請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84472完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李坤彥(Kung-Yen Lee) | |
| dc.contributor.author | Chi-Chin Chiu | en |
| dc.contributor.author | 邱繼勤 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:12:41Z | - |
| dc.date.copyright | 2022-09-30 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-26 | |
| dc.identifier.citation | [1]IEA, Net Zero by 2050. 2021: https://www.iea.org/reports/net-zero-by-2050. [2]Lee, H.S., High Power Bipolar Junction Transistors in Silicon Carbide. 2005. [3]Chow, T.P., Ramungul, N., Fedison, J., and Tang, Y., SiC Power Bipolar Transistors and Thyristors, in Silicon Carbide: Recent Major Advances, W.J. Choyke, H. Matsunami, and G. Pensl, Editors. 2004, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 737-767. [4]Baliga, B.J., Power semiconductor device figure of merit for high-frequency applications. IEEE Electron Device Letters, 1989. 10(10): p. 455-457. [5]Sun, Y., Kang, X., Zheng, Y., Lu, J., Tian, X., Wu, H., Wang, W., Wei, K., Liu, X., Zhang, K., and Zhang, G., Review of the Recent Progress on GaN-Based Vertical Power Schottky Barrier Diodes (SBDs). Electronics, 2019. 8: p. 575. [6]Nagel, L.W., and Pederson, D. O., SPICE (Simulation Program with Integrated Circuit Emphasis). 1973: University of California, Berkeley. [7]Cooper, J.A. and Kimoto, T., in Fundamentals of Silicon Carbide Technology. 2014. [8]Cooper, J.A., Melloch, M.R., Singh, R., Agarwal, A., and Palmour, J.W., Status and prospects for SiC power MOSFETs. IEEE Transactions on Electron Devices, 2002. 49(4): p. 658-664. [9]Spitz, J.P., Melloch, M.R., Cooper, J.A., and Capano, M.A., 2.6 kV 4H-SiC lateral DMOSFETs. IEEE Electron Device Letters, 1998. 19: p. 100-102. [10]Dey, S., Mallik, A., Goldsman, N., Akturk, A., Dilli, Z., Darmody, C., and Khalid, U. High Temperature Application of a SiC-LDMOSFET based DC-DC Power Converter. in 2021 IEEE 8th Workshop on Wide Bandgap Power Devices and Applications (WiPDA). 2021. [11]Shenoy, J.N., Cooper, J.A., and Melloch, M.R., High-voltage double-implanted power MOSFET's in 6H-SiC. IEEE Electron Device Letters, 1997. 18(3): p. 93-95. [12]Gao, X., Li, C., and Dai, X. 650V 4H-SiC VDMOSFET with Additional n Region: A Simulation Study. in 2021 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia). 2021. [13]Hu, J.W., Jiang, J.Y., Huang, P.W., Huang, C.F., Tang, S.W., Huang, Z.H., Wu, T.L., and Lee, K.Y. 1.2 kV 4H-SiC VDMOSFETs with Si-implanted Surface: Performance Enhancement and Reliability Evaluation. in 2021 33rd International Symposium on Power Semiconductor Devices and ICs (ISPSD). 2021. [14]Kivrak, S., Özer, T., Oğuz, Y., and Erken, E., Battery management system implementation with the passive control method using MOSFET as a load. Measurement and Control, 2019. 53: p. 002029401988340. [15]Boylestad, R.L. and Nashelsky, L., Electronic Devices and Circuit Theory. 2013: Pearson Education. [16]Cui, Y., Chinthavali, M., and Tolbert, L.M. Temperature dependent Pspice model of silicon carbide power MOSFET. in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC). 2012. [17]DiMarino, C., High Temperature Characterization and Analysis of Silicon Carbide (SiC) Power Semiconductor Transistors. 2014, Virginia Tech, Blacksburg,. [18]Zhu, M., Wang, L., Li, H., Yang, C., Ma, D., and Yang, F. Characteristics of SiC MOSFET in a Wide Temperature Range. in 2021 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia). 2021. [19]高远 and 陈桥梁, 碳化硅功率器件:特性、测试和应用技术. 2021: 机械工业出版社. [20]Callanan, R., Rice, J., and Palmour, J. Third quadrant behavior of SiC MOSFETs. in 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). 2013. [21]Phankong, N., Funaki, T., and Hikihara, T., Characterization of the gate-voltage dependency of input capacitance in a SiC MOSFET. IEICE Electronics Express, 2010. 7: p. 480-486. [22]Zeng, Y., Yi, Y., and Liu, P., An Improved Investigation into the Effects of the Temperature-Dependent Parasitic Elements on the Losses of SiC MOSFETs. Applied Sciences, 2020. 10(20). [23]Graovac, D., Purschel, M., and Kiep, A., MOSFET power losses calculation using the data-sheet parameters. 2006: Infineon Technol. [24]張文清, SPICE電子電路模擬. 2013: 鼎茂圖書出版有限公司. [25]Mudholkar, M., Ahmed, S., Ericson, M.N., Frank, S.S., Britton, C.L., and Mantooth, H.A., Datasheet Driven Silicon Carbide Power MOSFET Model. IEEE Transactions on Power Electronics, 2014. 29(5): p. 2220-2228. [26]Enz, C.C., Krummenacher, F., and Vittoz, E.A., An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications. Analog Integrated Circuits and Signal Processing, 1995. 8(1): p. 83-114. [27]Bucher, M., Lallement, C., Enz, C., Théodoloz, F., and Krummenacher, F., The EPFL-EKV MOSFET model equations for simulation. 1998. [28]李一雷, 電路大師課系列-模擬集成電路設計第六講:EKV模型. 2017. [29]EKV模型(2):反型區,短溝道效應. 2017. [30]Wang, Y.-D. and Chen, J., Modeling capacitance–voltage characteristic of TiW/p-InP Schottky barrier diode. Chinese Physics B, 2018. 27(9): p. 097203. [31]Wang, J., Zhao, T., Li, J., Huang, A.Q., Callanan, R., Husna, F., and Agarwal, A., Characterization, Modeling, and Application of 10-kV SiC MOSFET. IEEE Transactions on Electron Devices, 2008. 55(8): p. 1798-1806. [32]He, C., Victory, J., Yazdi, M.B., Lee, K., Domeij, M., Allerstam, F., and Neyer, T. A physically based scalable SPICE model for silicon carbide power MOSFETs. in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC). 2017. [33]Zhou, Y., Liu, H., Yang, T., and Wang, B., SPICE modeling of SiC MOSFET considering interface-trap influence. CPSS Transactions on Power Electronics and Applications, 2018. 3(1): p. 56-64. [34]Li, H., Zhao, X., Sun, K., Zhao, Z., Cao, G., and Zheng, T.Q., A Non-Segmented PSpice Model of SiC <sc>mosfet</sc> With Temperature-Dependent Parameters. IEEE Transactions on Power Electronics, 2019. 34(5): p. 4603-4612. [35]Angelov, I., Andersson, K., Schreurs, D., Xiao, D., Rorsman, N., Desmaris, V., Sudow, M., and Zirath, H. Large-signal modelling and comparison of AlGaN/GaN HEMTs and SiC MESFETs. in 2006 Asia-Pacific Microwave Conference. 2006. [36]Duan, Z., Fan, T., Wen, X., and Zhang, D., Improved SiC Power MOSFET Model Considering Nonlinear Junction Capacitances. IEEE Transactions on Power Electronics, 2018. 33(3): p. 2509-2517. [37]Leonardi, C., Raciti, A., Frisina, F., and Letor, R. A new PSpice power MOSFET model with temperature dependent parameters: evaluation of performances and comparison with available models. in IAS '97. Conference Record of the 1997 IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting. 1997. [38]Hsu, F.J., Hung, C.C., Chu, K.T., Lee, L.S., and Lee, C.Y. A Dynamic Switching Response Improved SPICE Model for SiC MOSFET with Non-linear Parasitic Capacitance. in 2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia). 2020. [39]Yang, X., Wang, Z., Ding, Y., Li, J., and Xu, M., Improved simulation modelling and its verification for SiC MOSFET. IET Power Electronics, 2022. 15(8): p. 728-737. [40]Pushpakaran, B.N., Bayne, S.B., Wang, G., and Mookken, J., Fast and accurate electro-thermal behavioral model of a commercial SiC 1200V, 80 mΩ power MOSFET, in IEEE Pulsed Power Conference (PPC). 2015. p. 1-5. [41]Tantry, S., Sagar, B.H., and Vinay, K.S., An Unified EKV MOSFET Model to Achieve Better Performance of Practical MOS Circuits Using Verilog-A, in 2019 Global Conference for Advancement in Technology (GCAT). 2019. p. 1-4. [42]Fu, R., Grekov, A., Peng, K., and Santi, E., Parasitic modeling for accurate inductive switching simulation of converters using SiC devices, in 2013 IEEE Energy Conversion Congress and Exposition. 2013. p. 1259-1265. [43]Keim, R., MOSFET Channel-Length Modulation, in ALL ABOUT CIRCUITS. 2016. [44]Yadav, A. and Bhardwaj, G., Comparison of MOSFET Characteristic Using Spice and MATLAB Simulation. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2014. 3(11): p. 12895-12900. [45]Bodake, V.V., Jeyakumar, A., and Patel, D., Verification of SPICE Method of MOSFET. International Research Journal of Engineering and Technology, 2017. 4(5): p. 1676-1680. [46]Babarada, F., Lakatos, E., Profirescu, M.D., C. Amza, E.M., Dumbravescu, N., and Profirescu, O., MOSFET process optimization and characteristics extraction, in 2004 International Semiconductor Conference. 2004. p. 319-322. [47]Jiao, Y. and Jovanovic, M.M. Comparative evaluation of static and dynamic performance of 1.2-kV SiC power switches. in 2018 IEEE Applied Power Electronics Conference and Exposition (APEC). 2018. [48]Lakrim, A., THE SPICE DYNAMIC BEHAVIOURAL ELECTROTHERMAL MODEL OF SILICON CARBIDE POWER MOSFET. Journal of Theoretical and Applied Information Technology, 2016. 93(1): p. 185-191. [49]Ganesan, P., Manju, R., Razila, K.R., and Vijayan, R.J. Characterisation of 1200V, 35A SiC Mosfet using double pulse circuit. in 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). 2016. [50]Ahmad, S.S. and Narayanan, G. Double pulse test based switching characterization of SiC MOSFET. in 2017 National Power Electronics Conference (NPEC). 2017. [51]Masuhara, T., Horiguchi, T., Mukunoki, Y., Terashima, T., Hanano, N., and Suekawa, E. Development of an Accurate SPICE Model for a new 1.2-kV SiC-MOSFET device. in PCIM Europe digital days 2020; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. 2020. [52]Li, H. and Wang, J., Investigation of 1200 V SiC MOSFETs’ Surge Reliability. Micromachines (Basel), 2019. 10(7): p. 1-17. [53]Rice, J. and Hu, Y. Wolfspeed’s New C3MTM 1200 V SiC MOSFET Increases Power Density and Efficiency in Solar Boost Converters. 2018; Available from: https://electronics360.globalspec.com/article/11845/wolfspeed-s-new-c3mtm-1200-v-sic-mosfet-increases-power-density-and-efficiency-in-solar-boost-converters. [54]Wolfspeed. C2M0040120D Datasheet. 2021; Available from: https://assets.wolfspeed.com/uploads/2020/12/C2M0040120D.pdf. [55]Sakairi, H., Yanagi, T., Otake, H., Kuroda, N., and Tanigawa, H., Measurement Methodology for Accurate Modeling of SiC MOSFET Switching Behavior Over Wide Voltage and Current Ranges. IEEE Transactions on Power Electronics, 2018. 33(9): p. 7314-7325. [56]M, P., End-to-End Introduction to Evaluating Regression Models. 2021. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84472 | - |
| dc.description.abstract | 近年來,隨著再生能源以及電動車產業的興起,世界對於能量的轉換效率有所重視,而碳化矽材料與功率金氧半場效電晶體常被運用在許多電力電子系統上。本論文則將探討1200 V 4H-SiC金氧半場效電晶體特性與建立高精準度之SPICE模型。 此論文將利用LTspice模擬軟體進行SiC DMOSFET SPICE模型建模,透過本研究的建模流程與方法,分別把SPICE模型內的EKV模型之順向與逆向模型、寄生二極體、寄生電容數學模型等元件之重要參數萃取出來,最後套用至Wolfspeed的C2M0040120D之Datasheet數據建立出新穎1200 V SiC DMOSFET之SPICE模型,並且與Wolfspeed所提供的原生SPICE模型做元件的靜態與動態分析模擬以及模型精準度比較。 在靜態特性分析比較上,元件之新穎SPICE模型在不同操作條件下都可以低於10 %以下,相對地,原生SPICE模型的誤差則都會大於20 %;在動態特性分析比較中,新穎SPCIE模型之寄生電容特性誤差約3.12 %~27.01 %,而原生SPICE模型為23.15 %~110.48 %。而在雙脈衝測試方面,新穎SPICE模型在E_on、E_off、E_total都達到9 %以下的誤差;原生SPICE模型則都大於9 %的結果。代表本論文建立之新穎SPICE模型在靜態與動態模擬上,都有較優的模擬結果,以利於元件提升後續電子電路系統之精準度之的開發。 | zh_TW |
| dc.description.abstract | In recent years, the world has paid more attention to power conversion because the industry of renewable energy and electrical vehicle were blooming. The SiC MOSFET is one of the switching devices applied in power systems. This work will discuss the characteristics of 1200 V 4H-SiC MOSFET and build a high-precision SPICE model. LTspice software is used to build the circuits and simulate the performances of SiC DMOSFET SPICE model. The SPICE model consists of the EKV model, body diode, and parasitic capacitance mathematical models. The parameters are extracted by the modeling process and the method proposed in this work. We build novel SPICE model of 1200 V SiC DMOSFET by using C2M0040120D datasheet, Cree. Inc. Then, the novel SPICE model is compared with the original one to understand the fitting accuracy. In the static characteristics analysis, the error of novel SPICE model can be less than 10 % under different operating conditions, while that of the original one is greater than 20 %. In the dynamic characteristics analysis, the fitting error of parasitic capacitance is 3.12 % ~ 27.01 %, while the original SPICE model is 23.15 % ~ 110.48 %. Moreover, the error of novel SPICE model is less than 9 % in E_on, E_off and E_total in the double pulse test, while the original SPICE model is greater than 9 %. It means that the novel SPICE model established in this work has better fitting results in both static and dynamic characteristics. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:12:41Z (GMT). No. of bitstreams: 1 U0001-2209202215001900.pdf: 11716835 bytes, checksum: 695939535326f2a248a34f39e088999f (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 目錄 致謝 i 中文摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 xiii 第一章 緒論 1 1.1 前言 1 1.2 碳化矽材料介紹 2 1.3 研究動機 3 1.4 論文大綱 4 第二章 元件結構原理與SPICE模型之等效電路理論基礎 5 2.1 常見之功率元件種類 5 2.2 垂直式碳化矽金氧半場效電晶體 6 2.2.1 垂直型碳化矽金氧半場效電晶體之靜態特性 7 2.2.2 垂直型碳化矽金氧半場效電晶體之動態特性 11 2.3 常見功率元件之SPICE模型 15 2.3.1 接面二極體 16 2.3.2 金氧半場效電晶體 18 2.4 碳化矽金氧半場效電晶體SPICE模型之等效電路 20 2.4.1 EKV模型 20 2.4.2 寄生電容數學模型 29 2.4.3 碳化矽金氧半場效電晶體SPICE模型文獻回顧 31 第三章 碳化矽金氧半場效電晶體SPICE模型建模設計 35 3.1 LTspice模擬軟體環境設定 35 3.2 元件SPICE模型建模流程 37 3.2.1 碳化矽金氧半場效電晶體SPICE模型等效電路架構 37 3.2.2 EKV模型之順向模型(G2)建模方法 40 3.2.3 寄生二極體建模方法 45 3.2.4 EKV模型之逆向模型(G1)建模方法 49 3.2.5 寄生電容數學模型之建模方法 51 3.3 元件SPICE模型之靜態特性模擬電路 54 3.3.1 輸出特性(Output characteristic)電路設計 54 3.3.2 轉移特性(Transfer characteristic)電路設計 55 3.3.3 寄生二極體特性(Body diode characteristic)電路設計 56 3.3.4 第三象限操作特性(3rd Quadrant characteristic)電路設計 57 3.4 元件SPICE模型之動態特性模擬電路 58 3.4.1 寄生電容特性(Parasitic Capacitance characteristic)電路設計 58 3.4.2 雙脈衝測試 (Double Pulse Test) 60 第四章 碳化矽金氧半場效電晶體SPICE模型模擬結果分析與討論 62 4.1 元件SPICE模型之架構設計 62 4.2 元件SPICE模型靜態特性 69 4.2.1 EKV模型之順向模型(G2)輸出特性建模設計 70 4.2.2 寄生電阻與電感值調變設計 81 4.2.3 EKV模型之順向模型(G2)轉移特性調變設計 91 4.2.4 寄生二極體建模設計 100 4.2.5 EKV模型之逆向模型(G1)建模設計 108 4.3 元件SPICE模型動態特性 118 4.3.1 寄生電容數學模型建模設計 118 4.3.2 雙脈衝測試之模擬結果 123 4.4 整理與討論 133 第五章 結論與未來展望 135 5.1 結論 135 5.2 未來工作 136 參考文獻 138 圖目錄 圖 1.1國際能源署提出全球2050淨零路徑圖[1] 1 圖 1.2碳化矽基本單元四面體結構[2] 2 圖 2.1分離式功率元件分類圖 6 圖 2.2 VDMOSFET之輸出特性圖 8 圖 2.3 VDMOSFET之輸出特性結構變化 9 圖 2.4 VDMOSFET之轉移特性圖 9 圖 2.5 VDMOSFET之寄生二極體特性圖[19] 10 圖 2.6 VDMOSFET之第三象限操作特性圖[20] 11 圖 2.7 VDMOSFET逆向操作之結構變化 (a)寄生二極體操作特性 (b)第三象限操作特性 11 圖 2.8 VDMOSFET之寄生電容 12 圖 2.9 VDMOSFET之寄生電容特性圖 13 圖 2.10 VDMOSFET導通與切換狀態之電流電壓波形圖[23] 14 圖 2.11 VDMOSFET切換狀態之電流電壓波形圖[23] (a)開啟 (b)關閉 15 圖 2.12 接面二極體SPICE模型描述 16 圖 2.13 接面二極體之等效大訊號模型 17 圖 2.14 金氧半場效電晶體SPICE模型描述 18 圖 2.15 DMOSFET結構圖 21 圖 2.16 夾止電壓與閘極電壓關係圖 21 圖 2.17 反轉層通道電壓與電荷密度關係圖 22 圖 2.18 強反轉區之計算電流之積分面積關係圖 23 圖 2.19 強反轉區之計算電流之積分面積關係圖 (a)飽和區 (b)歐姆區 24 圖 2.20 弱反轉區示意圖 25 圖 2.21 弱反轉區之計算電流之積分面積關係圖 (a)順向電流 (b) 逆向電流 (c) 弱反轉電流 26 圖 2.22 接面電容之特性圖[30] 29 圖 2.23 接面電容之特性圖[31] 31 圖 2.24 加入Layout設計因素於SiC MOSFET SPICE模型[32] 32 圖 2.25 非分段式SiC MOSFET SPICE模型[34] (a)元件等效電路架構 (b)C_GD非線性數學模型 33 圖 2.26 寄生電容優化之SPICE模型[38] (a) SiC MOSFET結構 (b)元件之等效電路 33 圖 2.27 基於EKV模型的SiC MOSFET SPICE模型[39] (a) SiC MOSFET結構 (b)元件之等效電路 34 圖 3.1模擬元件電路設計之流程圖 36 圖 3.2基於EKV模型之SiC DMOSFET SPICE模型等效電路架構 38 圖 3.3回歸曲線擬合法(Curve Fitting)之流程圖 41 圖 3.4順向模型的輸出特性建模之流程圖 43 圖 3.5順向模型的轉移特性調變之流程圖 44 圖 3.6寄生二極體等效電路之優化 45 圖 3.7寄生二極體電流控制之優化 47 圖 3.8寄生二極體之建模流程 48 圖 3.9逆向模型建模之流程圖 51 圖 3.10寄生電容數學模型建模之流程圖 53 圖3.11 MOSFET輸出特性(Output characteristic)與轉移特性(Transfer characteristic)之測試電路 55 圖3.12 MOSFET寄生二極體特性(Body diode characteristic)之測試電路 56 圖3.13 MOSFET第三象限操作特性(3rd Quadrant characteristic)之測試電路 57 圖3.14 MOSFET寄生電容特性(Parasitic Capacitance characteristic)之測試電路 (a)C_iss (b)C_oss (c)C_z 59 圖3.15 MOSFET雙脈衝測試電路 61 圖4.1 C2M系列之SiC DMOSFET元件結構 63 圖4.2 C2M0040120D 原生SiC DMOSFET SPICE模型 65 圖4.3 XCGD與D1之SPICE模型 66 圖4.4 XCGD之架構圖 66 圖4.5 xgmos之SPICE模型 67 圖4.6 SiC DMOSFET SPICE模型之V_th-T_j特性圖 70 圖4.7 CurveExpert軟體擬合EKV模型之順向模型(G_2)之模擬結果(T_j=-55 ℃)V_GS 為(a)10 V (b)14V (c)16 V (d)20 V 72 圖4.8 CurveExpert軟體擬合EKV模型之順向模型(G_2)之模擬結果(T_j=25 ℃)V_GS 為(a)10 V (b)14V (c)16 V (d)20 V 72 圖4.9 CurveExpert軟體擬合EKV模型之順向模型(G_2)之模擬結果(T_j=150 ℃)V_GS 為(a)10 V (b)14V (c)16 V (d)20 V 73 圖4.10 不同閘極電壓的物理參數之曲線圖(T_j=-55 ℃)(a)NET5(V_GS ,T_j ) (b)NET2(V_GS ,T_j ) (c)P8(V_GS ,T_j ) 74 圖4.11 不同閘極電壓的物理參數之曲線圖(T_j=25 ℃)(a)NET5(V_GS ,T_j ) (b)NET2(V_GS ,T_j ) (c)P8(V_GS ,T_j ) 75 圖4.12 不同閘極電壓的物理參數之曲線圖(T_j=150 ℃)(a)NET5(V_GS ,T_j ) (b)NET2(V_GS ,T_j ) (c)P8(V_GS ,T_j ) 76 圖4.13 LTspice模擬元件之輸出特性的電路圖 77 圖4.14 原生SiC DMOSFET SPICE模型之輸出特性圖 T_j為(a)-55 ℃ (b)25 ℃ (c)150 ℃ 78 圖4.15 新穎SiC DMOSFET SPICE模型之輸出特性圖 T_j為(a)-55 ℃ (b)25 ℃ (c)150 ℃ 79 圖4.16 SiC DMOSFET SPICE模型之輸出特性rRMSE結果圖 T_j為(a)-55 ℃ (b)25 ℃ (c)150 ℃ 80 圖4.17 調變不同寄生電阻之輸出特性圖(T_j=-55 ℃) (a)調變R_Ld (b)調變R_Lg (c)調變R_Ls 82 圖4.18 調變不同寄生電阻之輸出特性圖(T_j=25 ℃) (a)調變R_Ld (b)調變R_Lg (c)調變R_Ls 83 圖4.19 調變不同寄生電阻之輸出特性圖(T_j=150 ℃) (a)調變R_Ld (b)調變R_Lg (c)調變R_Ls 84 圖4.20 調變不同寄生電感之輸出特性圖(T_j=-55 ℃) (a)調變Ld (b)調變Lg (c)調變Ls 86 圖4.21 調變不同寄生電感之輸出特性圖(T_j=25 ℃) (a)調變Ld (b)調變Lg (c)調變Ls 87 圖4.22 調變不同寄生電感之輸出特性圖(T_j=150 ℃) (a)調變Ld (b)調變Lg (c)調變Ls 88 圖4.23 寄生電阻R_Ls為1 nΩ之輸出特性圖 T_j為(a)-55 ℃ (b)25 ℃ (c)150 ℃ 89 圖4.24 寄生電感Ls為10-17 H之輸出特性圖 T_j為(a)-55 ℃ (b)25 ℃ (c)150 ℃ 90 圖4.25 調變寄生電阻與電感之輸出特性rRMSE結果圖 T_j為(a)-55 ℃ (b)25 ℃ (c)150 ℃ 91 圖4.26 調變物理參數n'、β1、λ'對輸出特性之影響 92 圖4.27 調變物理參數1曲線圖 T_j為(a)-55 ℃ (b)25 ℃ (c)150 ℃ 93 圖4.28 調變物理參數2曲線圖 T_j為(a)-55 ℃ (b)25 ℃ (c)150 ℃ 94 圖4.29 調變物理參數3曲線圖 T_j為(a)-55 ℃ (b)25 ℃ (c)150 ℃ 94 圖4.30 LTspice模擬元件之轉移特性的電路圖 95 圖4.31 不同溫度下原生SiC DMOSFET SPICE模型之轉移特性圖 96 圖4.32 不同溫度下新穎SiC DMOSFET SPICE模型之輸出特性圖 97 圖4.33 SiC DMOSFET SPICE模型之轉移特性rRMSE結果圖 98 圖4.34 轉移特性調變設計之輸出特性圖 T_j為(a)-55 ℃ (b)25 ℃ (c)150 ℃ 98 圖4.35 轉移特性調變設計之輸出特性rRMSE結果圖 T_j為(a)-55 ℃ (b)25 ℃ (c)150 ℃ 99 圖4.36 調變寄生二極體SPICE模型物理參數 (a)調變rs (b)調變I_S (c)調變n 101 圖4.37 調變T_j=25 ℃時之VBD電壓源 V_GS為(a)-2 V (b)0 V 102 圖4.38 調變T_j=-55 ℃時之VBD電壓源 V_GS為(a)-5 V (b)-2 V (c)0 V 102 圖4.39 調變T_j=150 ℃時之VBD電壓源 V_GS為(a)-5 V (b)-2 V (c)0 V 103 圖4.40 不同閘極電壓下之VBD值 104 圖4.41 原生SiC DMOSFET SPICE模型之寄生二極體特性圖 T_j為(a)-55 ℃ (b)25 ℃ (c)150 ℃ 105 圖4.42 新穎SiC DMOSFET SPICE模型之寄生二極體特性圖 T_j為(a)-55 ℃ (b)25 ℃ (c)150 ℃ 106 圖4.43 SiC DMOSFET SPICE模型之寄生二極體特性rRMSE結果圖 T_j為(a)-55 ℃ (b)25 ℃ (c)150 ℃ 107 圖4.44 閘極正電壓下之V_BD值 T_j為(a)-55 ℃ (b)25 ℃ (c)150 ℃ 109 圖4.45 CurveExpert軟體擬合EKV模型之逆向模型(G_1)之模擬結果(T_j=-55 ℃)V_GS 為(a)5 V (b)10 V (c)15 V (d)20 V 110 圖4.46 CurveExpert軟體擬合EKV模型之逆向模型(G_1)之模擬結果(T_j=25 ℃)V_GS 為(a)5 V (b)10 V (c)15 V (d)20 V 111 圖4.47 CurveExpert軟體擬合EKV模型之逆向模型(G_1)之模擬結果(Tj=150 ℃)V_GS為(a)5 V (b)10 V (c)15 V (d)20 V 111 圖4.48 不同溫度之NET4(V_GS ,Tj )曲線圖 Tj為(a)-55 ℃ (b)25 ℃ (c)150 ℃ 113 圖4.49 不同溫度之P9(V_GS ,T_j )曲線圖 T_j為(a)-55 ℃ (b)25 ℃ (c)150 ℃ 113 圖4.50 LTspice模擬元件之第三象限操作特性的電路圖 114 圖4.51 原生SiC DMOSFET SPICE模型之第三象限操作特性圖 T_j為(a)-55 ℃ (b)25 ℃ (c)150 ℃ 115 圖4.52 新穎SiC DMOSFET SPICE模型之第三象限操作特性圖 T_j為(a)-55 ℃ (b)25 ℃ (c)150 ℃ 116 圖4.53 SiC DMOSFET SPICE模型之第三象限操作特性rRMSE結果圖 T_j為(a)-55 ℃ (b)25 ℃ (c)150 ℃ 117 圖4.54 CurveExpert軟體擬合C_GD數學模型 119 圖4.55 CurveExpert軟體擬合C_DS數學模型 120 圖4.56 計算C_GS數值 120 圖4.57 原生SiC DMOSFET SPICE模型之寄生電容特性圖 V_DS為(a)0~200 V 121 圖4.58 新穎SiC DMOSFET SPICE模型之寄生電容特性圖 V_DS為(a)0~200 V 122 圖4.59 下臂MOSFET的閘極雙脈衝訊號 124 圖4.60 下臂MOSFET於不同負載電流之電流圖 I_DS為(a)15 A (b)20 A (c)30 A (d)40 A (e)50 A (f)60 A (g)70 A 125 圖4.61 調變寄生電感L_g (a)關閉特性圖 (b)開啟特性圖 126 圖4.62 調變寄生電感L_s (a)關閉特性圖 (b)開啟特性圖 127 圖4.63 調變寄生電感L_d (a)關閉特性圖 (b)開啟特性圖 128 圖4.64 不同負載電流之切換損耗 (a)原生SPICE模型 (b)未加入寄生電感之新穎SPICE模型 (c)加入寄生電感之新穎SPICE模型 130 圖4.65 不同負載電流之切換損耗誤差圖 (a)開啟損耗 (b)關閉損耗 (c)切換總損耗 132 表目錄 表 1.1 半導體材料比較表 3 表 2.1 寄生二極體之SPICE模型物理參數 16 表 2.2 金氧半場效電晶體之SPICE模型物理參數 19 表 3.1寄生二極體之SPICE模型物理參數 46 表 4.1 C2M0040120D操作詳細限制 64 表 4.2 C2M0040120D之EKV模型參數對照表 68 表 4.3 SiC DMOSFET SPICE模型之寄生電容特性rRMSE結果 123 表 4.4 SiC DMOSFET SPICE模型之靜態特性rRMSE 134 表 4.5 SiC DMOSFET SPICE模型之動態特性rRMSE 134 | |
| dc.language.iso | zh-TW | |
| dc.subject | 碳化矽 | zh_TW |
| dc.subject | 金氧半場效電晶體 | zh_TW |
| dc.subject | SPICE模型 | zh_TW |
| dc.subject | EKV模型 | zh_TW |
| dc.subject | 靜態特性 | zh_TW |
| dc.subject | 動態特性 | zh_TW |
| dc.subject | Silicon carbide | en |
| dc.subject | MOSFET | en |
| dc.subject | dynamic characteristic | en |
| dc.subject | static characteristic | en |
| dc.subject | SPICE model | en |
| dc.title | 1200 V 4H-SiC金氧半場效電晶體SPICE模型設計與優化 | zh_TW |
| dc.title | Design and Optimization of the 1200 V 4H-SiC MOSFET SPICE Model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳景然(Ching-Jan Chen),陳昭宏(Jau-Horng Chen) | |
| dc.subject.keyword | 碳化矽,金氧半場效電晶體,SPICE模型,EKV模型,靜態特性,動態特性, | zh_TW |
| dc.subject.keyword | Silicon carbide,MOSFET,SPICE model,static characteristic,dynamic characteristic, | en |
| dc.relation.page | 142 | |
| dc.identifier.doi | 10.6342/NTU202203820 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-09-26 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-09-30 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2209202215001900.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 11.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
