Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84524
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王東美(Tong-Mei Wang)
dc.contributor.authorChia-Lin Chouen
dc.contributor.author周佳霖zh_TW
dc.date.accessioned2023-03-19T22:14:23Z-
dc.date.copyright2022-10-14
dc.date.issued2022
dc.date.submitted2022-09-22
dc.identifier.citation[1] 衛生福利部(2021/06)。109年國人死因統計結果。取自https://www.mohw.gov.tw/cp-5017-61533-1.html. [2] Miloro M, Ghali G, Larsen P, Waite P. Peterson's Principles of Oral and. Maxillofacial Surgery. 3rd ed: Pmph usa; 2011. P617-58, 783-802. [3] Jereczek-Fossa BA, Orecchia R. Radiotherapy-induced mandibular bone complications. Cancer Treat Rev 2002;28:65-74. [4] Ruggiero SL, Dodson TB, Fantasia J, Goodday R, Aghaloo T, Mehrotra B, et al. American Association of Oral and Maxillofacial Surgeons position paper on medication-related osteonecrosis of the jaw—2014 update. J Oral Maxillofac Surg 2014; 72: 1938–56. [5] Marx RE, Sawatari Y, Fortin M, Broumand V. Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: risk factors, recognition, prevention, and treatment. J Oral Maxillofac Surg 2005;63:1567-75. [6] Qiu Y, Lin L, Shi B, Zhu X. Does different mandibulectomy (marginal vs segmental) affect the prognosis in patients with oral squamous cell carcinoma?. J Oral Maxillofac Surg 2018 May;76:1117-22. [7] Barttelbort SW, Ariyan S. Mandible preservation with oral cavity carcinoma: rim mandibulectomy versus sagittal mandibulectomy. Am J Surg 1993;166:411-5. [8] Koshy JC, Feldman EM, Chike-Obi CJ, Bullocks JM. Pearls of mandibular trauma management. Semin Plast Surg 2010;24:357-74. [9] 黃懿萱(2016):下顎骨邊緣切除手術後之骨折預防功效---有限元素分析。國立臺灣大學牙醫專業學院臨床牙醫學研究所學位論文 [10] Velasco-Ortega, E., et al., In vitro evaluation of cytotoxicity and genotoxicity of a commercial titanium alloy for dental implantology. Mutat Res, 2010; 702(1):17-23. [11] Yadav RR, Yadav AR, Dhund PV. Fracture mandible. New Delhi: Jaypee Brothers; 2012. 
 [12]Wang TM, Chang HH, Ho Y, Lin LD. Screw hole-positioning guide and plate-positioning guide: A novel method to assist mandibular reconstruction. J Dent Sci 2012;7:301-5. [13] Dempster WT. The adaptive chin. By E. Lloyd DuBrul and Harry Sicher. Am J Phys Anthropol 1956;14:119-20 [14] Hylander WL. Stress and strain in the mandibular symphysis of primates: a test of competing hypotheses. Am J Phys Anthropol 1984;64:1-46. [15] Mosby’s medical dictionary. 8th ed. St. Louis: Mosby Elsevier; 2009 [16] Bowman A. Flexion of the mandible: Indiana University, School of Dentistry, Indianapolis 1970. [17] Burch JG, Borchers G. Method for study of mandibular arch width change. J Dent Res 1970;49:463. [18] Chen DC, Lai YL, Chi LY, Lee SY. Contributing factors of mandibular deformation during mouth opening. J Dent 2000;28:583-8. [19] Abdel-Latif HH, Hobkirk JA, Kelleway JP. Functional mandibular deformation in edentulous subjects treated with dental implants. Int J Prosthodont 2000;13:513-9. [20] El-Sheikh AM, Abdel-Latif HH, Howell PG, Hobkirk JA. Midline mandibular deformation during nonmasticatory functional movements in edentulous subjects with dental implants. Int J Oral Maxillofac Implants 2007;22:243-8. [21] Regli CP, Kelly EK. The phenomenon of decreased mandibular arch width in opening movements. J Prosthet Dent 1967;17:49-53. [22] Canabarro Sde A, Shinkai RS. Medial mandibular flexure and maximum occlusal force in dentate adults. Int J Prosthodont 2006;19:177-82 [23] Ying T, Dong Mei W, Tong J, Cheng Tao W, Chen Ping Z. Three-dimensional finite-element analysis investigating the biomechanical effects of human mandibular reconstruction with autogenous bone grafts. J Craniomaxillofac Surg 2006; 34:290-8 [24] Murakami K, Sugiura T, Yamamoto K, Kawakami M, Kang YB, Tsutsumi S, Kirita T. Biomechanical analysis of the strength of the mandible after marginal resection.J Oral Maxillofac Surg 2011 Jun;69:1798-806 [25] Kazuhiro M, Kazuhiko Y, Motokatsu Ti, Tsutomu S, Sadami T, and Tadaaki K. Theoretical efficacy of preventive measures for pathologic fracture after surgical removal of mandibular lesions based on a three-dimensional finite element analysis. J Oral Maxillofac Surg 2014; 72: 833.e1-18 [26] O'Mahony AM, Williams JL, Spencer P. Anisotropic elasticity of cortical and cancellous bone in the posterior mandible increases peri-implant stress and strain under oblique loading. Clin Oral Implants Res 2001;12:648-57. [27] Chung DH, Buessem WR. The elastic anisotropy of crystals in: Vahldiek FW MS, editor. Anisotropy in Single-Crystal Refractory Compounds. New York: Plenum Press; 1968. p. 217-45. [28] Katz JL, Meunier A. The elastic anisotropy of bone. J Biomech 1987;20:1063-70. [29] Korioth TW, Romilly DP, Hannam AG. Three-dimensional finite element stress analysis of the dentate human mandible. Am J Phys Anthropol 1992;88:69-96. [30] Baron P, Debussy T. A biomechanical functional analysis of the masticatory muscles in man. Arch Oral Biol 1979;24:547-53. [31] Nelson GJ. Three dimensional computer modeling of human mandibular biomechanics. Vancouver: University of British Columbia; 1986 [32] Korioth TW, Hannam AG. Deformation of the human mandible during simulated tooth clenching. J Dent Res 1994;73:56-66. [33] Al-Sukhun J, Kelleway J. Biomechanics of the mandible: Part II. Development of a 3-dimensional finite element model to study mandibular functional deformation in subjects treated with dental implants. Int J Oral Maxillofac Implants 2007;22:455-66. [34] Murakami K, Yamamoto K, Tsuyuki M, Sugiura T, Tsutsumi S, Kirita T. Theoretical efficacy of preventive measures for pathologic fracture after surgical removal of mandibular lesions based on a three-dimensional finite element analysis. J Oral Maxillofac Surg 2014;72:833 e1-18. [35] Fueki K, Roumanas ED, Blackwell KE, Freymiller E, Abemayor E, Wong WE, Kapur KK, Garrett N. Effect of implant support for prostheses on electromyographic activity of masseter muscle and jaw movement in patients after mandibular fibula free flap reconstruction. Int J Oral Maxillofac Implants 2014;Volume 29, Number 1. [36] Frost HM. The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner 1987;2:73-85. [37] Frost HM. Bone's mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 2003;275:1081-101. [38] Frost HM. Perspectives: bone's mechanical usage windows. Bone Miner 1992;19:257-71. [39] Biewener AA. Safety factors in bone strength. Calcif Tissue Int 1993;53:S68-74. [40] Pattin CA, Caler WE, Carter DR. Cyclic mechanical property degradation during fatigue loading of cortical bone. J Biomech 1996;29:69-79. [41] Urken ML, Buchbinder D, Weinberg H, Vickery C, Sheiner A, Parker R, Schaefer J, Som P, Shapiro A, Lawson W. Functional evaluation following microvascular oromandibular reconstruction of the oral cancer patient: a comparative study of reconstructed and non-reconstructed patients. Laryngoscope 1991 Sep;101(9):935-50. [42] Marunick M, Bruce E, Mathes, Babara B, Seyedsadr. Occlusal force after partial mandibular resection. J Prosthet Dent 1992;67:835-8. [43] Curtis, D.A., et al., A comparison of masticatory function in patients with or without reconstruction of the mandible. Head Neck 1997;19(4):287-96. [44] Haraguchi M, Mukohyama H, Reisberg DJ, Taniguchi H. Electromyographic activity of masticatory muscles and mandibular movement during function in marginal mandibulectomy patients. J Med Dent Sci 2003;50:257–264. [45] Dahlberg B. The masticatory effect. Acta medica scandinavica 1942;39-139. [46] Yurkstas A, Manly RS. Value of different test foods in estimating masticatory ability. J Appl Physiol 1950;3-45. [47] Manly, RS, Braley LC. Masticatory performance and efficiency. J Dent Res 1950;29-448. [48] Bate JF, Stafford GD, Harrison A, Masticatory function – a review of the literature. III. Masticatory performance and efficiency. J Oral Rehabil 1976;3-57. [49] Edlund J, Lamm, CJ. Masticatory efficiency. J Oral Rehabil 1980;7-123. [50] Liedberg GB, Owall B. Masticatory ability in experimentally induced xerostomia. Dysphagia 1991;6-211. [51] Hayakawa I, Watanabe I, Hirano S, Nagao M, Seki T. A simple method for evaluating masticatory performance using a color-changeable chewing gum. Int J Prosthodont 1998;11-173. [52] Liedberg B, Spiechowicz E, Owall B. Mastication with and without removable partial dentures: an intrraindividual study. Dysphagia 1995;10-107. [53] Sato H, Fueki K, Sueda S, Sato S, Shiozaki T, Kato M, Ohyama T. A new and simple method for evaluating masticatory function using newly developed artificial test food. J Oral Rehabil 2003;30:68–73 [54] Ono T, Yasui S, Kaneda K. Development of visual scoring method using a half size gummy jelly for evaluating masticatory performance. Nihon Soshaku Gakkai Zasshi 2016;26:1-5. [55] Roumanas ED, Garrett N, Blackwell KB, Freymiller E, Abe- mayor E, Wong WK et al. Masticatory and swallowing threshold performances with conventional and implant-sup- ported prostheses after mandibular fibula free-flap reconstruction. J Prosthet Dent 2006;96:289–297. [56] Kadota C, Sumita YI, Wang Y, Otomaru T, Mukohyama H, Fukei K, Igarashi Y, Taniguchi H. Comparison of food mixing ability among mandibulectomy patients. J Oral Rehabil 2008;35:408–414. [57] 陳孝宇(2018):下顎骨大範圍邊緣切除術後之骨折預防效能--有限元素分析。國立臺灣大學牙醫專業學院臨床牙醫學研究所學位論文 [58] 歐旭峯(2019):下顎骨切除術後以金屬重建板預防骨折之功效--有限元素分析。國立臺灣大學牙醫專業學院臨床牙醫學研究所學位論文 [59] Woelfel JB, Scheid RC. Dental Anatomy: Its Relevance to Dentistry. Sixth ed: LWW; 2002. [60] Al-Sukhun J. Modelling of mandibular functional deformation. London: University College London (University of London); 2003. [61] Udupikrishna J, Manju K. Comparison of stability of fracture segments in mandible fracture treated with different designs of mini-plates using FEM analysis. J Maxillofac Oral Surg 2014;13:310-19. [62] Koole P, de Jongh HJ, Boering G. A comparative study of electromyograms of the masseter, temporalis, and anterior digastric muscles obtained by surface and intramuscular electrodes: raw-EMG. Cranio 1991;9:228-40. [63] Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. evelopment of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 2000;361–374 [64] Boyd JB, Gullane PJ, Rotstein LE, Brown DH, Irish JC. Classification of mandibular defects. Plast Reconstr Surg 1993;92:1266–75. [65] van der Bilt A, van Kampen FMC, Cune MS. Masticatory function with mandibular implant-supported overdentures fitted with different attachment types. Eur J Oral Sci 2006;114:191–196. [66] Bakke M, Michler L, Han K, Möller E . Clinical significance of isometric bite-force versus electrical activity in temporal and masseter muscles. Scand J Dent Res 1989;97:539-551. [67] Slagter AP, Bosman F, van der Glas HW, van der Bilt A. Human jaw-elevator muscle activity and food comminution in the dentate and edentulous state. Arch Oral Biol 1993;38:195-205. [68] Tate GS, Throckmorton GS, Ellis E 3rd, Sinn DP, Blackwood DJ . Estimated masticatory forces in patients before orthognathic surgery. J Oral Maxillofac Surg 1994;52:130-136. [69] Proeschel P, Raum J. Preconditions for estimation of masticatory forces from dynamic electromyograms and isometric bite-force/activity relations of elevator muscles. Int J Prosthodont 2001;14:563-569. [70] Melugin MB, Oyen OJ, Indresano T. The effect of rim mandibulectomy configuration and residual segment size on postoperative fracture risk: an in vitro study. J Oral Maxillofac Surg 2001;59:409-413. [71] Carlsson GE. Bite force and chewing efficiency. Front Oral Physiol 1974;1:265–292. [72] Hagberg C. Assessments of bite force: a review. J Cranio- mandib Dis Facial Oral Pain 1987;1:162–169. [73] Helkimo E, Carlsson G, Carmeli Y. Bite force in patients with functional disturbances of the masticatory system. J Oral Rehab 1975;2:397–406.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84524-
dc.description.abstract臨床上,部分下顎骨切除術(partial mandibulectomy)中的邊緣下顎骨切除術(marginal mandibulectomy)與整段式下顎骨切除術(segmental mandibulectomy)一直是以10 mm的剩餘骨脊高度為選擇術式的判斷標準,但以10 mm為判斷標準的法則是建基於一個體外的乾下顎骨實驗[6]。在下顎骨進行邊緣切除手術後,會造成應力集中在缺損處造成發生骨折風險提高,然而在手術區附近的咀嚼肌可能也會受到手術的影響,導致施加在下顎骨的力量可能會減少,進而使應變分布產生改變,影響我們對於下顎骨切除手術後風險的評估。 因此本研究分為兩個部分,第一個部分希望利用三維有限元素模型分析下顎骨大範圍邊緣切除術後,模擬咀嚼肌被部分移除之後咀嚼肌力量減少的情況,觀察下顎骨缺損處應變分佈的變化,以評估術後的骨折風險。第一部分實驗將電腦斷層掃描影像輸入ABAQUS/CAE 6.13-1建立下顎骨模型,選擇術後所受應變量最大的左側大臼齒區大範圍(48 mm)切除區作為實驗對象,在模型上切出三種殘餘下顎骨脊高度(12.5mm、10.0mm、7.5mm)。缺損處附近的咀嚼肌共有四條,分別是:淺咬肌(superficial masseter muscle)、深咬肌(deep masseter muscle)、內翼肌(medial pterygoid muscle)與前顳肌(anterior temporalis muscle)。這四條肌肉分別設定施力荷載量為100%、90%、80%、70%、60%、50%、40%、30%、20%、10%,以表示不同程度的肌肉殘餘量。將下顎骨模型的海綿骨以十節點之四面體元素(C3D10)、皮質骨以三節點之三角形殼元素(S3R)網格化之後,探討在右側大臼齒咬合時,左側大臼齒大範圍邊緣切除區在不同程度肌肉力量施力時,所受之最大拉應變(MTS)與最大壓應變(MCS)的位置及數值大小,並分別以3000 microstrain(MTS)與4000 microstrain(MCS)的應變門檻探討其骨折風險。 第二個部分為臨床觀察手術術後對於咀嚼肌肌力的影響。由於文獻上對於接受過局部下顎骨切除術患者術後的咬合力變化的探討,大部分使用較傳統的應變計作為測試儀器,精準性與參考性不如近日新一代的測試系統,而且並沒有同時配合測試咬合力、肌電圖與咀嚼效率作為實際上咬合力與肌肉效能變化相互參考的研究。近年來數位咬合計的發展(如T-Scan、Prescale系統)可以讓患者在較為接近正常咬合狀態下測量咬合力量。因此第二部分實驗將採用無線傳輸肌電生理回饋系統監測7位受試者術後咬力,讓受試者以最大咬合力量(maximum bite force)進行咬合的動作,使用壓力感測片紀錄壓力系統(GC Dental Prescale II System)記錄咬點分布與咬點面積來量測咬合力大小,並同時搭配肌電圖(EMG)記錄肌肉活性(muscle activity),最後使用義美寶吉果汁QQ軟糖測試咀嚼效率。藉由臨床觀察量測來比較術後有無假牙重建以及切除側和正常側的肌肉活性、咬力與咬點分布、咬點面積間以及咀嚼效率的關係。第二部分的實驗結果將有助於了解接受過局部下顎骨切除手術的患者,在術後的咀嚼肌咬合功能和肌電圖的變化,並依據此臨床測試結果驗證在有限元素分析模擬模型的受力設定,讓我們在探討相對應應力以及應變的影響時,更加符合臨床實際情況。 實驗二的實驗結果顯示在接受過下顎骨單側局部切除術且術後使用植體固定假牙重建之患者的最大咬合力量(maximum bite force)上,切除側相較於正常側(非切除側)具有顯著的下降,而是否使用植體重建假牙在切除側的最大咬合力量上無顯著差異,但咀嚼效率(chewing efficiency)在有植牙假牙重建時,與無植體假牙的情況相比有顯著的增進,在進行最大咬合力量時的咀嚼肌效能(muscle activity)方面,整體而言則沒有顯著的差異。在實驗一有限元素分析的模擬模型中得知在肌肉荷載下降的情況下,剩餘骨脊高度不足時依然有骨折的風險,因此即使在此實驗中實際觀察在切除區的最大咬合力量顯著低於正常側(非切除側),但我們仍然不能低估在剩餘骨脊高度不足下的骨折風險的可能性。zh_TW
dc.description.abstractClinically, many surgeons follow the “ 10 mm rule” to decide to perform marginal mandibulectomy or segmental mandibulectomy. This rule was based on the result of Barttlebort’s in vitro study performed on a dry mandible with two condyle heads fixed in the cement. Strain concentration at the corner of the defect would lead to higher risk of mandibular bone fracture after marginal mandibulectomy. However, the surgery would also affect the activity of surrounding masticatory muscles, which may alter the strain distribution and affect the evaluation on the risk of post-surgical complication. This study contained two parts. The first part was aimed at using numerical analysis to investigate the effect of the reduced force of surrounding masticatory muscles on the strain distribution of the mandible after marginal mandibulectomy. A Digital Imaging and Communications in Medicine (DICOM) data file was created using cone beam computed tomography (CBCT) image data of the mandible of the patient with left side marginal mandibulectomy. A CAE software (ABAQUS/CAE 6.13-1) was used to reconstruct and analyze 3D mandibular models built up from the DICOM data file. Models were designed to test the effect of different remaining bone height on strain distribution under different functional loadings. Antero-posterior defect width was 48 mm to simulate the resected defect from the left first premolar to ascending ramus. Three different remaining bone heights of 7.5 mm, 10 mm and 12.5 mm were designed. Depending on the position closed to the defect area, four muscle groups could be affected during the operation: superficial masseter muscle, deep masseter muscle, medial pterygoid muscle and anterior temporalis muscle. We set the different proportion (100%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20% and 10% ) of muscle force of each muscle group to simulate the different degree of the amount of the remaining muscle. The models consisted 20930 ten-node tetrahedral elements (C3D10) in solid part and 81721 three-node triangular general-purpose shell (S3R) elements after meshing. Linear 3-dimensional FE analyses were performed. To evaluate mechanical strain on the mandible after marginal resection under right molar clenching motion, maximum principle tensile and compressive strains were calculated. Thresholds of 3000 microstrain and 4000 microstrain for tension and compression sites respectively were used to evaluate the fracture risk of the resected mandibles. The second part was aimed at evaluating the effect on muscle activity, biting force and chewing efficiency after the partial mandibulectomy. In previously literatures, traditional instruments which were less precise and poorly consistent compared to modern instruments were used to investigate the effect on masticatory system after the surgery. Moreover, there was no research on evaluating the combination of muscle activity, biting force and masticatory performance. Recently, modern digital occlusion analysis systems (T-Scan, Dental Prescale II) can evaluate occlusal force on almost normal intermaxillary relation. In this study, Teethan (BTS Bioengineering Corp., Italy) was applied to investigate the muscle activity .The subjects were tested with GC Dental Prescale II system for the maximum bite force and EMG for muscle activity at the same time. The subjects were also tested with gummy jelly to examine their chewing efficiency. Therefore, the results were investigated the relation in muscle activity, biting force and masticatory performance between normal side and defected side, as well as with or without the implant prosthesis reconstruction. The results were helpful for setting up the protocol and strategy of fine element analysis model for stress and strain analysis in partial mandibulectomy patients more similar to clinical condition. The results of the first part of the study showed the risk of the bone fracture exist even though the degree of the masticatory force decreased, if the remaining bone height was insufficient. The second part of the study presented the reduced amount of the maximum bite force(N) compared defect side to normal side under the implant-assisted prosthesis applicated condition was statistically different. The chewing efficiency obviously increased under the implant-assisted prosthesis applicated condition. But the maximum bite force(N) showed no statistical difference with or without the implant-assisted prosthesis over the defect side. About the muscle activity(EMG), neither the normal side compared to the defect side nor the condition with prosthesis compared to without prosthesis, no statistical difference was presented. According to our the study, the risk of the bone fracture after the marginal mandibulectomy cannot be underestimated even the force of the masticatory muscle was reduced. The remaining bone height of the mandible still played an important role on the evaluation of the risk of bone fracture even the load of the masticatory muscle was reduced.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:14:23Z (GMT). No. of bitstreams: 1
U0001-2209202220314200.pdf: 164533322 bytes, checksum: e42770080e8375afeacdb27b59f56cda (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 I 誌謝 II 摘要 III ABSTRACT VI 目錄 X 表目錄 XVI 圖目錄 XVII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 4 1-2-1 下顎骨切除術(Mandibulectomy) 4 1-2-2 下顎骨彎曲(Mandibular flexure) 7 1-2-3 有限元素分析在人體下顎骨中的應用 9 1-2-4 材料特性(Material properties)的設定 11 1-2-5有限元素分析中的荷載(Load)設定 12 1-2-6 邊界條件(Boundary condition) 14 1-2-7 有限元素分析中模型的驗證(Verification) 16 1-2-8 有限元素分析中對於骨折(Bone fracture)的定義 18 1-2-9 下顎骨切除術患者的咬力(Biting force)與肌電圖(Electromyography, EMG)測試 20 1-2-10咀嚼效率(Chewing efficiency)測試 21 1-3 研究動機與目的(OBJECTIVE) 26 1-4 虛無假說(NULL HYPOTHESIS) 29 第二章 實驗一:殘餘咀嚼肌對於邊緣切除術後之缺損下顎骨應力之影響 30 2-1 實驗目的 30 2-2 實驗硬軟體設備 30 2-3 建立主模型的流程 30 2-3-1 影像處理 31 2-3-2 切除區設定 32 2-3-3 設定材料性質 33 2-3-4 設定荷載(Load) 34 2-3-5設定邊界條件(Boundary condition) 36 2-3-6 網格(Mesh)化處理 37 2-3-7 有限元素分析(Job)及參數(Parameters) 37 2-4 結果(RESULTS) 38 2-5 討論(DISCUSSION) 41 第三章 實驗二:以植體固定補綴物重建下顎骨缺損患者對其對口腔功能之影響 43 3-1 實驗目的 43 3-2 實驗材料與方法 43 3-2-1 實驗設計與受測者 43 3-2-1 最大咬合力測量(Maximum bite force analysis) 44 3-2-2 肌電圖(Electromyograph analysis) 45 3-2-3 咀嚼效率(Chewing efficiency) 46 3-2-4 研究步驟 47 3-2-5 統計分析(Statistical analysis) 49 3-3 結果(RESULTS) 49 3-4 討論(DISCUSSION) 52 第四章 綜合討論與臨床意義 56 第五章 未來展望 62 參考文獻 63 附錄APPENDIX 107 表 1 海綿骨(CANCELLOUS BONE)與皮質骨(CORTICAL BONE)材料特性(橫向等向性) [25] 68 表 2 切除區的材料性質(具有線彈性、均質、等向性)[25] 69 表 3 肌肉方向正交分量,由單位向量(即為方向餘弦)表示[31] 70 表 4 [表格 3]肌肉方向單位向量經由空間座標軸旋轉校正後之數值[45] 71 表 5 咀嚼肌個別截面積以及下顎進行右側大臼齒咬合(RIGHT MOLAR BITING)的權重因子(WEIGHTING FACTOR)和比例因子(SCALING FACTOR)[60] 72 表 6 不同肌肉荷載於不同剩餘骨脊高度的最大拉應變(MAXIMUM TENSILE STRAIN) 與最大壓應變(MAXIMUM COMPRESSION STRAIN, MCS)以及各組總平均值 73 表 7 最大拉應變(MTS)在不同肌群施力變化下對應不同剩餘骨脊高度折線圖 75 表 8 最大壓應變(MCS)在不同肌群施力變化下對應不同剩餘骨脊高度折線圖 76 表 9 實驗二之受測者資料與全頜曲面斷層片(PANORAMIC X RAY FILM) 77 表 10 最大咬力(CLENCHING)測試結果圖表(原始數值) 78 表 11肌電圖(EMG)測試結果圖表(原始數值) 79 表 12咬力測試結果比較正常側以及切除側差值與其百分比 80 表 13肌電圖測試結果比較正常側以及切除側差值與其百分比 81 表 14 統計分析結果(STATISTICAL ANALYSIS RESULTS) – 臺大臨床試驗中心 82 表 15咀嚼效率(CHEWING EFFICIENCY)測試結果 84 圖 1 匯入ABAQUS/CAE 6.13-1軟體的初始下顎骨模型 87 圖 2 切除區區域劃分(PARTITION) 88 圖 3 材料性質設定:材料方向(MATERIAL DIRECTION) 89 圖 4 咀嚼肌荷載施加方向圖示 90 圖 5 模型之下顎骨平面與ABAQUS/CAE 6-13-1軟體空間座標軸有一繞X軸於Y-Z平面逆時針方向旋轉15夾角 91 圖 6 邊界條件(BOUNDARY CONDITION) 92 圖 7 固體實心元件(上圖)以及殼元件(下圖)網格化處理 93 圖 8 左側又大臼齒大範圍切除區建立 94 圖 9校正義美寶吉果汁QQ軟糖應用於咀嚼效率測試咀嚼次數結果 95 圖 10 小野高裕教授等人提出評量咀嚼效率(CHEWING EFFICIENCY)的評分量表 97 圖 11 最大拉應變(MTS)與最大壓應變(MCS)之應變集中狀況 98 圖 12 七位受測者以口內掃描機紀錄之口內咬合紀錄 101 圖 13 咬合力測量於壓力感測片記錄壓力系統(THE DENTAL PRESCALE SYSTEM (DPS, GC CORP., TOKYO, JAPAN))軟體中呈現結果 102 圖 14 實際量測最大咬力下肌電圖(EMG)與壓力感測膜(DENTAL PRESCALE II SYSTEM, GC CORP., TOKYO, JAPAN)之圖示 106
dc.language.isozh-TW
dc.title咀嚼肌肌力對下顎骨切除術後之殘餘下顎骨應力分佈之影響zh_TW
dc.titleEffect due to the Masticatory Muscle Activity on the Strain Distribution of the Resected Mandibleen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林立德(Li-Deh Lin),洪志遠(Chi-Yuan Hong)
dc.subject.keyword下顎骨切除術,有限元素分析,最大咬合力,咀嚼肌效能,咀嚼效率,骨折風險,zh_TW
dc.subject.keywordMandibulectomy,Finite element analysis,Maximum bite force,EMG,Chewing efficiency,Risk of bone fracture,en
dc.relation.page116
dc.identifier.doi10.6342/NTU202203848
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-23
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
dc.date.embargo-lift2027-08-30-
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-2209202220314200.pdf
  目前未授權公開取用
160.68 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved