Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 解剖學暨細胞生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84452
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林能裕(Neng-Yu Lin)
dc.contributor.authorYing-Ting Ouen
dc.contributor.author歐映廷zh_TW
dc.date.accessioned2023-03-19T22:12:04Z-
dc.date.copyright2022-10-07
dc.date.issued2022
dc.date.submitted2022-09-26
dc.identifier.citation1. Kendall, R.T. and C.A. Feghali-Bostwick, Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol, 2014. 5: p. 123. 2. Puglisi, S., et al., What We Know About the Pathogenesis of Idiopathic Pulmonary Fibrosis. Semin Respir Crit Care Med, 2016. 37(3): p. 358-67. 3. Raghu, G., et al., Diagnosis of Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am J Respir Crit Care Med, 2018. 198(5): p. e44-e68. 4. Newton, C.A., P.L. Molyneaux, and J.M. Oldham, Clinical Genetics in Interstitial Lung Disease. Front Med (Lausanne), 2018. 5: p. 116. 5. Hutchinson, J., et al., Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review. Eur Respir J, 2015. 46(3): p. 795-806. 6. Raghu, G., et al., An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline: Treatment of Idiopathic Pulmonary Fibrosis. An Update of the 2011 Clinical Practice Guideline. Am J Respir Crit Care Med, 2015. 192(2): p. e3-19. 7. Schaefer, C.J., et al., Antifibrotic activities of pirfenidone in animal models. Eur Respir Rev, 2011. 20(120): p. 85-97. 8. Fukihara, J. and Y. Kondoh, Nintedanib (OFEV) in the treatment of idiopathic pulmonary fibrosis. Expert Rev Respir Med, 2016. 10(12): p. 1247-1254. 9. Macias, M.J., P. Martin-Malpartida, and J. Massagué, Structural determinants of Smad function in TGF-β signaling. Trends Biochem Sci, 2015. 40(6): p. 296-308. 10. Shi, Y. and J. Massagué, Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell, 2003. 113(6): p. 685-700. 11. Shinde, A.V., C. Humeres, and N.G. Frangogiannis, The role of α-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochim Biophys Acta Mol Basis Dis, 2017. 1863(1): p. 298-309. 12. Froudarakis, M., et al., Revisiting bleomycin from pathophysiology to safe clinical use. Crit Rev Oncol Hematol, 2013. 87(1): p. 90-100. 13. Brandt, J.P. and V. Gerriets, Bleomycin, in StatPearls. 2022, StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.: Treasure Island (FL). 14. Moeller, A., et al., The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int J Biochem Cell Biol, 2008. 40(3): p. 362-82. 15. Yamamoto, T. and K. Nishioka, Cellular and molecular mechanisms of bleomycin-induced murine scleroderma: current update and future perspective. Exp Dermatol, 2005. 14(2): p. 81-95. 16. Apweiler, R., H. Hermjakob, and N. Sharon, On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta, 1999. 1473(1): p. 4-8. 17. Ohtsubo, K. and J.D. Marth, Glycosylation in cellular mechanisms of health and disease. Cell, 2006. 126(5): p. 855-67. 18. Joshi, H.J., et al., SnapShot: O-Glycosylation Pathways across Kingdoms. Cell, 2018. 172(3): p. 632-632.e2. 19. in Essentials of Glycobiology, A. Varki, et al., Editors. 2009, Cold Spring Harbor Laboratory Press Copyright © 2009, The Consortium of Glycobiology Editors, La Jolla, California.: Cold Spring Harbor (NY). 20. Reily, C., et al., Glycosylation in health and disease. Nat Rev Nephrol, 2019. 15(6): p. 346-366. 21. Magalhães, A., H.O. Duarte, and C.A. Reis, The role of O-glycosylation in human disease. Mol Aspects Med, 2021. 79: p. 100964. 22. Sun, X., et al., C1GALT1 in health and disease. Oncol Lett, 2021. 22(2): p. 589. 23. Piérard, G.E., J.E. Arrese, and C. Piérard-Franchimont, Itraconazole. Expert Opin Pharmacother, 2000. 1(2): p. 287-304. 24. Rudin, C.M., et al., Phase 2 study of pemetrexed and itraconazole as second-line therapy for metastatic nonsquamous non-small-cell lung cancer. J Thorac Oncol, 2013. 8(5): p. 619-23. 25. Lin, M.C., et al., C1GALT1 predicts poor prognosis and is a potential therapeutic target in head and neck cancer. Oncogene, 2018. 37(43): p. 5780-5793. 26. Zhang, Q., et al., Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature, 2010. 464(7285): p. 104-7. 27. Wynn, T.A., Cellular and molecular mechanisms of fibrosis. J Pathol, 2008. 214(2): p. 199-210. 28. Wynn, T.A. and L. Barron, Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis, 2010. 30(3): p. 245-57. 29. Fallowfield, J.A., et al., Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol, 2007. 178(8): p. 5288-95. 30. Alonso-Herranz, L., et al., Macrophages promote endothelial-to-mesenchymal transition via MT1-MMP/TGFβ1 after myocardial infarction. Elife, 2020. 9. 31. Cao, Q., D.C. Harris, and Y. Wang, Macrophages in kidney injury, inflammation, and fibrosis. Physiology (Bethesda), 2015. 30(3): p. 183-94. 32. Lech, M. and H.J. Anders, Macrophages and fibrosis: How resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochim Biophys Acta, 2013. 1832(7): p. 989-97. 33. Braga, T.T., J.S. Agudelo, and N.O. Camara, Macrophages During the Fibrotic Process: M2 as Friend and Foe. Front Immunol, 2015. 6: p. 602. 34. Gordon, S. and P.R. Taylor, Monocyte and macrophage heterogeneity. Nat Rev Immunol, 2005. 5(12): p. 953-64. 35. Trottein, F., et al., Glycosyltransferase and sulfotransferase gene expression profiles in human monocytes, dendritic cells and macrophages. Glycoconj J, 2009. 26(9): p. 1259-74. 36. Togayachi, A., et al., Polylactosamine on glycoproteins influences basal levels of lymphocyte and macrophage activation. Proc Natl Acad Sci U S A, 2007. 104(40): p. 15829-34. 37. Daigneault, M., et al., The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One, 2010. 5(1): p. e8668. 38. Chanput, W., J.J. Mes, and H.J. Wichers, THP-1 cell line: an in vitro cell model for immune modulation approach. Int Immunopharmacol, 2014. 23(1): p. 37-45. 39. Plattner, V.E., et al., Alteration of the glycosylation pattern of monocytic THP-1 cells upon differentiation and its impact on lectin-mediated drug delivery. Eur J Pharm Biopharm, 2009. 73(3): p. 324-30. 40. Delannoy, C.P., et al., Glycosylation Changes Triggered by the Differentiation of Monocytic THP-1 Cell Line into Macrophages. J Proteome Res, 2017. 16(1): p. 156-169. 41. Hinneburg, H., et al., High-resolution longitudinal N- and O-glycoprofiling of human monocyte-to-macrophage transition. Glycobiology, 2020. 30(9): p. 679-694. 42. Hübner, R.H., et al., Standardized quantification of pulmonary fibrosis in histological samples. Biotechniques, 2008. 44(4): p. 507-11, 514-7. 43. Walton, K.L., K.E. Johnson, and C.A. Harrison, Targeting TGF-β Mediated SMAD Signaling for the Prevention of Fibrosis. Front Pharmacol, 2017. 8: p. 461. 44. Cherng, S., J. Young, and H. Ma, Alpha-smooth muscle actin (α-SMA). J Am Sci, 2008. 4(4): p. 7-9. 45. Baxter, E.W., et al., Standardized protocols for differentiation of THP-1 cells to macrophages with distinct M(IFNγ+LPS), M(IL-4) and M(IL-10) phenotypes. J Immunol Methods, 2020. 478: p. 112721. 46. Shiratori, H., et al., THP-1 and human peripheral blood mononuclear cell-derived macrophages differ in their capacity to polarize in vitro. Mol Immunol, 2017. 88: p. 58-68. 47. Nguyen, A.T., et al., Organelle Specific O-Glycosylation Drives MMP14 Activation, Tumor Growth, and Metastasis. Cancer Cell, 2017. 32(5): p. 639-653.e6. 48. Chia, J., F. Tay, and F. Bard, The GalNAc-T Activation (GALA) Pathway: Drivers and markers. PLoS One, 2019. 14(3): p. e0214118. 49. Behmoaras, J., et al., Macrophage epoxygenase determines a profibrotic transcriptome signature. J Immunol, 2015. 194(10): p. 4705-4716. 50. Hult, E.M., S.J. Gurczynski, and B.B. Moore, M2 macrophages have unique transcriptomes but conditioned media does not promote profibrotic responses in lung fibroblasts or alveolar epithelial cells in vitro. Am J Physiol Lung Cell Mol Physiol, 2021. 321(3): p. L518-l532. 51. Kim, J.S., et al., Itraconazole Attenuates Peritoneal Fibrosis Through Its Effect on the Sonic Hedgehog Signaling Pathway in Mice. Am J Nephrol, 2018. 48(6): p. 456-464. 52. Bollong, M.J., et al., Small molecule-mediated inhibition of myofibroblast transdifferentiation for the treatment of fibrosis. Proc Natl Acad Sci U S A, 2017. 114(18): p. 4679-4684. 53. Hou, J., et al., Alveolar epithelial cell-derived Sonic hedgehog promotes pulmonary fibrosis through OPN-dependent alternative macrophage activation. Febs j, 2021. 288(11): p. 3530-3546. 54. Kuo, T.C., et al., C1GALT1 high expression is associated with poor survival of patients with pancreatic ductal adenocarcinoma and promotes cell invasiveness through integrin α(v). Oncogene, 2021. 40(7): p. 1242-1254. 55. Dong, X., et al., A novel mechanism for C1GALT1 in the regulation of gastric cancer progression. Cell Biosci, 2021. 11(1): p. 166. 56. Liu, C.H., et al., C1GALT1 promotes invasive phenotypes of hepatocellular carcinoma cells by modulating integrin β1 glycosylation and activity. PLoS One, 2014. 9(8): p. e94995. 57. Conway, S.P., et al., Pharmacokinetics and safety of itraconazole in patients with cystic fibrosis. J Antimicrob Chemother, 2004. 53(5): p. 841-7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84452-
dc.description.abstract纖維化主要發生於組織修復的異常。先前研究指出巨噬細胞會分泌細胞因子誘使成纖維細胞轉為肌纖維母細胞,其中TGFβ可促進膠原蛋白等細胞外基質堆積,在發炎及抗炎反覆作用中造成纖維化。另外細胞表面醣類結構改變會影響巨噬細胞的分化及功能,而Core 1 β1,3-galactosyltransferase(C1GALT1)為延長醣類結構的必需酶,可參與氧型醣基化修飾。目前已知C1GALT1在許多疾病中過表達,但在纖維化及巨噬細胞中的影響仍不清楚。因此本研究主要想了解巨噬細胞中C1GALT1於纖維化扮演的角色。首先,在體內實驗透過lysM-Cre系統敲除C57BL/6小鼠巨噬細胞中C1GALT1表達,並以博來黴素建立纖維化模型。結果顯示C1GALT1 f/f LysM Cre相較控制組小鼠肺及皮膚纖維化情形獲得改善,由免疫螢光染色及西方墨點法共同得到TGFβ在C1GALT1敲除後表現量下降,且在IHC及IF中TGFβ下游表現亦降低。體內實驗以THP1單核細胞進行,透過凝集素驗證巨噬細胞於極化過程中醣類結構有所改變。藉由慢病毒shC1GALT1感染再進行分化,以qPCR得到C1GALT1的下調會促進M1並抑制M2分化。另外,以市售藥物Itraconazole調降C1GALT1後,TGFβ及Smad2/3 蛋白表現下降,而M2的極化也受到限制。實驗也以條件培養基作用於NIH/3T3成纖維細胞,結果得到在調降C1GALT1的M2組別, NIH/3T3的爬行及增殖能力皆顯著下降。最後藉BALB/c小鼠建立纖維化模型並以Itraconazole治療,結果顯示施打Itraconazole的組別纖維化情形改善,TGFβ及下游表現皆受到抑制。綜合以上結果,調降巨噬細胞中C1GALT1可抑制M2分化並具抗纖維化潛力,而Itraconazole亦能有更多應用。未來也致力於更詳細的作用機制。zh_TW
dc.description.abstractFibrosis mainly occurs in the process of abnormal tissue repair. Previous studies have found that macrophages secrete cytokines to promote the conversion of fibroblasts into myofibroblasts which contain TGFβ can promote collagen in extracellular matrix. However, the repeating of inflammation and anti-inflammatory induced the impaired accumulation of collagen that caused the fibrosis. In addition, changes in the carbohydrate structure on the cell surface can affect the differentiation and function of macrophages, and Core 1 β1,3-galactosyltransferase (C1GALT1) is an essential enzyme for extending carbohydrate structures and can participate in O-glycosylation modification. It is currently known that C1GALT1 is overexpressed in many diseases, but its role of C1GALT1 in fibrosis and macrophage is still unclear. Thus, the aim of this study to understand the role of C1GALT1 in macrophages and fibrosis. In vivo, the expression of monocyte in C1GALT1 on C57BL/6 mouse was specific knocked out (KO) through the lysM-Cre system then used bleomycin to establish fibrosis model. The results showed that the lung and skin fibrotic area is less in C1GALT1f/f LysM Cre mice compared with the control group effected by bleomycin. Immunofluorescence staining and Western blotting showed the expression and the downstream expression of TGFβ was decreased in C1GALT1 KO mice. In vitro experiment was performed on the THP1 cell line, Lectins used to verify the change of carbohydrate structure on macrophages surface during the polarization process. We infected shC1GALT1 cell line by lentivirus then initiate differentiation, via qPCR showed the down-regulation of C1GALT1 promotes M1 and inhibits M2 differentiation. In addition, after the down-regulation of C1GALT1 affected with the commercial drug Itraconazole, the expression of TGFβ and Smad2/3 proteins decreased. And the polarization of M2 was also restricted. The experiment also used conditioned medium to act on NIH/3T3 fibroblasts, and the results showed that the crawling and proliferation abilities of NIH/3T3 were significantly decreased in the M2 group in which C1GALT1 was downregulated. Finally, a fibrosis model was established in BALB/c mice and treated with itraconazole. The results showed that the fibrosis in the group treated with itraconazole was improved. The expression of TGFβ and their downstream expressions were also inhibited. Taken together, down-regulation of C1GALT1 in macrophages can inhibit M2 differentiation and has anti-fibrotic potential. The mechanism of C1GALT1 maybe a potential novel protein for fibrosis disease and the application of itraconazole can further investigate.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:12:04Z (GMT). No. of bitstreams: 1
U0001-2009202220042300.pdf: 4683389 bytes, checksum: 8074e86aeecd39e21084772d0935d446 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝 i 中文摘要 ii ABSTRACT iii 目錄(Contents) v 圖目錄(List of Figures) viii 第一章  緒論(Introduction) 1 1.1纖維化 1 1.1.1肺纖維化(Pulmonary fibrosis) 1 1.1.2乙型轉化生長因子(Transforming Growth Factor Beta, TGF-β) 2 1.1.3博來黴素(Bleomycin) 2 1.2醣基化(Glycosylation) 3 1.2.1氧型醣化(O-linked Glycosylation) 3 1.2.2C1GALT1 4 1.2.3伊曲康唑(Itraconazole) 4 1.3巨噬細胞(Macrophage) 4 1.3.1巨噬細胞與纖維化 5 1.3.2巨噬細胞與醣基化 5 第二章  研究目的(Aim) 6 第三章  材料與研究方法(Materials and methods) 7 3.1實驗材料(Materials) 7 3.1.1抗體(Antibody) 7 3.1.2 RNA interference(shRNA) 7 3.1.3引子(Primers) 8 3.1.4凝集素 9 3.1.5其它(others) 9 3.2免疫組織化學染色法 (Immunohistochemistry staining) 11 3.3免疫螢光染色(Immunofluorescence staining) 12 3.4石蠟包埋與切片(Paraffin embedding & paraffin section) 12 3.5蘇木精-伊紅染色(hematoxylin & eosin stain) 13 3.6三色染色法(Masson's Trichrome Stain) 13 3.7細胞株及細胞培養(Cell line & Cell culture) 14 3.8調控細胞C1GALT1表現 14 3.9細胞分化(Cell differentiation) 15 3.10蛋白質萃取(Protein extraction) 15 3.11西方墨點法(Western blot) 16 3.12 RNA萃取與RT-PCR(RNA Extraction& RT-PCR) 17 3.13即時聚合酶連鎖反應(Real-Time PCR) 18 3.14流式細胞儀(Flow cytometry) 18 3.15細胞增殖試驗(Cell proliferation assay) 18 3.16傷口癒合實驗(Wound healing assay) 19 3.17 C1GALT1基因剔除小鼠(C1GALT1 knockout mice) 19 3.18小鼠纖維化模型(Murine models of fibrosis) 20 第四章  結果(Results) 21 4.1巨噬細胞表面醣類結構隨分化而改變 21 4.2 C1GALT1缺失減緩由博來黴素誘發的肺纖維化 22 4.3 C1GALT1缺失減少TGFβ及其下游表現 23 4.4 C1GALT1缺失減緩由博來黴素誘發的皮膚纖維化 24 4.5調降C1GALT1促進M1並抑制M2的分化 25 4.6調升C1GALT1促進M2分化並抑制M1功能 27 4.7 Itraconazole促進M1並抑制M2的分化及功能 28 4.8 Itraconazole可抑制肺纖維化並減少TGFβ及下游表現 29 第五章  實驗討論(Discussion) 30 圖表(Tables & Figures) 33 參考文獻(References) 52
dc.language.isozh-TW
dc.title評估巨噬細胞中C1GALT1的抗纖維化作用zh_TW
dc.titleTo Evaluate the Anti-Fibrosis Effects of C1GALT1 in Macrophagesen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳政彰(Cheng-Chang Chen),郭靜穎(Ching-Ying Kuo)
dc.subject.keyword纖維化,巨噬細胞,氧型醣基化,伊曲康唑,zh_TW
dc.subject.keywordFibrosis,Macrophage,O-glycosylation,Itraconazole,en
dc.relation.page55
dc.identifier.doi10.6342/NTU202203673
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-26
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept解剖學暨細胞生物學研究所zh_TW
dc.date.embargo-lift2025-09-22-
顯示於系所單位:解剖學暨細胞生物學科所

文件中的檔案:
檔案 大小格式 
U0001-2009202220042300.pdf
  目前未授權公開取用
4.57 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved