Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84509
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉振良(Cheng-Liang Liu)
dc.contributor.authorYi-Chun Hsiaoen
dc.contributor.author蕭亦淳zh_TW
dc.date.accessioned2023-03-19T22:13:53Z-
dc.date.copyright2022-10-13
dc.date.issued2022
dc.date.submitted2022-09-29
dc.identifier.citation[1] A. S. Rattner, S. Garimella, Energy 2011, 36, 6172. [2] I. Gur, K. Sawyer, R. Prasher, Science 2012, 335, 1454. [3] P. A. Lolos, E. D. Rogdakis, Energy 2009, 34, 457. [4] J. Bao, L. Zhao, Renewable and Sustainable Energy Reviews 2013, 24, 325. [5] A. J. White, Applied Energy 2009, 86, 2443. [6] Y. Liu, Q. Jiang, J. Zhang, W. Ding, J. Xu, P. Liu, G. Nie, H. Mao, F. Jiang, Materials Advances 2020, 1, 1125. [7] J.-L. Mi, N. Lock, T. Sun, M. Christensen, M. Søndergaard, P. Hald, H. H. Hng, J. Ma, B. B. Iversen, ACS Nano 2010, 4, 2523. [8] M. Li, P. Ying, Z. Du, X. Liu, X. Li, T. Fang, J. Cui, ACS Applied Materials & Interfaces 2022, 14, 8171. [9] Y. Cao, H. Bai, Z. Li, Z. Zhang, Y. Tang, X. Su, J. Wu, X. Tang, ACS Applied Materials & Interfaces 2021, 13, 43134. [10] Y. Liu, M. Cui, W. Ling, L. Cheng, H. Lei, W. Li, Y. Huang, Energy & Environmental Science 2022, DOI: 10.1039/D2EE01457B. [11] B. Yang, G. Portale, Colloid and Polymer Science 2021, 299, 465. [12] J. Duan, G. Feng, B. Yu, J. Li, M. Chen, P. Yang, J. Feng, K. Liu, J. Zhou, Nature Communications 2018, 9, 5146. [13] M. A. Rahman, M. Z. Saghir, International Journal of Heat and Mass Transfer 2014, 73, 693. [14] H. Wang, D. Zhao, Z. U. Khan, S. Puzinas, M. P. Jonsson, M. Berggren, X. Crispin, Advanced Electronic Materials 2017, 3, 1700013. [15] H. Cheng, X. He, Z. Fan, J. Ouyang, Advanced Energy Materials 2019, 9, 1901085. [16] S. L. Kim, H. T. Lin, C. Yu, Advanced Energy Materials 2016, 6, 1600546. [17] F. Jiao, A. Naderi, D. Zhao, J. Schlueter, M. Shahi, J. Sundström, H. Granberg, J. Edberg, U. Ail, J. Brill, T. Lindström, M. Berggren, X. Crispin, Journal of Materials Chemistry A 2017, 5, 16883. [18] Z. A. Akbar, J.-W. Jeon, S.-Y. Jang, Energy & Environmental Science 2020, 13, 2915. [19] D. Zhao, A. Martinelli, A. Willfahrt, T. Fischer, D. Bernin, Z. U. Khan, M. Shahi, J. Brill, M. P. Jonsson, S. Fabiano, X. Crispin, Nature Communications 2019, 10, 1093. [20] Y. Fang, H. Cheng, H. He, S. Wang, J. Li, S. Yue, L. Zhang, Z. Du, J. Ouyang, Advanced Functional Materials 2020, 30, 2004699. [21] X. He, H. Cheng, S. Yue, J. Ouyang, Journal of Materials Chemistry A 2020, 8, 10813. [22] S. Horike, Q. Wei, K. Kirihara, M. Mukaida, T. Sasaki, Y. Koshiba, T. Fukushima, K. Ishida, ACS Applied Materials & Interfaces 2020, 12, 43674. [23] C. Liu, Q. Li, S. Wang, W. Liu, N. X. Fang, S.-P. Feng, Nano Energy 2022, 92, 106738. [24] Z. A. Akbar, Y. T. Malik, D.-H. Kim, S. Cho, S.-Y. Jang, J.-W. Jeon, Small 2022, 18, 2106937. [25] D. Zhao, H. Wang, Z. U. Khan, J. C. Chen, R. Gabrielsson, M. P. Jonsson, M. Berggren, X. Crispin, Energy & Environmental Science 2016, 9, 1450. [26] T. Li, X. Zhang, S. D. Lacey, R. Mi, X. Zhao, F. Jiang, J. Song, Z. Liu, G. Chen, J. Dai, Y. Yao, S. Das, R. Yang, R. M. Briber, L. Hu, Nature Materials 2019, 18, 608. [27] J. Chen, L. Zhang, Y. Tu, Q. Zhang, F. Peng, W. Zeng, M. Zhang, X. Tao, Nano Energy 2021, 88, 106272. [28] X. Yang, Y. Tian, B. Wu, W. Jia, C. Hou, Q. Zhang, Y. Li, H. Wang, ENERGY & ENVIRONMENTAL MATERIALS 2022, 5, 954. [29] C.-G. Han, X. Qian, Q. Li, B. Deng, Y. Zhu, Z. Han, W. Zhang, W. Wang, S.-P. Feng, G. Chen, W. Liu, Science 2020, 368, 1091. [30] B. Chen, Q. Chen, S. Xiao, J. Feng, X. Zhang, T. Wang, Science Advances 7, eabi7233. [31] Q. Chen, B. Chen, S. Xiao, J. Feng, J. Yang, Q. Yue, X. Zhang, T. Wang, ACS Applied Materials & Interfaces 2022, 14, 19304. [32] Y. He, Q. Zhang, H. Cheng, Y. Liu, Y. Shu, Y. Geng, Y. Zheng, B. Qin, Y. Zhou, S. Chen, J. Li, M. Li, G. O. Odunmbaku, C. Li, T. Shumilova, J. Ouyang, K. Sun, The Journal of Physical Chemistry Letters 2022, 13, 4621. [33] B. Liu, N. Jin, Current Organic Chemistry 2016, 20, 2109. [34] K. Dong, X. Liu, H. Dong, X. Zhang, S. Zhang, Chemical Reviews 2017, 117, 6636. [35] M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, B. Scrosati, Nature Materials 2009, 8, 621. [36] K. Liu, W. Zhang, H. Cheng, L. Luo, B. Wang, Z. Mao, X. Sui, X. Feng, ACS Applied Materials & Interfaces 2021, 13, 10612. [37] J. Lieb, V. Demontis, D. Prete, D. Ercolani, V. Zannier, L. Sorba, S. Ono, F. Beltram, B. Sacépé, F. Rossella, Advanced Functional Materials 2019, 29, 1804378. [38] K. Eguchi, M. M. Matsushita, K. Awaga, Physical Chemistry Chemical Physics 2019, 21, 18823. [39] S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan, F. Fu, M. Kawecki, X. Liu, N. Sakai, J. T.-W. Wang, S. Huettner, S. Buecheler, M. Fahlman, F. Gao, H. J. Snaith, Nature 2019, 571, 245. [40] J. Ye, M. M. Byranvand, C. O. Martínez, R. L. Z. Hoye, M. Saliba, L. Polavarapu, Angewandte Chemie International Edition 2021, 60, 21636. [41] Y. Fang, X.-Y. Yu, X. W. Lou, Matter 2019, 1, 90. [42] S. Brutti, E. Simonetti, M. De Francesco, A. Sarra, A. Paolone, O. Palumbo, S. Fantini, R. Lin, A. Falgayrat, H. Choi, M. Kuenzel, S. Passerini, G. B. Appetecchi, Journal of Power Sources 2020, 479, 228791. [43] S. Kee, H. Kim, S. H. K. Paleti, A. El Labban, M. Neophytou, A.-H. Emwas, H. N. Alshareef, D. Baran, Chemistry of Materials 2019, 31, 3519. [44] Z. Liu, H. Cheng, H. He, J. Li, J. Ouyang, Advanced Functional Materials 2022, 32, 2109772. [45] O. Hu, J. Lu, G. Chen, K. Chen, J. Gu, S. Weng, L. Hou, X. Zhang, X. Jiang, ACS Sustainable Chemistry & Engineering 2021, 9, 9833. [46] R. Konefał, Z. Morávková, B. Paruzel, V. Patsula, S. Abbrent, K. Szutkowski, S. Jurga, Polymers 2020, 12. [47] D. Aryal, V. Ganesan, ACS Macro Letters 2018, 7, 739. [48] D. Aryal, V. Ganesan, The Journal of Chemical Physics 2018, 149, 224902. [49] C. Chi, M. An, X. Qi, Y. Li, R. Zhang, G. Liu, C. Lin, H. Huang, H. Dang, B. Demir, Y. Wang, W. Ma, B. Huang, X. Zhang, Nature Communications 2022, 13, 221. [50] H. S. Mansur, R. L. Oréfice, A. A. P. Mansur, Polymer 2004, 45, 7193.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84509-
dc.description.abstract隨著工業的發展,環保及永續發展已經成為人類社會的一個大議題。在我們的生活中,大量的低溫熱能常常因為無法轉化成人類可利用的能源而成為一種浪費。近年來,由於人們發現thermoelectric generators(TEGs)具有將熱能轉換為電能的特點而被廣泛的研究。然而,傳統的TEGs所產生的thermopower (又稱Seebeck coefficient) 只有幾百mV K-1,難以使電子裝置正常操作。為了解決這個問題,通過索雷效應(soret effect)的熱充電電容(thermally chargeable supercapacitors,TCCs)顯示的thermopower可達到幾十mV K-1,可解決傳統TEGs所遇到的問題。此外,可穿戴電子設備常可用於醫療保健、溫度感測器,為了讓電子產品不會因人體運動所產生損壞,具有可拉伸性質的穿戴式熱電元件便成為了研究的重點。 在這項研究中,為了實現高性能的熱電轉換和可拉伸的特性。我們使用了具有高機械強度的雙交聯網絡水凝膠作為熱電的系統。並將均勻混和的聚乙烯醇(PVA)、海藻酸鈉(SA)和聚乙二醇(PEG)的溶液透過凍融法(freeze-thaw method)形成水凝膠,隨後浸泡在不同濃度的四氟硼酸鹽(NaBF4)水溶液中製備PVA/SA/PEG/NaBF4 TCCs。並發現在1.5M NaBF4溶液中,PVA/SA/PEG/NaBF4水凝膠具有最高的機械性能,其拉伸性可達114 %,最大拉伸強度為69 kPa。此外,在熱電性能的表現上,在相對溼度60%下,其Seebeck coefficient還可達到50.9 mV K-1,離子導電率更可達到31.4 mS cm-1,Power factor 為 8.1 mW m-1 K-2。因此證明了透過SA的Manning’s “counterion condensation”和PVA聚合物鏈於低溫生成結晶所產生的協同作用下能夠使Na+和BF4-在熱泳效應下產生遷移率上的不同進而大大提升了Seebeck coefficient,使得PVA/SA/PEG/NaBF4 TCCs在熱電可穿戴式元件大大增加了其應用的潛力。zh_TW
dc.description.abstractNowadays, with the development of industry, the environment problem has been a big issue for human society. Abundant and ubiquitous thermal energy also known as low-grade heat is wasted in daily life. Therefore, thermoelectric generators (TEGs) exhibit the characteristic of conversion the heat to electricity, which has been widely investigated recently. However, thermopower for traditional TEGs is only few hundred microvolt per Kelvin, and is hard for power electronic devices. To solve this problem, thermally chargeable capacitor (TCCs) power by Soret effect display thermopower even as large as tens of mV K-1, which overcomes the problem TEGs have met. Besides, wearable electronics are applied in technology like health care, temperature sensors, etc. Therefore, the high thermoelectric performance with high Stretchability must be request. In this research, in order to attain the promising thermoelectric conversion as well as stretchable property. The ionic double-network hydrogel is employed as thermoelectric system, which has highly mechanical porous matrix swelling with liquid. The hydrogel made of elastic polyvinyl alcohol (PVA), sodium alginate (SA) and polyethylene glycol (PEG) are fabricated by the freeze-thaw method followed by soaking into different loading of tetrafluroborate (NaBF4) aqueous solution. The PVA/SA/PEG/ NaBF4 hydrogel at 1.5 M NaBF4 solution has high mechanical property, in which the stretchability is up to 114 % and large tensile strength of 69kPa. Most of all, it also displays a gigantic Seebeck coefficient of 50.9 mV K-1, ionic conductivity of 31.4 mS cm-1 at humidity of 60%, and power factor of 8.1 mW m-1 K-2. The result demonstrates that under the synergistic effect of Manning’s “counterion condensation” from SA and crystallinity characteristic of PVA polymer chains. The chaotropic NaBF4 ions can be selectively tuned, generating the ultrahigh thermopower, which made a PVA/SA/PEG/NaBF4 a potential thermally chargeable capacitor (TCCs) and pave a way for thermoelectric wearable devices to harvest the low-grade heat.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:13:53Z (GMT). No. of bitstreams: 1
U0001-2809202209542700.pdf: 3171749 bytes, checksum: 9c039584b7f1bacf3e8341342779e067 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝 i 摘要 ii ABSTRACT iii LIST OF FIGURES viii LIST OF TABLES xi 1. Introduction 1 1.1 Background 1 1.2 Mechanism of thermo-electrochemical cells 4 1.2.1 Thermogalvanic Cells (TGCs) 4 1.2.2 Thermally Chargeable Capacitors (TCCs) 6 1.3 Parameters for TCCs 7 1.4 Promising Materials for TCCs 8 1.4.1 Ionic Liquids 13 1.4.2 Polyelectrolytes 15 1.4.3 Small Molecule 16 1.5 Research Motivation: 18 2. Experimental Method: 20 2.1 Materials: 20 2.2 Preparation of PVA/SA/PEG Hydrogel 20 2.3 Fabrication of PVA/SA/PEG/NaBF4 TCCs 20 2.4 Characterization 21 2.4.1 Scanning Electron Microscopy (SEM) 21 2.4.2 Fourier Transform Infrared Spectroscopy (FT-IR) 21 2.4.3 X-ray Diffraction Measurement (XRD) 22 2.4.4 Tensile Test 22 2.4.5 Dynamic Rheological Test 22 2.4.6 Thermoelectric Property Measurement 23 2.4.7 Electrochemical Analysis 23 2.4.7.1 Electrochemical Impedance Spectroscopy (EIS) 24 2.4.7.2 Cyclic Voltammetry (CV) 25 3. Results and Discussion 26 3.1 Scanning Electron Microscopy (SEM) Microstructure 26 3.2 Fourier Transform Infrared Spectroscopy (FT-IR) 27 Crystallinity of PVA/SA/PEG Hydrogel 28 3.3 Mechanical Property of PVA/SA/PEG Hydrogel 30 3.4 Thermoelectric Performance of PVA/SA/PEG/NaBF4 TCCs 32 3.5 Electrochemical Performance of PVA/SA/PEG Hydrogel 39 3.6 Ionic Thermoelectric Supercapacitor (ITESC) 41 4. Conclusion 43 5. Reference 44
dc.language.isoen
dc.title具極高導電、高熱電性能的可拉伸雙網絡水凝膠zh_TW
dc.titleUltrahigh Thermopower of Stretchable Double-network Hydrogel for Low Grade Heat Harvestingen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee童世煌(Shih-Huang Tung),鄭彥如(Yen-Ju Cheng),胡啟章(Chi-Chang Hu)
dc.subject.keyword水凝膠,熱電,索雷效應,電容,熱充電電容,zh_TW
dc.subject.keywordhydrogel,thermoelectric,Soret effect,capacitor,thermally chargeable capacitor,en
dc.relation.page46
dc.identifier.doi10.6342/NTU202204191
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
dc.date.embargo-lift2024-12-31-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
U0001-2809202209542700.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.1 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved