Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 公共衛生碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84522
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳秀熙(Hsiu-Hsi Chen)
dc.contributor.authorFu-Jen Leeen
dc.contributor.author李輔仁zh_TW
dc.date.accessioned2023-03-19T22:14:19Z-
dc.date.copyright2022-10-13
dc.date.issued2022
dc.date.submitted2022-09-23
dc.identifier.citationAkino, K., Toyota, M., Suzuki, H., Mita, H., Sasaki, Y., Ohe-Toyota, M., Tokino, T. The Ras effector RASSF2 is a novel tumor-suppressor gene in human colorectal cancer. Gastroenterology, 2005; 129(1): 156-169. doi:10.1053/j.gastro.2005.03.051 Ausch, C., Kim, Y. H., Tsuchiya, K. D., Dzieciatkowski, S., Washington, M. K., Paraskeva, C., Grady, W. M. Comparative analysis of PCR-based biomarker assay methods for colorectal polyp detection from fecal DNA. Clin Chem, 2009; 55(8): 1559-1563. doi:10.1373/clinchem.2008.122937 Bedenne L, Faivre J, Boutron MC, Piard F, Cauvin JM, Hillon P. Adenoma–carcinoma sequence of ‘de novo’ carcinogenesis. A study of adenomatous remnants in a population-based series of large bowel cancer. Cancer,1992; 69: 883-888. Bosch, L. J., Carvalho, B., Fijneman, R. J., Jimenez, C. R., Pinedo, H. M., Van Engeland, M., & Meijer, G. A. Molecular tests for colorectal cancer screening. Clinical colorectal cancer, 2011; 10(1): 8-23. Botteri, E., Iodice, S., Bagnardi, V., Raimondi, S., Lowenfels, A. B., & Maisonneuve, P. Smoking and colorectal cancer: a meta-analysis. Jama, 2008; 300(23): 2765-2778. Boumber, Y. A., Kondo, Y., Chen, X., Shen, L., Gharibyan, V., Konishi, K., Issa, J. P. RIL, a LIM gene on 5q31, is silenced by methylation in cancer and sensitizes cancer cells to apoptosis. Cancer Res, 2007; 67(5): 1997-2005. doi:10.1158/0008-5472.Can-06-3093 Broderick, P., Carvajal-Carmona, L., Pittman, A. M., Webb, E., Howarth, K., Rowan, A., Houlston, R. S. A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nat Genet, 2007; 39(11): 1315-1317. doi:10.1038/ng.2007.18 Cenin, D. R., Naber, S. K., de Weerdt, A. C., Jenkins, M. A., Preen, D. B., Ee, H. C., Lansdorp-Vogelaar, I. Cost-Effectiveness of Personalized Screening for Colorectal Cancer Based on Polygenic Risk and Family HistoryPersonalized Screening for Colorectal Cancer: Cost-Effectiveness Analysis. Cancer Epidemiology, Biomarkers & Prevention, 2020; 29(1): 10-21. Chang, L.-C., Shun, C.-T., Hsu, W.-F., Tu, C.-H., Tsai, P.-Y., Lin, B.-R., Chiu, H.-M. Fecal immunochemical test detects sessile serrated adenomas and polyps with a low level of sensitivity. Clinical Gastroenterology and Hepatology, 2017; 15(6):872-879, e871. Chen H, Lu M, Liu C, et al.,. Comparative evaluation of participation and diagnostic yield of colonoscopy vs fecal immunochemical test vs risk-adapted screening in colorectal cancer screening: interim analysis of a multicenter randomized controlled trial (TARGET-C). Am J Gastroenterol, 2020; 115: 1264-74. Chen, C., Yen, M., Wang, W., Wong, J., & Chen, T.-H. A case–cohort study for the disease natural history of adenoma–carcinoma and de novo carcinoma and surveillance of colon and rectum after polypectomy: implication for efficacy of colonoscopy. British journal of cancer, 2003; 88(12): 1866-1873. Chen, L.-S., Yen, A. M.-F., Chiu, S. Y.-H., Liao, C.-S., & Chen, H.-H. Baseline faecal occult blood concentration as a predictor of incident colorectal neoplasia: longitudinal follow-up of a Taiwanese population-based colorectal cancer screening cohort. The lancet oncology, 2011; 12(6): 551-558. Chen, T., Chiu, Y., Luh, D., Yen, M., Wu, H., & Chen, L. Taiwan Community-Based Integrated Screening Group. Community-based multiple screening model: design, implementation, and analysis of 42,387 participants. Cancer, 2004; 100(8): 1734-1743. Chiu, H. M., Chen, S. L. S., Yen, A. M. F., Chiu, S. Y. H., Fann, J. C. Y., Lee, Y. C., Chen, H. H. Effectiveness of fecal immunochemical testing in reducing colorectal cancer mortality from the O ne M illion T aiwanese S creening P rogram. Cancer, 2015; 121(18) : 3221-3229. Chiu, H. M., Lee, Y. C., Tu, C. H., Chen, C. C., Tseng, P. H., Liang, J. T., Wu, M. S. Association between early stage colon neoplasms and false-negative results from the fecal immunochemical test. Clin Gastroenterol Hepatol, 2013; 11(7): 832-838.e831-832. doi:10.1016/j.cgh.2013.01.013 Chiu, H. M., Lee, Y. C., Tu, C. H., Chen, C. C., Tseng, P. H., Liang, J. T., Wu, M. S. Association between early stage colon neoplasms and false-negative results from the fecal immunochemical test. Clinical Gastroenterology and Hepatology, 2013; 11(7): 832-838, e832. Chiu, H. M., Lin, J. T., Shun, C. T., Liang, J. T., Lee, Y. C., Huang, S. P., & Wu, M. S. Association of metabolic syndrome with proximal and synchronous colorectal neoplasm. Clinical Gastroenterology and Hepatology, 2007; 5(2): 221-229. Chiu, H.M., Ching, J.Y.L., Wu, K.C., et al. A risk-scoring system combined with a fecal immunochemical test is effective in screening high-risk subjects for early colonoscopy to detect advanced colorectal neoplasms. Gastroenterology, 2016; 150(3): 617-625, e3. Chiu, H.-M., Lee, Y.-C., Tu, C.-H., Chang, L.-C., Hsu, W.-F., Chou, C.-K., Wu, M.-S. Effects of metabolic syndrome and findings from baseline colonoscopies on occurrence of colorectal neoplasms. Clinical Gastroenterology and Hepatology, 2015; 13(6): 1134-1142, e1138. Cox, D. R., & Miller, H. D. The theory of stochastic processes: Routledge, 2017. Davidson, K. W., Barry, M. J., Mangione, C. M. et al.,. Screening for Colorectal Cancer: US Preventive Services Task Force Recommendation Statement. JAMA, 2021; 325(19): 1965-1977. Fodde R.,. The APC gene in colorectal cancer. Eur J Cancer, 2002; 38 (7): 867-71. Forootan, M., Tabatabaeefar, M., Yahyaei, M., & Maghsoodi, N. Metabolic syndrome and colorectal cancer: a cross-sectional survey. Asian Pacific journal of cancer prevention, 2012; 13(10): 4999-5002. Frigola, J., Muñoz, M., Clark, S. J., Moreno, V., Capellà, G., & Peinado, M. A. Hypermethylation of the prostacyclin synthase (PTGIS) promoter is a frequent event in colorectal cancer and associated with aneuploidy. Oncogene, 2005; 24(49): 7320-7326. doi:10.1038/sj.onc.1208883 Grobbee, E. J., Schreuders, E. H., Hansen, B. E., Bruno, M. J., Lansdorp-Vogelaar, I., Spaander, M. C., & Kuipers, E. J. Association between concentrations of hemoglobin determined by fecal immunochemical tests and long-term development of advanced colorectal neoplasia. Gastroenterology, 2017; 153(5): 1251-1259, e1252. Haiman, C. A., Le Marchand, L., Yamamato, J., Stram, D. O., Sheng, X., Kolonel, L. N., Henderson, B. E. A common genetic risk factor for colorectal and prostate cancer. Nat Genet, 2007; 39(8): 954-956. doi:10.1038/ng2098 Hirota S, Kudo S, Hosobe, Kobayashi T, Himori M, Ikeka M, Takemoto Y, Nomoto M, Aoyagi Y, Asakura H. P53 immunoreactive stain and early colorectal adenocarcinoma. Eur J Cancer, 1995; 31: 2220-2222. Imperiale, T. F., Ransohoff, D. F., Itzkowitz, S. H., Levin, T. R., Lavin, P., Lidgard, G. P., Berger, B. M. Multitarget stool DNA testing for colorectal-cancer screening. New England Journal of Medicine, 2014; 370(14): 1287-1297. Imperiale, T. F., Ransohoff, D. F., Itzkowitz, S. H., Turnbull, B. A., & Ross, M. E. Fecal DNA versus fecal occult blood for colorectal-cancer screening in an average-risk population. New England Journal of Medicine, 2004; 351(26): 2704-2714. Jeon, J., Du, M., Schoen, R. E., Hoffmeister, M., Newcomb, P. A., Berndt, S. I., Chang-Claude, J. Determining risk of colorectal cancer and starting age of screening based on lifestyle, environmental, and genetic factors. Gastroenterology, 2018; 154(8): 2152-2164, e2119. Johnson, C. M., Wei, C., Ensor, J. E., Smolenski, D. J., Amos, C. I., Levin, B., & Berry, D. A. Meta-analyses of colorectal cancer risk factors. Cancer causes & control, 2013; 24(6): 1207-1222. Kinzler, K., and Vogelstein, B. Lessons from hereditary colorectal cancer. Cel, 1996; 87: 159-170. Knudsen, A. B., Zauber, A. G., Rutter, C. M., Naber, S. K., Doria-Rose, V. P., Pabiniak, C., Kuntz, K. M. Estimation of benefits, burden, and harms of colorectal cancer screening strategies: modeling study for the US Preventive Services Task Force. Jama, 2016; 315(23): 2595-2609. Kolodner, R. Bochemistry and genetics of eukaryotic mismatch repair. Genes Dev, 1996; 10: 1433-1442. Kudo S, Kashida H, Tamura T. Early colorectal cancer: flat or depressed type. J Gastroenterol Hepatol, 2000; 15 Suppl: D66-70. doi:10.1046/j.1440-746.2000.02140.x Kudo S, Tamura S, Hirota S, Sano Y, Yamano H, Serizawa M, Fukuoka T, Mitsuoka H, Nakajima T, Kusaka H. The problem of de novo colorectal carcinoma. Eur J Cancer, 1995; 31: 1118-1120. Kudo, S. E., Sugihara, Y., Kida, H., Ishida, F., Miyachi, H., Mori, Y., Hamatani, S. Depressed-Type Colonic Lesions and 'De Novo' Cancer in Familial Adenomatous Polyposis: A Colonoscopist's Viewpoint. ISRN Gastroenterol, 2013; 838134. doi:10.1155/2013/838134 Kuntz KM, Lansdorp-Vogelaar I, Rutter CM, et al. A systematic comparison of microsimulation models of colorectal cancer: the role of assumptions about adenoma progression. Med Decis Making, 2011; 31: 530-539. Lee, J. K., Liles, E. G., Bent, S., Levin, T. R., & Corley, D. A. Accuracy of fecal immunochemical tests for colorectal cancer: systematic review and meta-analysis. Annals of internal medicine, 2014; 160(3): 171-181. Lee, Y.-C., Li-Sheng Chen, S., Ming-Fang Yen, A., Yueh-Hsia Chiu, S., Ching-Yuan Fann, J., Chuang, S.-L., Wu, M.-S. Association between colorectal cancer mortality and gradient fecal hemoglobin concentration in colonoscopy noncompliers. JNCI: Journal of the National Cancer Institute, 2017; 109(5). Levin, T. R., Corley, D. A., Jensen, C. D., Schottinger, J. E., Quinn, V. P., Zauber, A. G., Ghai, N. R. Effects of organized colorectal cancer screening on cancer incidence and mortality in a large community-based population. Gastroenterology, 2018; 155(5): 1383-1391, e1385. Lila E Mullany , Roger K Wolff , Jennifer S Herrick , Matthew F Buas , Martha L Slattery. SNP Regulation of microRNA Expression and Subsequent Colon Cancer Risk. PLoS One, 2015; 10(12), e0143894. Lin, K. M., Shashidharan, M., Ternent, C. A., Thorson, A. G., Blatchford, G. J., Christensen, M. A., Lynch, H. T. Colorectal and extracolonic cancer variations in MLH1/MSH2 hereditary nonpolyposis colorectal cancer kindreds and the general population. Dis Colon Rectum, 1998; 41(4): 428-433. doi:10.1007/bf02235755 Lind, G. E., Danielsen, S. A., Ahlquist, T., Merok, M. A., Andresen, K., Skotheim, R. I., Hoff, G. Identification of an epigenetic biomarker panel with high sensitivity and specificity for colorectal cancer and adenomas. Molecular cancer, 2011; 10(1): 1-15. Lind, G. E., Danielsen, S. A., Ahlquist, T., Merok, M. A., Andresen, K., Skotheim, R. I., Lothe, R. A. Identification of an epigenetic biomarker panel with high sensitivity and specificity for colorectal cancer and adenomas. Mol Cancer, 2011; 10: 85. doi:10.1186/1476-4598-10-85 Muto, T., Bussey, H. J., Morson, B. C. The evolution of cancer of the colon and rectum. Cancer, 1975; 36(6): 2251-70. Robertson, D. J., Ladabaum, U. Opportunities and Challenges in Moving From Current Guidelines to Personalized Colorectal Cancer Screening. Gastroenterology, 2019; 156(4): 904-917. Sanford, N. N., Giovannucci, E. L., Ahn, C., Dee, E. C., & Mahal, B. A. Obesity and younger versus older onset colorectal cancer in the United States, 1998-2017. Journal of gastrointestinal oncology, 2020; 11(1): 121. Schreuders, E. H., Ruco, A., Rabeneck, L., Schoen, R. E., Sung, J. J., Young, G. P., & Kuipers, E. J. Colorectal cancer screening: a global overview of existing programmes. Gut, 2015; 64(10): 1637-1649. Shannon, B., Kay, P., House, A., & Iacopetta, B. Hypermethylation of the MYF-3 gene in colorectal cancers: associations with pathological features and with microsatellite instability. Int J Cancer, 1999; 84(2): 109-113. doi:10.1002/(sici)1097-0215(19990420)84:2<109::aid-ijc3>3.0.co;2-f Siegel, R. L., Miller, K. D., Goding Sauer, A., Fedewa, S. A., Butterly, L. F., Anderson, J. C., Jemal, A. Colorectal cancer statistics, 2020. CA: a cancer journal for clinicians, 2020; 70(3): 145-164. Stolte M, Bethke B. Colorectal mini-de novo carcinoma: a reality in Germany too. Endoscopy, 1995; 27: 286-290. Sung, J. J. Y., Chiu, H. M., Lieberman, D. et al.,. Third Asia-Pacific consensus recommendations on colorectal cancer screening and postpolypectomy surveillance. Gut, 2022; gutjnl-2022-327377. doi: 10.1136/gutjnl-2022-327377. Sung, J. J. Y., Wong, M. C. S., Lam, T. Y. T., Tsoi, K. K. F., Chan, V. C. W., Cheung, W., & Ching, J. Y. L. A modified colorectal screening score for prediction of advanced neoplasia: A prospective study of 5744 subjects. J Gastroenterol Hepatol, 2018; 33(1): 187-194. doi:10.1111/jgh.13835 Sung, J. J., Lau, J. Y., Goh, K. L., & Leung, W. K. Increasing incidence of colorectal cancer in Asia: implications for screening. Lancet Oncol, 2005; 6(11): 871-876. doi:10.1016/s1470-2045(05)70422-8 Sung, J., Lau, J., Young, G. P., Sano, Y., Chiu, H., Byeon, J.-S., Rerknimitr, R. Asia Pacific consensus recommendations for colorectal cancer screening. Gut, 2008; 57(8): 1166-1176. Tahara, T., Yamamoto, E., Madireddi, P., Suzuki, H., Maruyama, R., Chung, W., Garriga, J., Estécio, M. R. Colorectal carcinomas with CpG island methylator phenotype 1 frequently contain mutations in chromatin regulators. Gastroenterology, 2014; 146(2): 530-38, e5. Tenesa, A., Farrington, S. M., Prendergast, J. G., Porteous, M. E., Walker, M., Haq, N., Dunlop, M. G. Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat Genet, 2008; 40(5): 631-637. doi:10.1038/ng.133 Tomlinson, I. P., Webb, E., Carvajal-Carmona, L., Broderick, P., Howarth, K., Pittman, A. M., Houlston, R. S. A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nat Genet, 2008; 40(5): 623-630. doi:10.1038/ng.111 Toyooka, S., Toyooka, K. O., Harada, K., Miyajima, K., Makarla, P., Sathyanarayana, U. G., Meltzer, S. J. Aberrant methylation of the CDH13 (H-cadherin) promoter region in colorectal cancers and adenomas. Cancer research, 2002; 62(12): 3382-3386. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Nati Acad Sci U.S.A., 1999; 96: 8681-8686. Toyota, M., Ohe-Toyota, M., Ahuja, N., & Issa, J.-P. J. Distinct genetic profiles in colorectal tumors with or without the CpG island methylator phenotype. Proceedings of the National Academy of Sciences, 2000; 97(2): 710-715. Tsujitani S, Shirai H, Tatebe S, Sugamura K, Ohfuji S, Gomyo Y, Maeta M, Ito H, Kaibara N. Apoptotic cell death and its relationship to carcinogenesis in colorectal carcinoma. Cancer, 1996; 77 (8 Suppl): 1711-1716. Wada R, Matsukuma S, Abe H, Kuwabara N, Suda K, Arakawa A, Kitamura S. Histopathological studies of superficial-type early colorectal carcinoma. Cancer, 1996; 77: 44-50. Wolf, A. M. D., Fontham, E. T. H., Church, T. R., Smith, R. A. Colorectal cancer screening for average-risk adults: 2018 guideline update from the American Cancer Society. CA Cancer J Clin, 2018; 68(4): 250-281 Wong, M. C., Ching, J. Y., Chan, V. C., Lam, T. Y., Shum, J. P., Luk, A. K., Wu, J. C. Diagnostic accuracy of a qualitative fecal immunochemical test varies with location of neoplasia but not number of specimens. Clinical Gastroenterology and Hepatology, 2015; 13(8): 1472-1479. Xi, Y., & Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Translational Oncology, 2021; 14(10): 101174. Yeager, M., Xiao, N., Hayes, R. B., Bouffard, P., Desany, B., Burdett, L., Chanock, S. J. Comprehensive resequence analysis of a 136 kb region of human chromosome 8q24 associated with prostate and colon cancers. Hum Genet, 2008; 124(2): 161-170. doi:10.1007/s00439-008-0535-3 Yen, A. M., Chen, S. L., Chiu, S. Y., Fann, J. C., Wang, P. E., Lin, S. C., Chen, H. H. A new insight into fecal hemoglobin concentration-dependent predictor for colorectal neoplasia. Int J Cancer, 2014; 135(5): 1203-1212. doi:10.1002/ijc.28748 Yeoh, K. G., Ho, K. Y., Chiu, H. M., Zhu, F., Ching, J. Y., Wu, D. C., Sung, J. J. The Asia-Pacific Colorectal Screening score: a validated tool that stratifies risk for colorectal advanced neoplasia in asymptomatic Asian subjects. Gut, 2011; 60(9): 1236-1241. doi:10.1136/gut.2010.221168 Young, G. P., & Bosch, L. J. Fecal tests: from blood to molecular markers. Current colorectal cancer reports, 2011; 7(1): 62-70. Zorzi, M., Fedeli, U., Schievano, E., Bovo, E., Guzzinati, S., Baracco, S., Dei Tos, A. P. Impact on colorectal cancer mortality of screening programmes based on the faecal immunochemical test. Gut, 2015; 64(5): 784-790.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84522-
dc.description.abstract背景 由於糞便血紅蛋白濃度(f-Hb)已被證明是大腸直腸癌發生及死亡的預測因子。因此,如何利用 f-Hb 結合已開發的個人化基因資料來運用糞便免疫測試 (FIT)來發展個人化大腸直腸癌是值得研究的。 研究目的 鑑於有限的醫療資源和大腸鏡檢查的專業人力,我們的目標是開發精準的大腸直腸癌 FIT 篩檢,以優化 FIT 和大腸鏡檢查的使用。 研究方法 我們首先建立了一個具有特定狀態相關多因子多階段疾病進展模型,利用此模型發展一動態個人化風險預測模型,用於從小腺瘤到大腺瘤和臨床前可偵測大腸直腸癌( CRC )直至臨床期 CRC 的轉變。我們使用透過文獻回顧可獲得的資料來估計每個特定疾病狀態中相關因子的臨床比重。我們依照個人化風險預測模式使用數位雙胞胎方法創建兩個虛擬組別,分別為兩年篩檢與精準個人化篩檢。我們使用馬可夫指數回歸模式來估計臨床權重以建立多重疾病狀態風險分數。 結果 我們呈現多重疾病狀態風險分數並衍生動態個人化風險曲線。發展每十分位數分布的風險分數來預測大腸直腸癌的風險。更依據此風險分數將篩檢間隔分為1-6年形成個人化篩檢依據。在這一百萬人口中,我們所設計的個人化篩檢間隔結果發現精準大腸直腸癌FIT可減少12% FIT檢測量,在 7% 的陽性率下,產生840251次FIT 和 58818支大腸鏡檢查的減少。 結論 透過發展個人化不同間隔的篩檢(不管有無結合糞便DNA測試),我們證實糞便血紅蛋白濃度合併基因訊息的最佳使用可以減少FIT測試及大腸鏡檢查。zh_TW
dc.description.abstractBackground As fecal hemoglobin concentration (f-Hb) has been demonstrated as a predictor for incident colorectal cancer and its mortality, it is of worthy of being investigated how to make use of f-Hb combined with the already developed personalized genetic profiles to develop personalized colorectal cancer screening with fecal immunological test (FIT). Objective We aimed to develop precision colorectal cancer FIT screening for the optimal use of FIT and colonoscopies given limited medical resources and professional manpower for colonoscopy. Methods We first built up a multistate disease progression model with the superimposition of state-specific correlates for dynamic personalized risk prediction model for each transition from small adenoma, through large adenoma and pre-clinical detectable CRC until clinical CRC. Each clinical weight corresponding to each state-specific correlate was estimated by using available empirical tabular data from literature review. A digital twin approach was used to create two virtual groups guided by the proposed individualized multistate risk prediction model including biennial screening regime versus precision screening regime. The Markov exponential regression model was applied to estimate clinical weights for building multistate risk scores. Results Multistate risk scores are presented for deriving dynamic personalized risk curves. The decile distribution of risk score was developed for predicting the risk of CRC. Various inter-screening intervals were further assigned for each decile of risk score ranging from 1 to 6 years. Given personalized inter-screening interval assigned for one million population, precision CRC FIT reduced 12% of FIT test, yielding the reduction of 840251 FIT and 58818 colonoscopies given 7% positive rate. Conclusions The optimal use of f-HB with or without combing genetic profiles for reducing FIT test and colonoscopies has been demonstrated by developing personalized inter-screening with and without stool DNA test.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:14:19Z (GMT). No. of bitstreams: 1
U0001-2209202212114100.pdf: 1639558 bytes, checksum: b257cfdd156c07d69038994301cd8901 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents目錄 謝辭 i 中文摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 vii 第一章 導論 1 1.1 實習單位特色與簡介 (Practicum Unit Features and Brief Introduction) 1 1.2 大腸直腸癌疾病負擔與組織性篩檢策略 1 1.3 文獻回顧 3 1.3.1 大腸直腸癌之免疫糞便潛血篩檢 3 1.3.2 多標靶糞便DNA檢查(Multi-Target Stool DNA Test) 在大腸直腸癌篩檢的角色 4 1.3.3 大腸直腸癌的個人化篩檢策略 5 1.3.4 大腸直腸癌疾病進展 5 1.3.5 多階段進程與大腸癌疾病進展 7 1.4 研究目的與研究問題 (Research Purpose and Research Problems) 8 1.4.1 研究動機 8 1.4.2 研究目的 9 第二章 材料與方法 10 2.1 研究資料建構 10 2.2 大腸直腸癌多階段疾病進展 10 2.3 大腸直腸癌篩檢策略 11 2.4 篩檢策略效益評估指標 11 2.5 族群篩檢策略評估 12 第三章 結果 13 3.1 建構大腸直腸癌多階段和多因子模型 13 3.2 糞便血紅蛋白(f-Hb)濃度對大腸直腸癌風險的影響 16 3.3 風險分類 (Risk classification) 17 3.4 大型腺瘤至大腸直腸癌的停留時間(dwelling time) 17 3.5 個人化大腸結腸癌篩檢效益 18 3.6 從基因及糞便血紅蛋白(f-Hb)濃度評估大腸直腸癌風險 20 3.7 個人化大腸結腸癌篩檢優勢 21 第四章 討論 23 4.1 結合糞便血紅蛋白濃度及糞便DNA檢測之個人化篩檢的利益 23 4.2 結合糞便血紅蛋白及基因為導向的個人化多狀態風險評估模型 23 4.3 基因檢測的經濟考量 24 4.4 關於個人化風險電腦運算的臨床應用相關性 24 4.5 研究限制 24 4.6 結論 25 參考文獻 26 圖目錄 圖1 大腸直腸癌的自然病史圖 6 圖2 不同階段皆有影響因子大腸癌五階段自然病史馬可夫模型 13 圖3 誘發大腸腺瘤之危險因子的相對風險 14 圖4 馬可夫大腸癌自然病史模型中,第二階段至第五階段之基因危險因子之相對風險 15 圖5 基礎糞便血紅濃度與大腸直腸癌死亡率之風險比例 16 圖6 不同風險評分百分位數的大腸直腸癌累積風險 17 表目錄 表1 不同引發因子組合下,大腺瘤到浸潤癌的停留時間 18 表2 不同篩檢策略降低大腸直腸癌死亡率有效性的模擬結果(按風險百分位) 19 表3 依風險分層大腸癌罹病風險、陽性概似值及陰性概似值 20 表4 依風險分層個人化篩檢策略建議 21 表5 無篩檢、兩年一次免疫法篩檢及個人化篩檢模擬結果 22
dc.language.isozh-TW
dc.title結合糞便血紅蛋白及基因模式的大腸直腸癌個人化篩檢zh_TW
dc.titleThe Combination of Fecal Hemoglobin with Gene for Personalized Colorectal Cancer Screeningen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李宜家(Yi-Chia Lee),邱瀚模(Han-Mo Chiu),張吉仰(Chi-Yang Chang)
dc.subject.keyword個人化篩檢,糞便血紅蛋白濃度,大腸直腸癌,風險分層,馬可夫模型,zh_TW
dc.subject.keywordPersonalized screening,Fecal hemoglobin concentration,Colorectal cancer,Risk stratification,Markov model,en
dc.relation.page35
dc.identifier.doi10.6342/NTU202203804
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-23
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept公共衛生碩士學位學程zh_TW
dc.date.embargo-lift2022-10-13-
顯示於系所單位:公共衛生碩士學位學程

文件中的檔案:
檔案 大小格式 
U0001-2209202212114100.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
1.6 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved