (SAXS) 和廣角 X 射線散射 (WAXS) 闡明在形狀記憶程序期間冷凍凝膠的誘導晶體結構的取向變化解釋了其形狀記憶特性。形狀記憶允許大尺寸(15 mm × 10 mm × 1.1 mm)的冷凍凝膠片材通過 16G 針頭注射,並在 37°C 水中恢復其原始形狀。奈米纖維素殼聚醣形狀記憶冷凍凝膠顯示出細胞相容性和促進細胞生長的能力。奈米纖維素-殼聚醣水凝膠和冷凍凝膠是可注射和可降解的生物材料,具備可調節的機械性能,未來有應用於精準醫療及微創手術之潛力。 | zh_TW |
| dc.description.abstract | Hydrogels are polymeric networks capable of absorbing and retaining large amounts of water. Cryogels are macroporous structures made of monomers or polymeric precursors chemically or physically crosslinked in moderately frozen solutions, and have high water absorption, structural durability, and compressibility. There are few studies on shape memory cryogel, and none is based on cellulose crosslinker. Here we synthesized multifunctional cellulose nanofibers (MCNFs) with aldehyde group as crosslinker to produce chitosan hydrogel and cryogel. The hydrogel (solid content < 2%) had self-healing (~100% healing after injury) and shear thinning properties, verified by rheology. The cryogel showed high water absorption (> 4300%) and good compressibility through dynamic mechanical analyses. The hydrogel and cryogel were both injectable (via 27-gauge and 18-gauge needles, respectively). In particular, the cryogel (nanocellulose:chitosan 1:6) revealed thermally-induced shape memory, of which the mechanism was elucidated by in situ small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). Changes in the orientation of the induced crystalline structure of the cryogel during the shape memory program accounted for its shape memory property. The shape memory allowed the cryogel sheet with a large size (15 mm × 10 mm × 1.1 mm) to be injected through a 16G needle and return to its original shape in 37 °C water. The nanocellulose-chitosan shape memory cryogel showed cytocompatibility and the ability to promote cell growth. The nanocellulose-chitosan hydrogel and cryogel are injectable and degradable biomaterials with adjustable mechanical properties for precision medicine and minimally invasive surgery. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:15:38Z (GMT). No. of bitstreams: 1 U0001-1209202216465900.pdf: 2395963 bytes, checksum: f7198d08b22f7d8b9e6fa76943790f8e (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 目錄 致謝 II 摘要 III 圖目錄 IX 表目錄 X 第一章 文獻回顧 1 1.1. 水凝膠介紹 1 1.2. 自癒合水凝膠 2 1.3. 冷凍凝膠的介紹 3 1.4. 殼聚醣自癒合水凝膠及冷凍凝膠 3 1.5. 席夫鹼(schiff base)交聯劑 4 1.6. 奈米纖維素 6 1.6.1. TEMPO-氧化奈米纖維素 6 1.7. 形狀記憶聚合物 8 1.7.1. 形狀記憶冷凍凝膠 9 1.8. 研究目的 10 第二章 研究方法 12 2.1. 研究架構 12 2.2. 合成奈米纖維素 14 2.3. 合成Multifunctional cellulose nanofiber (MCNFs) 14 2.4. 鑑定MCNF交聯劑 14 2.4.1. 傅立葉變換紅外光譜 14 2.4.2. 穿透式電子顯微鏡 15 2.4.3. 動態光散射及Zeta電位分析 15 2.4.4. 醛基含量測定 15 2.5. 奈米纖維素交聯劑性質分析(MCNF crosslinker) 16 2.5.1. 熱性質分析 16 2.5.2. X光繞射分析 16 2.5.3. 廣角度X光散射分析 16 2.6. 奈米纖維素殼聚醣水凝膠和冷凍凝膠的製備 17 2.7. 奈米纖維素殼聚醣自修復水凝膠的表徵 17 2.8. 奈米纖維素殼聚醣冷凍凝膠的表徵及壓縮性質 18 2.8.1. 掃描式電子顯微鏡 18 2.8.2. 冷凍凝膠的孔隙度及膨脹率 18 2.8.3. 動態力學分析儀 19 2.8.4 冷凍凝膠的注射性質 19 2.9. 奈米纖維素殼聚醣水凝膠和冷凍凝膠的體外降解和凝膠分數 19 2.10. 奈米纖維素殼聚醣冷凍凝膠的形狀記憶評估 20 2.10.1. 熱性質及結晶度 20 2.10.2. U型彎曲試驗 20 2.11. 細胞實驗 21 第三章 實驗結果 23 3.1. 鑑定多官能奈米纖維素(MCNFs) 23 3.1.1. MCNF之官能基分析 23 3.1.2. MCNF之長度分析 23 3.1.3. MCNF之PDI、電位及醛含量分析 24 3.1.4. MCNF之小角X散射分析 24 3.2. 奈米纖維素交聯劑性質分析 24 3.2.1.熱性質及分析 24 3.2.2. 奈米纖維素交聯劑之X光繞射分析 25 3.3. 奈米纖維素殼具糖水凝膠和冷凍凝膠的製備 25 3.4.表徵奈米纖維素殼聚醣自修復水凝膠 26 3.4.1. 流變學性質分析 26 3.4.2.小角度X光散射分析 27 3.5. 表徵奈米纖維素殼聚醣冷凍凝膠和其壓縮性質 28 3.5.1. 觀察冷凍凝膠的孔洞大小、孔隙度及膨脹率 28 3.5.2. 不同冷凍凝膠的壓縮模量及注射性 28 3.6. 奈米纖維素殼聚醣冷凍凝膠的體外降解和凝膠率 29 3.7. 奈米纖維素殼聚醣冷凍凝膠的形狀記憶評估 29 3.7.1. 熱性質及結晶度 29 3.7.2. U型彎曲試驗 30 3.7.3. In situ SAXS/WAXS 30 3.8. 細胞實驗 31 第四章 討論 52 4.1. 鑑定MCNF交聯劑 52 4.2 製備奈米纖維素殼聚醣水凝膠及冷凍凝膠 53 4.3. 奈米纖維素殼聚醣自修復水凝膠的表徵 54 4.4 奈米纖維素殼聚醣冷凍凝膠的表徵及壓縮性質 54 4.5. 奈米纖維素殼聚醣水凝膠和冷凍凝膠的體外降解和凝膠分數 55 4.6. 奈米纖維素殼聚醣冷凍凝膠的形狀記憶評估 56 4.7. 細胞實驗 58 第五章 結論 61 圖目錄 圖2.1. 研究架構圖 13 圖3.1. 多功能纖維素奈米纖維(MCNF)的合成和結構表徵 33 圖3.2. 通過 DSC表徵奈米纖維素交聯劑和冷凍凝膠 34 圖3.3. 透過XRD分析奈米纖維素交聯劑和冷凍凝膠 35 圖3.4. 從殼聚醣和MCNFs形成水凝膠或冷凍凝膠。 36 圖3.5. GC-MCNF自癒合水凝膠 37 圖3.6. GC-MCNF冷凍凝膠的宏觀行為和機械性能(由MCNFL 0.25 wt%和GC 1.5 wt%組成) 38 圖3.7. GC-MCNFL水凝膠和冷凍凝膠(1.5 wt% GC和0.25 wt% MCNFL)的物理化學特性 39 圖3.8. 使用原位 WAXS 表徵奈米纖維素交聯劑和冷凍凝膠 40 圖3.10. 原位SAXS/WAXS測量裝置示意圖 42 圖3.11. 原位SAXS/WAXS圖觀察冷凍凝膠的形狀記憶特性 43 圖3.12. 大尺寸形狀記憶冷凍凝膠的可注射性圖 44 圖3.13. hMSCs接種於奈米纖維素殼聚醣冷凍凝膠中的的細胞活力實驗 45 圖4.1. hMSCs接種於使用快速塗層溶液(Quick coating solution)奈米纖維素殼聚醣冷凍凝膠中的的細胞活力實驗。 60 表目錄 表3.1. TCNF 和各種 MCNF 的基本性質 46 表 3.2. 奈米纖維素殼聚醣水凝膠的組成(主鏈和不同含量的交聯劑)的優化和選擇。 47 表 3.3. 奈米纖維素殼聚醣冷凍凝膠的組成(主鏈和不同含量的交聯劑)的優化和選擇 48 表 3.4. 不同組分比例(GC : MCNFs)的水凝膠的基本性質 49 表 3.5. 不同組分比例(GC : MCNFs)的冷凍凝膠的基本性質。 50 表 3.6. 奈米纖維素殼聚醣冷凍凝膠(1.5 wt% GC/0.25 wt% MCNFL)在不同條件下變形和恢復的形狀固定率(Rf)和恢復率(Rr) 51 | |
| dc.language.iso | zh-TW | |
| dc.subject | 殼聚醣 | zh_TW |
| dc.subject | 冷凍凝膠 | zh_TW |
| dc.subject | 形狀記憶 | zh_TW |
| dc.subject | 自癒合水凝膠 | zh_TW |
| dc.subject | 纖維素奈米纖維 | zh_TW |
| dc.subject | chitosan | en |
| dc.subject | Cellulose nanofiber | en |
| dc.subject | self-healing hydrogel | en |
| dc.subject | shape memory | en |
| dc.subject | cryogel | en |
| dc.title | 官能化奈米纖維作為交聯劑製備殼聚醣自癒合水凝膠與形狀記憶冷凍凝膠 | zh_TW |
| dc.title | Functionalized cellulose nanofibers as crosslinker to produce chitosan self-healing hydrogel and shape memory cryogel | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張書瑋(Shu-Wei Chang),周佳靚(Chia-Ching Chou),莊偉綜(Wei-Tsung Chuang) | |
| dc.subject.keyword | 纖維素奈米纖維,自癒合水凝膠,形狀記憶,冷凍凝膠,殼聚醣, | zh_TW |
| dc.subject.keyword | Cellulose nanofiber,self-healing hydrogel,shape memory,cryogel,chitosan, | en |
| dc.relation.page | 70 | |
| dc.identifier.doi | 10.6342/NTU202203310 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-09-22 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-09-23 | - |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1209202216465900.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
