Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8448
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor卡艾瑋(Herve Capart)
dc.contributor.authorYing-Chen Wuen
dc.contributor.author吳盈蓁zh_TW
dc.date.accessioned2021-05-20T00:54:42Z-
dc.date.available2020-08-04
dc.date.available2021-05-20T00:54:42Z-
dc.date.copyright2020-08-04
dc.date.issued2020
dc.date.submitted2020-07-25
dc.identifier.citationBlaise, S., Spinewine, B. (2020). Efficient curvature-constrained least cost route optimization on parallel architectures. Submitted for publication.
C.E.C.I. (2018). Difficulties and challenges of tunnel engineering. CECI Engineering Technology 119, 181-195.
Chen, Y.-L. (2018). Morphodynamics of the Pu-Tun-Pu-Nas Tributary Fan: Comparsion of Field Survey, Theory and Lab Experiments. MSc, Graduate Institute of Civil Engineering National Taiwan University.
Dubins, L. E. (1957). On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. American Journal of mathematics, 79(3), 497-516.
Huang, C.-L. (2014). Debris Fan Morphology Measured in the Lab and Field Using Digital Photogrammetry. MSc, Graduate Institute of Civil Engineering National Taiwan University.
Huang, C.-Y. (2018). Vertical Structure of Liquid-granular Surges over Erodible Beds: Experiments and Theory. MSc, Graduate Institute of Civil Engineering National Taiwan University.
Jeng, C.-J., Tan, C.-H., Chung, M.-C., Lee, J.-F., Fei, L.-Y. (2010). Monitoring and numerical analysis for typhoon morakot induced landslide in cau-pin area.
Liou, G.-Y., Wang, C.-T., Huang, K.-L., Ho, T.-Y., Cheng, T.-T. (2014). A Study on VBS-RTK apply to Boundary point survey. Journal of Cadastral Survey, 33(2), 21-38.
Liu, P., Chen, A. Y., Huang, Y.-N., Han, J.-Y., Lai, J.-S., Kang, S.-C., Tsai, M.-H. (2014). A review of rotorcraft unmanned aerial vehicle (UAV) developments and applications in civil engineering. Smart Struct. Syst, 13(6), 1065-1094.
Ni, W.-J. (2005). Groundwater drainage and recharge by geomorphically active gullies. MSc, Graduate Institute of Civil Engineering National Taiwan University.
Rachocki, A. (1981). Alluvial fans : an attempt at an empirical approach. 80-107.
Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., Sarazzi, D. (2011). UAV photogrammetry for mapping and 3d modeling–current status and future perspectives. International archives of the photogrammetry, remote sensing and spatial information sciences, 38(1), C22.
Saleri, R., Cappellini, V., Nony, N., De Luca, L., Pierrot-Deseilligny, M., Bardiere, E., Campi, M. (2013). UAV photogrammetry for archaeological survey: The Theaters area of Pompeii. Paper presented at the 2013 Digital heritage international congress (DigitalHeritage).
Schumm, S. A., Mosley, M. P., Weaver, W. E. (1987). Experimental fluvial geomorphology. 281-350.
Tsai, F., Hwang, J.-H., Chen, L.-C., Lin, T.-H. (2010). Post-disaster assessment of landslides in southern Taiwan after 2009 Typhoon Morakot using remote sensing and spatial analysis. Natural Hazards and Earth System Sciences, 10(10), 2179.
Tu, Y.-C. (2019). Trunk river erosion of a tributary fan margin: theory, experiment and field observation. MSc thesis, National Taiwan University.
van Noortwijk, J. (2004). Gamma process model for time-dependent structural reliability analysis. Paper presented at the Numerical Modelling of Discrete Materials in Geotechnical Engineering, Civil Engineering and Earth Sciences: Proceedings of the First International UDEC/3DEC Symposium, Bochum, Germany, 29 September-1 October 2004.
Verhoeven, G. (2011). Taking computer vision aloft–archaeological three‐dimensional reconstructions from aerial photographs with photoscan. Archaeological prospection, 18(1), 67-73.
Veyrat‐Charvillon, S., Memier, M. (2006). Stereophotogrammetry of archive data and topographic approaches to debris‐flow torrent measurements: calculation of channel‐sediment states and a partial sediment budget for Manival torrent (Isère, France). Earth Surface Processes and Landforms, 31(2), 201-219.
Wilk, M. B., Gnanadesikan, R. (1968). Probability plotting methods for the analysis for the analysis of data. Biometrika, 55(1), 1-17.
Wu, Y.-H. (2009). River and confluence response to the construction and failure of Balin Dam, 1977-200. MSc, Graduate Institute of Civil Engineering National Taiwan University.
Yu, C., Lee, J., Munro-Stasiuk, M. J. (2003). Extensions to least-cost path algorithms for roadway planning. International Journal of Geographical Information Science, 17(4), 361-376.
Yue, S., Ouarda, T., Bobée, B. (2001). A review of bivariate gamma distributions for hydrological application. Journal of Hydrology, 246(1-4), 1-18.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8448-
dc.description.abstract本論文致力於探討合併多個支流沖積扇形貌的變化、與主流的互動及對道路工程設計上的影響。透過現地調查、實驗、理論計算及數值分析來了解三者之間的關係。主要分為三個部分如下:
第一部分以台灣南部地區的荖濃溪與其支流布唐布納斯溪、清水溪及玉穗溪匯流處的沖積扇作為研究案例,進行無人飛行載具航拍及河川縱坡面的測量,進而了解其形貌的變化。第二部分則根據現地調查的結果,進行實驗的設計,並且藉由一套雷射掃描裝置來紀錄地形的演變,以助於了解在現地中無法記錄的演變過程。接著,根據實驗的結果與前人的理論比較,並以靜力平衡及材料特性的角度分析,考量凝聚力對原先的理論進行修正。第三部分則應用於道路規劃,本研究模型使用歷史數據來校準伽馬隨機過程,搭配蒙地卡羅模擬來評估災難事件對路線成本的影響,並且考慮最大道路曲率和道路坡度的限制,分別在道路路線和道路剖面中進行路線優化。
結果顯示,凝聚力會影響沖積扇堆積的理論與實驗的剖面有相當程度的吻合,同時在現地調查中也可觀察到類似的情況。此外,於道路規劃的初步分析中我們發現沖積扇料源的供給為序率性,而主流的搬移作用則為定常性。最後,若要在陡峭的地形上執行路線優化,有必要共同考慮道路路線和剖面。
zh_TW
dc.description.abstractThis thesis examines the morphological evolution of coalescing tributary fans, their interaction with the trunk river and their impact on route engineering design. To understand the relationship between these three, the research includes field survey, experiment and modeling study. The field survey focused on the debris fans produced by Pu-Tun-Pu-Nas, Qingshui and Yusui tributaries at their confluence with Laonong river, Southern Taiwan. The aerial photography of UAV and the long profile of the river were conducted. The experiment is designed based on the results of the field survey. The terrain is recorded with laser scanning system to help understand the evolution process. The experimental results are compared with the previous theory. Then, the previous theory is modified by analyzing the static balance and material properties. The modeling results are further applied to route planning. The model uses historical data to calibrate a gamma stochastic process and uses Monte Carlo simulation to estimate the impact of disaster events on route cost. Route optimization is then conducted separately in terms of its horizontal profile (road alignment) and vertical profile (road profile), considering limitation on maximum road curvature and road slope. The results show that the theory considering cohesion produces deposition that are made consistent with the experimental profiles, and similar situations could be observed in situ. In addition, the analysis indicates that debris supply is stochastic, but trunk river removal is approximately deterministic. To perform route optimization in a steep terrain, finally, it appears necessary to jointly consider both road alignment and profile.en
dc.description.provenanceMade available in DSpace on 2021-05-20T00:54:42Z (GMT). No. of bitstreams: 1
U0001-1507202001330200.pdf: 14833415 bytes, checksum: 2a9a59d84d7d0dc4a5f1ca8323bf3664 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xiv
Chapter 1 Introduction: a mountain road exposed to debris fan risk 1
Chapter 2 Field Survey 7
2.1 Field survey methods 7
2.1.1 Aerial photogrammetry survey 7
2.1.2 Traverse survey and VBS-RTK 13
2.2 Field survey results 15
2.2.1 Aerial photogrammetry survey result 15
2.2.2 Traverse survey result 22
2.2.3 Comparison of aerial photogrammetry survey and traverse survey 23
2.2.4 Comparison of DSM 25
Chapter 3 Coalescing tributary fans experiments 29
3.1 Experiment set-up 29
3.1.1 Geometric model design 29
3.1.2 Experimental configuration 31
3.1.3 Model position calibration 35
3.1.4 Debris flow composition and fluorescent particles 39
3.2 Experimental procedure 40
3.2.1 Experimental procedure for the first experimental series 40
3.2.2 Experimental procedure for the second experimental series 41
3.3 Imaging analysis procedure 43
3.3.1 Camera calibration 43
3.3.2 Three-dimensional reconstruction 46
3.3.3 Particle capturing and tracking 48
3.4 Experiment results 52
3.4.1 Topography in the series 1 53
3.4.2 Topography in the series 2 61
3.4.3 Laser topography improvement between series 1 and series 2 72
3.4.4 The relationship between the volume and area of debris flow fan 75
3.5 Comparison between theory and experiment 82
3.5.1 Deposition of tributary debris fan model 83
3.5.2 Comparison between the experiment and fan model 84
3.5.3 One dimensional model with cohesion 86
Chapter 4 Georisk-based route optimization 92
4.1 Route optimization approach 92
4.1.1 Least-cost routing principle 92
4.1.2 Cost estimation for different debris flow event magnitude 93
4.1.3 Reconstruction cost 97
4.2 Stochastic fan evolution model 97
4.2.1 Debris flow supply and trunk river removal 97
4.2.2 Calibration repeated data to account for 100
4.2.3 The first passage time distribution 103
4.3 Cost model refinement 106
4.4 Route Profile optimization 107
4.5 Fan evolution model refinement 112
4.5.1 Calibration including 112
4.5.2 Model mismatch for fan removal and proposed improved model 112
Chapter 5 Comparison and Conclusion 117
5.1 Comparison 117
5.2 Conclusion 123
5.3 Future works 123
REFERENCES 125
dc.language.isoen
dc.title考量土石流沖積扇風險的路線最佳化:現地調查、實驗與模型研究
zh_TW
dc.titleRoute optimization subject to debris fan risk : field, experiment and modeling study
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王泰典(Tai-Tien Wang),賴悅仁(Yueh-Jen Lai),許聿廷(Yu-Ting Hsu),洪啟耀(Chi-Yao Hung)
dc.contributor.oralexamcommittee-orcid王泰典(0000-0001-8173-1574)
dc.subject.keyword無人飛行載具,形貌學,沖積扇,水工模型試驗,最低成本路徑,伽瑪序率過程,zh_TW
dc.subject.keywordUAV,morphology,debris fan,laboratory experiments,Least-Cost Route,Gamma stochastic process,en
dc.relation.page127
dc.identifier.doi10.6342/NTU202001526
dc.rights.note同意授權(全球公開)
dc.date.accepted2020-07-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
U0001-1507202001330200.pdf14.49 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved