請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84432完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周呈霙 | zh_TW |
| dc.contributor.advisor | Cheng-Ying Chou | en |
| dc.contributor.author | 黃偉豪 | zh_TW |
| dc.contributor.author | Wei-Hao Huang | en |
| dc.date.accessioned | 2023-03-19T22:11:25Z | - |
| dc.date.available | 2023-12-29 | - |
| dc.date.copyright | 2022-09-30 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Afzaal, U., Bhattarai, B., Pandeya, Y. R., and Lee, J. (2021). An instance segmentation model for strawberry diseases based on Mask R-CNN. Sensors, 21(19):6565. Bochkovskiy, A., Wang, C. Y., and Liao, H. Y. M. (2020). YOLOv4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934. Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A., Druzhinin, M., and Kalinin, A. A. (2020). Albumentations: fast and flexible image augmentations. 11(2):125. Dai, J., Li, Y., He, K., and Sun, J. (2016). R-FCN: Object detection via region-based fully convolutional networks. Advances in Neural Information Processing Systems, 29. Davis, R. (2001). Asparagus stem blight recorded in Australia. Australasian Plant Pathology, 30(2):181–182. Elena, K. (2006). First report of Phomopsis asparagi causing stem blight of asparagus in Greece. Plant Pathology, 55(2):300–300. Fuentes, A. F., Yoon, S., Lee, J., and Park, D. S. (2018). High-performance deep neural network-based tomato plant diseases and pests diagnosis system with refinement filter bank. Frontiers in Plant Science, 9:1162. Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. Computer Vision and Pattern Recognition. Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). Densely connected convolutional networks. Computer Vision and Pattern Recognition. Hung, L. (1980). Special aspect of asparagus growing in Taiwan. Journal of the Chinese Society for Horticultural Science, 26(1):1–10. Jocher, G. and Wong, C. (2020). YOLOv5:ultralytics. https://github.com/ultralytics/yolov5. Johnson, J., Sharma, G., Srinivasan, S., Masakapalli, S. K., Sharma, S., Sharma, J., and Dua, V. K. (2021). Enhanced field-based detection of potato blight in complex backgrounds using deep learning. Plant Phenomics, 2021. Klare, J., Rurik, M., Rottmann, E., Bollen, A., Kohlbacher, O., Fischer, M., and Hackl, T. (2020). Determination of the geographical origin of asparagus officinalis L. by 1H NMR Spectroscopy. Journal of Agricultural and Food Chemistry, 68(49):14353–14363. Klusowski, J. M. and Barron, A. R. (2018). Approximation by combinations of relu and squared relu ridge functions with ℓ1 and ℓ0 controls. IEEE Transactions on Information Theory, 64(12):7649–7656. Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6):84–90. Lampert, C. H., Blaschko, M. B., and Hofmann, T. (2008). Beyond sliding windows: Object localization by efficient subwindow search. In 2008 IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE. Liu, S., Qi, L., Qin, H., Shi, J., and Jia, J. (2018). Path aggregation network for instance segmentation. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 8759–8768. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., and Berg, A. C. (2016). SSD: Single shot multibox detector. In European Conference on Computer Vision, pages 21–37. Springer. Lu, G., Jian, W., Zhang, J., Zhou, Y., and Cao, J. (2008). Suppressive effect of silicon nutrient on Phomopsis stem blight development in asparagus. HortScience, 43(3):811–817. Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier nonlinearities improve neural network acoustic models. In Proc. ICML, volume 30, page 3. Citeseer. Pandian, J. A., Kumar, V. D., Geman, O., Hnatiuc, M., Arif, M., and Kanchanadevi, K. (2022). Plant disease detection using deep convolutional neural network. Applied Sciences, 12(14):6982. Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 779–788. Redmon, J. and Farhadi, A. (2017). YOLO9000: better, faster, stronger. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 7263–7271. Redmon, J. and Farhadi, A. (2018). YOLOv3: An incremental improvement. arXiv preprint arXiv:1804.02767. Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems, 28:91–99. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., and Savarese, S. (2019). Generalized intersection over union: A metric and a loss for bounding box regression. In Proceedings of the IEEE/ CVF Conference on Computer Vision and Pattern Recognition, pages 658–666. Richter, B., Gurk, S., Wagner, D., Bockmayr, M., and Fischer, M. (2019). Food authentication: Multi-elemental analysis of white asparagus for provenance discrimination. Food Chemistry, 286:475–482. Tan, H. H. and Lim, K. H. (2019). Vanishing gradient mitigation with deep learning neural network optimization. In 2019 7th International Conference on Smart Computing Communications (ICSCC), pages 1–4. Tzutalin (2015). LabelImg. https://github.com/heartexlabs/labelImg. Uykan, Z. and Koivo, H. N. (2004). Sigmoid-basis nonlinear power-control algorithm for mobile radio systems. IEEE Transactions on Vehicular Technology, 53(1):265–270. Vianna, G. K. and da Cruz, S. M. S. (2014). Neural networks applied to recognition of late blight in Brazilian tomato crops. In 2014 International Conference on Artificial Intelligence (ICAI). Wang, C. Y., Liao, H. Y. M., Wu, Y. H., Chen, P. Y., Hsieh, J. W., and Yeh, I. H. (2020a). CSPNet: A new backbone that can enhance learning capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pages 390–391. Wang, Z. J., Turko, R., Shaikh, O., Park, H., Das, N., Hohman, F., Kahng, M., and Chau, D. H. P. (2020b). CNN explainer: Learning convolutional neural networks with interactive visualization. IEEE Transactions on Visualization and Computer Graphics, 27(2):1396–1406. Wu, F. S., Dough, T. C., and Chen, P. S. (1974). Field disease survey and control on stem blight of green asparagus. Journal of Agricultural Research of China, 23(3):204–211. Xu, B., Wang, N., Chen, T., and Li, M. (2015). Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853. Xu, D. and Wu, Y. (2020). Improved YOLO-V3 with Densenet for multi-scale remote sensing target detection. Sensors, 20(15):4276. Yang, Y., Li, X., Meng, F., and Lan, B. (2012). Establishment of a resistance-identification method on asparagus stem blight and evaluation of Asparagus officinalis germplasms. Acta Phytopathologica Sinica, 42(6):649–654. Yang, Y., Sun, Q., Li, C., Chen, H., Zhao, F., Huang, J., Zhou, J., Li, X., and Lan, B. (2020). Biological characteristics and genetic diversity of Phomopsis asparagi, causal agent of asparagus stem blight. Plant Disease, 104(11):2898–2904. Yin, J., Chin, C.-k., Ye, J., Zhao, W., Li, G., et al. (2012). An effective asparagus stem blight management program. Acta Horticulturae, 950:293–298. Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., and Ren, D. (2020). Distance-IoU Loss: Faster and better learning for bounding box regression. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 12993–13000. Zhu, X., Li, C., Zhang, L., and Zhu, Y. (2020). Research advance in bioactive constituents and major biological activities of Asparagus officinalis L. Hans Journal of Food and Nutrition Science, 9(1):74–81. 行政院農業委員會 (2010). 蘆筍病害生態及防治介紹. https://kmweb.coa.gov.tw/subject/subject.php?id=30071. 謝明憲 (2017). 臺灣生鮮蘆筍消費與進口變動趨勢. 臺南區農業專訊, (99):11–15. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84432 | - |
| dc.description.abstract | 蘆筍是一種具有很高經濟價值的季節性作物,是最有營養的蔬菜之一。然而,在溫暖潮濕的天氣裡,台灣蘆筍的莖部經常感染一種真菌病,即莖枯病。真菌孢子感染並破壞莖的組織。如果種植者不及早治療蘆筍的莖枯病,受感染的蘆筍就會枯萎死亡。此外,蘆筍有幾種生長階段,如嫩芽、嫩莖、母莖等。透過深度學習技術辨識蘆筍的三種生長階段,將有助於種植者確切地了解蘆筍植株的生長階段和分佈位置。 本研究中,我應用各種分類器辨識種植範圍內感染莖枯疾病的嚴重程度;我也應用各種物件偵測模型來識別蘆筍莖枯疾病的位置與蘆筍不同的生長狀態和蘆筍嫩莖分佈位置。在目標檢測模型的損失函數中,我使用先進的邊界框損失函數來優化物件偵測模型的損失函數,例如: GIoU、DIoU與CIoU。同時,我也應用SSD、Faster R-CNN、YOLOv3、YOLOv5以及改良的YOLOv5 C3-DenseNet模型來達成物件偵測的任務。新提出的YOLOv5 C3-DenseNet模型在特徵提取骨幹中使用密集連接卷積網絡架構;在頸部層中,它使用殘差網路架構取代原本的雙卷積層;在預測層中,它增加一個具有160×160像素的預測特徵圖與額外的三個錨框以增加模型的能力與精度。 在測試結果中,對於莖枯病早期病變檢測任務。YOLOv5s與YOLOv5s C3-DenseNet模型在IoU標準等於0.5的平均精度均值分別為0.7370和0.7960;對於蘆筍不同的生長狀態和分佈位置檢測任務,在IoU標準等於0.5的YOLOv3、YOLOv5l與YOLOv5l C3-DenseNet模型的平均精度均值為0.7700、0.7689和0.8101。本研究通過即早發現感染病灶,種植者可以及時對感染的蘆筍進行精準有效的治療,進而減少經濟的損失。另外,本研究可準確地識別蘆筍生長狀態和分佈位置有助於區分與定位細小的蘆筍嫩莖,最終地幫助農民收成蘆筍嫩莖的與增進經濟獲利。 | zh_TW |
| dc.description.abstract | Asparagus is a seasonal crop with high economic value and one of the most nutritious vegetables. However, a fungal disease often infects the stem of asparagus in Taiwan during warm and wet weather, namely stem blight disease. The fungus spores infect and damage the tissues of the stem. If the planter does not treat the stem blight disease of asparagus early, the infected asparagus will wither and die. In addition, asparagus has several growth stages, such as shoot, spear, mother-stalk, etc. Identifying these stages of growth of asparagus with deep learning technologies will help the planter identify the growth status and distribution location of asparagus. In this study, I applied various classifiers to identify the severity of stalk blight disease in the planting area; I also applied various object detection models to identify the location of asparagus stalk blight disease and the different growth states of asparagus, and the distribution of asparagus spears. In the loss function of object detection models, I used advanced bounding box loss functions to optimize the loss function, such as GIoU, DIoU, and CIoU. At the same time, I also applied SSD, Faster R-CNN, YOLOv3, YOLOv5, and the improved YOLOv5 C3-DenseNet model to achieve object detection tasks. This proposed YOLOv5 C3-DenseNet uses the architecture of a densely connected convolutional network (DenseNet) in the feature extraction backbone; in the neck layer, it uses the residual network architecture to replace the double convolution layer; in the prediction layer, it adds 160×160 pixels predicted feature maps and additional anchor boxes to increase the power and accuracy of the model. For the test results, for the early lesion detection task of stem blight disease, the mean average precision (mAP) of the YOLOv5s, and YOLOv5s C3-DenseNet models under the IoU standard equal to 0.5 were 0.7370, and 0.7960, respectively; the detection tasks of different growth states and distribution positions of asparagus, the mean average precision (mAP) of the YOLOv3, YOLOv5l and YOLOv5l C3-DenseNet models are 0.7700, 0.7689, and 0.8101 when the IoU criterion is equal to 0.5. In this study, growers can timely and effectively treat infected asparagus through early detection of infection lesions, thereby reducing economic losses. In addition, this study can accurately identify the growth state and distribution position of asparagus, which is helpful to distinguish and locate the small asparagus shoots, and ultimately help farmers to harvest asparagus shoots and increase economic profits. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:11:25Z (GMT). No. of bitstreams: 1 U0001-1707202203434200.pdf: 62728156 bytes, checksum: edb8fdf89ae85a2b117b1bbc2fafe1cf (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Acknowledgements i 摘要 ii Abstract iv Contents vii List of Figures x List of Tables xiii Denotation xv Chapter 1 Introduction 1 1.1 General background information 1 1.2 Research purpose 2 Chapter 2 Literature Review 4 2.1 Asparagus stem blight disease related work 4 2.2 Blight disease of other plants 5 2.3 Object detection 7 2.3.1 Single Shot MultiBox Detector (SSD) 9 2.3.2 YOLOv1 10 2.3.3 YOLOv2 11 2.3.4 R-CNN 17 2.4 IoU loss function for bounding boxes 18 2.5 Activation functions 19 2.5.1 Sigmoid activation function 19 2.5.2 Rectified Linear Unit (ReLU) 20 Chapter 3 Materials and Methods 22 3.1 Labeling procedure 22 3.2 Image augmentation 25 3.3 Non-maximum suppression (NMS) 27 3.4 Advanced activation function : Leaky Rectified Linear Unit (LReLU) 28 3.5 YOLO models 29 3.5.1 YOLOv3 30 3.5.2 YOLOv5 33 3.5.3 YOLOv5 C3-DenseNet 36 3.5.4 K-means for anchors 44 3.5.5 Confidence score 49 3.5.6 Loss function 50 3.6 Faster-RCNN 55 3.7 Loss function for bounding box 57 3.7.1 Generalized intersection over union (GIoU) 57 3.7.2 Distance intersection over union (DIoU) 57 3.7.3 Complete intersection over union (CIoU) 58 Chapter 4 Results and Discussion 59 4.1 Training platform and parameters 59 4.2 The dataset 61 4.3 Evaluation Metrics 64 4.4 Disease Classifiers 67 4.5 Object Detection Results 75 4.5.1 Various bounding box loss functions 75 4.5.2 New backbone (C3-DenseNet) vs. Original backbone (C3Net) 76 4.5.3 New neck layer (C3-ResNet block) vs. Original neck layer (DCBL) 82 4.5.4 Three detection vs. four detection sizes 86 4.5.5 YOLOv5 C3-DenseNet vs. YOLOv5 91 4.5.6 YOLOv5 C3-DenseNet vs. Other models 108 4.5.7 The frame per second (FPS) values of various object detection models 110 4.5.8 Visualization results 111 4.6 Calculating the length of asparagus spears 115 Chapter 5 Conclusions and Future work 118 5.1 Conclusion 118 5.2 Future work 120 References 121 | - |
| dc.language.iso | en | - |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 物件辨識 | zh_TW |
| dc.subject | 蘆筍 | zh_TW |
| dc.subject | 莖枯病 | zh_TW |
| dc.subject | 生長階段 | zh_TW |
| dc.subject | Object detection | en |
| dc.subject | Asparagus | en |
| dc.subject | Stem blight disease | en |
| dc.subject | Growth stages | en |
| dc.subject | Deep learning | en |
| dc.title | 應用深度學習技術於蘆筍生長階段及病害辨識之應用 | zh_TW |
| dc.title | Application of Deep Learning Technology in Asparagus Growth Stage and Disease Identification | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.advisor-orcid | 周呈霙(0000-0002-5737-6960) | |
| dc.contributor.coadvisor | 江昭皚;王人正;林達德 | zh_TW |
| dc.contributor.coadvisor | Joe-Air Jiang;Jen-Cheng Wang;Ta-Te Lin | en |
| dc.contributor.coadvisor-orcid | 江昭皚(0000-0001-9886-1404),王人正(0000-0002-8004-1683) | |
| dc.contributor.oralexamcommittee | zh_TW | |
| dc.subject.keyword | 蘆筍,莖枯病,生長階段,深度學習,物件辨識, | zh_TW |
| dc.subject.keyword | Asparagus,Stem blight disease,Growth stages,Deep learning,Object detection, | en |
| dc.relation.page | 126 | - |
| dc.identifier.doi | 10.6342/NTU202201505 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2022-09-27 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物機電工程學系 | - |
| dc.date.embargo-lift | 2024-09-26 | - |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 61.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
