請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84446完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡欣祐(Hsin-Yue Tsai) | |
| dc.contributor.author | Wun-Ting Wu | en |
| dc.contributor.author | 吳文婷 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:11:52Z | - |
| dc.date.copyright | 2022-10-17 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-25 | |
| dc.identifier.citation | Takeuchi, O. and S. Akira (2010). 'Pattern Recognition Receptors and Inflammation.' Cell 140(6): 805-820. El-Zayat, S. R., H. Sibaii and F. A. Mannaa (2019). 'Toll-like receptors activation, signaling, and targeting: an overview.' Bulletin of the National Research Centre 43(1): 187. Lien, E., T. K. Means, H. Heine, A. Yoshimura, S. Kusumoto, K. Fukase, M. J. Fenton, M. Oikawa, N. Qureshi, B. Monks, R. W. Finberg, R. R. Ingalls and D. T. Golenbock (2000). 'Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide.' J Clin Invest 105(4): 497-504. Lu, Y.-C., W.-C. Yeh and P. S. Ohashi (2008). 'LPS/TLR4 signal transduction pathway.' Cytokine 42(2): 145-151. Liu, T., L. Zhang, D. Joo and S.-C. Sun (2017). 'NF-κB signaling in inflammation.' Signal Transduction and Targeted Therapy 2(1): 17023. O'Neill, L. A. J., D. Golenbock and A. G. Bowie (2013). 'The history of Toll-like receptors — redefining innate immunity.' Nature Reviews Immunology 13(6): 453-460. Huang, S., R. Miao, Z. Zhou, T. Wang, J. Liu, G. Liu, Y. E. Chen, H.-B. Xin, J. Zhang and M. Fu (2013). 'MCPIP1 negatively regulates toll-like receptor 4 signaling and protects mice from LPS-induced septic shock.' Cellular Signalling 25(5): 1228-1234. Matsushita, K., O. Takeuchi, D. M. Standley, Y. Kumagai, T. Kawagoe, T. Miyake, T. Satoh, H. Kato, T. Tsujimura, H. Nakamura and S. Akira (2009). 'Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay.' Nature 458(7242): 1185-1190. Mizgalska, D., P. Węgrzyn, K. Murzyn, A. Kasza, A. Koj, J. Jura, B. Jarząb and J. Jura (2009). 'Interleukin-1-inducible MCPIP protein has structural and functional properties of RNase and participates in degradation of IL-1β mRNA.' The FEBS Journal 276(24): 7386-7399. Xu, J., W. Peng, Y. Sun, X. Wang, Y. Xu, X. Li, G. Gao and Z. Rao (2012). 'Structural study of MCPIP1 N-terminal conserved domain reveals a PIN-like RNase.' Nucleic Acids Research 40(14): 6957-6965. Mino, T., Y. Murakawa, A. Fukao, A. Vandenbon, H.-H. Wessels, D. Ori, T. Uehata, S. Tartey, S. Akira, Y. Suzuki, Carola G. Vinuesa, U. Ohler, Daron M. Standley, M. Landthaler, T. Fujiwara and O. Takeuchi (2015). 'Regnase-1 and Roquin Regulate a Common Element in Inflammatory mRNAs by Spatiotemporally Distinct Mechanisms.' Cell 161(5): 1058-1073. Lessel, D., C. Schob, S. Küry, M. R. F. Reijnders, T. Harel, M. K. Eldomery, Z. Coban-Akdemir, J. Denecke, S. Edvardson, E. Colin, A. P. A. Stegmann, E. H. Gerkes, M. Tessarech, D. Bonneau, M. Barth, T. Besnard, B. Cogné, A. Revah-Politi, T. M. Strom, J. A. Rosenfeld, Y. Yang, J. E. Posey, L. Immken, N. Oundjian, K. L. Helbig, N. Meeks, K. Zegar, J. Morton, J. H. Schieving, A. Claasen, M. Huentelman, V. Narayanan, K. Ramsey, H. G. Brunner, O. Elpeleg, S. Mercier, S. Bézieau, C. Kubisch, T. Kleefstra, S. Kindler, J. R. Lupski and H.-J. Kreienkamp (2017). 'De Novo Missense Mutations in DHX30 Impair Global Translation and Cause a Neurodevelopmental Disorder.' The American Journal of Human Genetics 101(5): 716-724. Zhou, Y., J. Ma, B. Bhusan Roy, J. Y.-y. Wu, Q. Pan, L. Rong and C. Liang (2008). 'The packaging of human immunodeficiency virus type 1 RNA is restricted by overexpression of an RNA helicase DHX30.' Virology 372(1): 97-106. Ye, P., S. Liu, Y. Zhu, G. Chen and G. Gao (2010). 'DEXH-Box protein DHX30 is required for optimal function of the zinc-finger antiviral protein.' Protein & Cell 1(10): 956-964. Bogenhagen, D. F., D. Rousseau and S. Burke (2008). 'The Layered Structure of Human Mitochondrial DNA Nucleoids*.' Journal of Biological Chemistry 283(6): 3665-3675. Minczuk, M., J. He, A. M. Duch, T. J. Ettema, A. Chlebowski, K. Dzionek, L. G. J. Nijtmans, M. A. Huynen and I. J. Holt (2011). 'TEFM (c17orf42) is necessary for transcription of human mtDNA.' Nucleic Acids Research 39(10): 4284-4299. Jiang, S., C. Koolmeister, J. Misic, S. Siira, I. Kühl, E. Silva Ramos, M. Miranda, M. Jiang, V. Posse, O. Lytovchenko, I. Atanassov, F. A. Schober, R. Wibom, K. Hultenby, D. Milenkovic, C. M. Gustafsson, A. Filipovska and N. G. Larsson (2019). 'TEFM regulates both transcription elongation and RNA processing in mitochondria.' EMBO Rep 20(6). Antonicka, H. and Eric A. Shoubridge (2015). 'Mitochondrial RNA Granules Are Centers for Posttranscriptional RNA Processing and Ribosome Biogenesis.' Cell Reports 10(6): 920-932. Rizzotto, D., S. Zaccara, A. Rossi, M. D. Galbraith, Z. Andrysik, A. Pandey, K. D. Sullivan, A. Quattrone, J. M. Espinosa, E. Dassi and A. Inga (2020). 'Nutlin-Induced Apoptosis Is Specified by a Translation Program Regulated by PCBP2 and DHX30.' Cell Reports 30(13): 4355-4369.e4356. BOLTE, S. and F. P. CORDELIÈRES (2006). 'A guided tour into subcellular colocalization analysis in light microscopy.' Journal of Microscopy 224(3): 213-232. Bosco, B., A. Rossi, D. Rizzotto, M. H. Hamadou, A. Bisio, S. Giorgetta, A. Perzolli, F. Bonollo, A. Gaucherot, F. Catez, J.-J. Diaz, E. Dassi and A. Inga (2021). 'DHX30 Coordinates Cytoplasmic Translation and Mitochondrial Function Contributing to Cancer Cell Survival.' Cancers 13(17): 4412. Van Nostrand, E. L., P. Freese, G. A. Pratt, X. Wang, X. Wei, R. Xiao, S. M. Blue, J.-Y. Chen, N. A. L. Cody, D. Dominguez, S. Olson, B. Sundararaman, L. Zhan, C. Bazile, L. P. B. Bouvrette, J. Bergalet, M. O. Duff, K. E. Garcia, C. Gelboin-Burkhart, M. Hochman, N. J. Lambert, H. Li, M. P. McGurk, T. B. Nguyen, T. Palden, I. Rabano, S. Sathe, R. Stanton, A. Su, R. Wang, B. A. Yee, B. Zhou, A. L. Louie, S. Aigner, X.-D. Fu, E. Lécuyer, C. B. Burge, B. R. Graveley and G. W. Yeo (2020). 'A large-scale binding and functional map of human RNA-binding proteins.' Nature 583(7818): 711-719. Nakayama, Y., K. Fujiu, R. Yuki, Y. Oishi, M. S. Morioka, T. Isagawa, J. Matsuda, T. Oshima, T. Matsubara, J. Sugita, F. Kudo, A. Kaneda, Y. Endo, T. Nakayama, R. Nagai, I. Komuro and I. Manabe (2020). 'A long noncoding RNA regulates inflammation resolution by mouse macrophages through fatty acid oxidation activation.' Proceedings of the National Academy of Sciences 117(25): 14365-14375. Jin, Z., E. Zheng, C. Sareli, P. E. Kolattukudy and J. Niu (2021). 'Monocyte Chemotactic Protein-Induced Protein 1 (MCPIP-1): A Key Player of Host Defense and Immune Regulation.' Frontiers in Immunology 12(3932). Huang, S., S. Liu, J. J. Fu, T. Tony Wang, X. Yao, A. Kumar, G. Liu and M. Fu (2015). 'Monocyte Chemotactic Protein-induced Protein 1 and 4 Form a Complex but Act Independently in Regulation of Interleukin-6 mRNA Degradation.' J Biol Chem 290(34): 20782-20792. Iwasaki, H., O. Takeuchi, S. Teraguchi, K. Matsushita, T. Uehata, K. Kuniyoshi, T. Satoh, T. Saitoh, M. Matsushita, D. M. Standley and S. Akira (2011). 'The IκB kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR–IL-1R by controlling degradation of regnase-1.' Nature Immunology 12(12): 1167-1175. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84446 | - |
| dc.description.abstract | 先天性免疫系統是保護宿主免於病源入侵的一道防線,主要參與在此的免疫細胞為巨噬細胞。巨噬細胞上具有許多toll-like receptors (TLRs)可以辨認不同的外源因子。其中TLR4是TLRs中最廣泛被研究的,當LPS接觸到受體便會激發下游訊號途徑。MCPIP1又名Regnase-1,是一核糖核酸酶,在LPS刺激的巨噬細胞中可以降解特定的前發炎激素,例如:IL-6,IL-1β或IL-12b,以避免過度的發炎反應發生。然而,MCPIP1如何辨認特定目標仍未知。為了瞭解MCPIP1如何找到特定目標,我們首先找尋MCPIP1的交互蛋白,透過免疫沉澱及質譜儀找到一RNA解旋酶---DHX30。 DHX30已被發現參與在粒線體核糖體的生合成、抵禦病毒及抑制轉譯。為了找尋DHX30在MCPIP1介導的發炎巨噬細胞中所扮演的角色,我們確認了MCPIP1及DHX30的交互作用,並發現了調降DHX30會使MCPIP1 mRNA及蛋白的表現量下降也降低了發炎激素的mRNA表現。此外,我們也發現調降DHX30抑制粒線體基因表現。我們的結果顯示了DHX30在巨噬細胞中與MCPIP1之間的交互作用以及在發炎反應激素調控中的潛在角色。 | zh_TW |
| dc.description.abstract | Innate immunity is important in the first line defense of against pathogenic invasion and the macrophage is the key immune cell that governs this process. Different pathogen-associated molecules are recognized by various Toll-like receptors (TLRs) that reside on the macrophage. TLR4, triggered by LPS, is the most well-characterized macrophage pro-inflammatory pathway. MCPIP1, also known as Regnase-1, is a ribonuclease that specifically down-regulates a handful of cytokines, IL-6, IL-1β, and IL-12p40 (IL-12b), in macrophages upon LPS treatment. However, how MCPIP1 recognizes its targets are largely unknown. To know how MCPIP1 gains its substrate specificity, we aimed to find protein interactors of MCPIP1. Through MCPIP1 immunoprecipitation (IP) followed by mass spectrometry, we have identified an RNA helicase, DHX30. DHX30, an ATP-dependent RNA helicase, is previously shown essential for mitochondrial ribosome assembly, antiviral processes, and translation repression. To identify whether DHX30 also play role in MCPIP1 mediated cytokine mRNA turnover in macrophage upon LPS treatment, we confirm the interaction between DHX30 and MCPIP1 in macrophages. Furthermore, we revealed that knockdown DHX30 not only decreased MCPIP1 mRNA and protein levels but also reduced the mRNA level of pro-inflammatory cytokines in RAW 264.7 cells. In addition, we confirmed depleting DHX30 results in mitochondrial coding gene downregulation in macrophages. Our results establish the interaction between DHX30 and MCPIP1 and their potential roles in pro-inflammatory macrophage cells. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:11:52Z (GMT). No. of bitstreams: 1 U0001-2109202214292200.pdf: 6453640 bytes, checksum: 591bc56a6d4dacbe1de63c141aa8acec (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 謝辭 I 摘要 II Abstract III Table of contents V Chapter 1 Introduction 1 1.1 Pro-inflammatory macrophage 1 1.2 MCPIP1 regulates pro-inflammatory cytokines 2 1.3 DHX30 functions in cell 3 Chapter 2 Material and Methods 5 2.1 Cell culture conditions and LPS stimulation 5 2.2 shRNA and siRNA target to DHX30 6 2.3 RNA extraction and qRT-PCR 7 2.4 Protein extraction 8 2.5 Immunoprecipitation 8 2.6 Western blot 9 2.7 Immunofluorescence staining 10 2.8 statistical analysis 11 2.9 RNA-seq resource and analysis 11 Chapter 3 Results 12 3.1 The localization of DHX30 and MCPIP1 in macrophages 12 3.2 DHX30 interacted with MCPIP1 13 3.3 Depletion of DHX30 or MCPIP1 decreased each mRNA and protein level 13 3.4 LPS treatment increased the level of MCPIP1 and pro-inflammatory cytokines 14 3.5 Knockdown DHX30 decreased MCPIP1 and pro-inflammatory cytokines expression upon LPS treatment 15 3.6 Knockdown DHX30 decreased mitochondrial coding mRNA 16 Chapter 4 Discussion 19 1. Pro-inflammatory cytokines downregulated in MCPIP1 decreased macrophages 19 2. Depletion of DHX30 enhanced global translation in the previous report 20 3. DHX30 downregulated mitochondrial coding gene level 21 Chapter 5 Figures 22 Figure 1. The localization of DHX30 and MCPIP1 in macrophages 26 Figure 2. The interaction of DHX30 and MCPIP1 in macrophages 27 Figure 3. Knockdown DHX30 decreased MCPIP1 mRNA and protein levels 29 Figure 4. LPS treatment increased the level of MCPIP1 and pro-inflammatory cytokines and the accumulation of MCPIP1 in macrophages’ dendritic-like extension 33 Figure 5. Knockdown DHX30 decreased MCPIP1 and pro-inflammatory cytokines expression upon LPS treatment 39 Figure 6. Knockdown DHX30 decreased mitochondrial coding gene expression and down-regulate mitochondrial related signaling pathway 43 Figure 7. DHX30 and MCPIP1 complex regulate proinflammatory cytokines and mitochondrial mRNA in LPS treatment macrophages 44 Tables 45 Table-I Primers for RT-qPCR 45 References 47 | |
| dc.language.iso | en | |
| dc.subject | 前發炎反應激素 | zh_TW |
| dc.subject | MCPIP1 | zh_TW |
| dc.subject | DHX30 | zh_TW |
| dc.subject | 巨噬細胞 | zh_TW |
| dc.subject | LPS | zh_TW |
| dc.subject | 前發炎反應 | zh_TW |
| dc.subject | pro-inflammation | en |
| dc.subject | pro-inflammatory cytokines | en |
| dc.subject | MCPIP1 | en |
| dc.subject | DHX30 | en |
| dc.subject | macrophages | en |
| dc.subject | LPS | en |
| dc.title | DHX30在MCPIP1介導之發炎巨噬細胞中所扮演的角色 | zh_TW |
| dc.title | A role of DHX30 in MCPIP1-mediated function in pro-inflammatory macrophages | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 朱家瑩(Chia-Ying Chu),詹世鵬(Shih-Peng Chan),徐立中(Li-Chung Hsu) | |
| dc.subject.keyword | MCPIP1,DHX30,巨噬細胞,LPS,前發炎反應,前發炎反應激素, | zh_TW |
| dc.subject.keyword | MCPIP1,DHX30,macrophages,LPS,pro-inflammation,pro-inflammatory cytokines, | en |
| dc.relation.page | 52 | |
| dc.identifier.doi | 10.6342/NTU202203723 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-09-26 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2027-09-25 | - |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2109202214292200.pdf 未授權公開取用 | 6.3 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
