Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84430
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林書妍(Shu-Yen Lin)
dc.contributor.authorDong-Han Wuen
dc.contributor.author吳東翰zh_TW
dc.date.accessioned2023-03-19T22:11:20Z-
dc.date.copyright2022-10-19
dc.date.issued2022
dc.date.submitted2022-09-26
dc.identifier.citation甘子能. 1984. 茶葉化學入門. 行政院農委會茶業改良場林口分場, 臺北. 108pp. 行政院農委會. 2021. 農業統計年報. 農業統計資料查詢. <https://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx> 2022/7/26 吳振鐸. 1985. 臺灣茶葉的分類. 臺灣茶業研究彙報 4:155-158. 蔡志賢. 2002. 包種茶萎凋與攪拌製程中茶菁之生理變化與利用生物電子鼻監測之可行性探討. 臺灣大學園藝所博士論文. 臺北. Armstrong, G.A. and J.E. Hearst. 1996. Genetics and molecular biology of carotenoid pigment biosynthesis. Faseb J. 10:228-237. Ashihara, H., W.W. Deng, W. Mullen, and A. Crozier. 2010. Distribution and biosynthesis of flavan-3-ols in Camellia sinensis seedlings and expression of genes encoding biosynthetic enzymes. Phytochemistry 71:559-566. Balentine, D.A., S.A. Wiseman, and L.C. Bouwens. 1997. The chemistry of tea flavonoids. Crit. Rev. Food Sci. Nutr. 37:693-704. Chaintreau, A. 2001. Simultaneous distillation-extraction: from birth to maturity - review. Flavour Frag. J. 16:136-148. Chen, S., P. Xie, Y. Li, X. Wang, H. Liu, S. Wang, W. Han, R. Wu, X. Li, Y. Guan, Z. Yang, and X. Yu. 2021. New insights into stress-induced beta-Ocimene biosynthesis in tea (Camellia sinensis) leaves during oolong tea processing. J. Agric. Food Chem. 69:11656-11664. Chin, H.W., R.A. Bernhard, and M. Rosenberg. 1996. Solid phase microextraction for cheese volatile compound analysis. J. Food Sci. 61:1118-1123. Cho, J.Y., M. Mizutani, B. Shimizu, T. Kinoshita, M. Ogura, K. Tokoro, M.L. Lin, and K. Sakata. 2007. Chemical profiling and gene expression profiling during the manufacturing process of Taiwan oolong tea 'Oriental Beauty'. Biosci. Biotechnol. Biochem. 71:1476-1486. Cui, J., T. Katsuno, K. Totsuka, T. Ohnishi, H. Takemoto, N. Mase, M. Toda, T. Narumi, K. Sato, T. Matsuo, K. Mizutani, Z. Yang, N. Watanabe, and H. Tong. 2016. Characteristic fluctuations in glycosidically bound volatiles during tea processing and identification of their unstable derivatives. J. Agric. Food Chem. 64:1151-1157. Ekaprasada, M.T., H. Nurdin, S. Ibrahim, and D. Dachriyanus. 2009. Antioxidant activity of methyl gallate isolated from the leaves of Toona sureni. Indonesian J. Chem. 9:457-460. Erb, M., N. Veyrat, C.A. Robert, H. Xu, M. Frey, J. Ton, and T.C. Turlings. 2015. Indole is an essential herbivore-induced volatile priming signal in maize. Nat. Commun. 6:6273. Feng, Y., J. Wang, Y. Zhao, M. Zhang, Z. Zhou, Y. Li, Y. Hu, Y. Wu, Z. Feng, W. Schwab, X. Wan, and C. Song. 2021. Biosynthesis of orchid-like volatile methyl jasmonate in tea (Camellia sinensis) leaves in response to multiple stresses during the shaking process of oolong tea. Lwt 143:111184. Friedman, M., P.R. Henika, C.E. Levin, R.E. Mandrell, and N. Kozukue. 2006. Antimicrobial activities of tea catechins and theaflavins and tea extracts against Bacillus cereus. J. Food Protect. 69:354-361. Garcia-Esteban, M., D. Ansorena, I. Astiasaran, D. Martin, and J. Ruiz. 2004. Comparison of simultaneous distillation extraction (SDE) and solid-phase microextraction (SPME) for the analysis of volatile compounds in dry-cured ham. J. Sci. Food Agric. 84:1364-1370. Gui, J., X. Fu, Y. Zhou, T. Katsuno, X. Mei, R. Deng, X. Xu, L. Zhang, F. Dong, N. Watanabe, and Z. Yang. 2015. Does enzymatic hydrolysis of glycosidically bound volatile compounds really contribute to the formation of volatile compounds during the oolong tea manufacturing process? J. Agric. Food Chem. 63:6905-6914. Hazarika, M., P.K. Mahanta, and T. Takeo. 1984. Studies on some volatile flavour constituents in orthodox black teas of various clones and flushes in North‐east India. J. Sci. Food Agric. 35:1201-1207. He, H.F. 2017. Research progress on theaflavins: efficacy, formation, and preparation. Food Nutr. Res. 61:1344521. He, Q., K. Yao, D. Jia, H. Fan, X. Liao, and B. Shi. 2009. Determination of total catechins in tea extracts by HPLC and spectrophotometry. Nat. Prod. Res. 23:93-100. Ho, C.-T., X. Zheng, and S. Li. 2015. Tea aroma formation. Food Sci. Hum. Wellness 4:9-27. Hu, C.J., D. Li, Y.X. Ma, W. Zhang, C. Lin, X.Q. Zheng, Y.R. Liang, and J.L. Lu. 2018. Formation mechanism of the oolong tea characteristic aroma during bruising and withering treatment. Food Chem. 269:202-211. Jacobo-Velazquez, D.A., M. Gonzalez-Aguero, and L. Cisneros-Zevallos. 2015. Cross-talk between signaling pathways: the link between plant secondary metabolite production and wounding stress response. Sci. Rep. 5:8608. Jardine, K.J., A.B. Jardine, J.A. Holm, D.L. Lombardozzi, R.I. Negron-Juarez, S.T. Martin, H.R. Beller, B.O. Gimenez, N. Higuchi, and J.Q. Chambers. 2017. Monoterpene 'thermometer' of tropical forest-atmosphere response to climate warming. Plant Cell Environ. 40:441-452. Kaminaga, Y., J. Schnepp, G. Peel, C.M. Kish, G. Ben-Nissan, D. Weiss, I. Orlova, O. Lavie, D. Rhodes, K. Wood, D.M. Porterfield, A.J. Cooper, J.V. Schloss, E. Pichersky, A. Vainstein, and N. Dudareva. 2006. Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. J. Biol. Chem. 281:23357-23366. Kawakami, M. and A. Kobayashi. 2002. Carotenoid-Derived Aroma Compounds in Tea. ACS Symp. Ser. 802:145-159. Ke, S.W., G.H. Chen, C.T. Chen, J.T.C. Tzen, and C.Y. Yang. 2018. Ethylene signaling modulates contents of catechin and ability of antioxidant in Camellia sinensis. Bot. Stud. 59:11. Kobayashi, A., K. Tachiyama, M. Kawakami, T. Yamanishi, I.-M. Juan, and W.-F. Chiu. 1985. Effects of solar-withering and turn over treatment during indoor-withering on the formation of pouchong tea aroma. Agric. Biol. Chem. 49:1655-1660. Li, X., J. Zhang, S. Lin, Y. Xing, X. Zhang, M. Ye, Y. Chang, H. Guo, and X. Sun. 2022. (+)-Catechin, epicatechin and epigallocatechin gallate are important inducible defensive compounds against Ectropis grisescens in tea plants. Plant Cell Environ. 45:496-511. Lin, S.Y., Y.L. Chen, C.L. Lee, C.Y. Cheng, S.F. Roan, and I.Z. Chen. 2013. Monitoring volatile compound profiles and chemical compositions during the process of manufacturing semi-fermented oolong tea. J. Hortic. Sci. Biotechnol. 88:159-164. Lin, S.Y., L.C. Lo, I.Z. Chen, and P.A. Chen. 2016. Effect of shaking process on correlations between catechins and volatiles in oolong tea. J. Food Drug Anal. 24:500-507. Lin, S.Y., Y.H. Hsiao, and P.A. Chen. 2022. Revealing the profound meaning of pan-firing of oolong tea - A decisive point in odor fate. Food Chem. 375:131649. Lin, Y.S., Y.J. Tsai, J.S. Tsay, and J.K. Lin. 2003. Factors affecting the levels of tea polyphenols and caffeine in tea leaves. J. Agric. Food Chem. 51:1864-1873. Liu, G., M. Yang, and J. Fu. 2020. Identification and characterization of two sesquiterpene synthase genes involved in volatile-mediated defense in tea plant (Camellia sinensis). Plant Physiol. Biochem. 155:650-657. Ma, C., J. Li, W. Chen, W. Wang, D. Qi, S. Pang, and A. Miao. 2018. Study of the aroma formation and transformation during the manufacturing process of oolong tea by solid-phase micro-extraction and gas chromatography-mass spectrometry combined with chemometrics. Food Res. Int. 108:413-422. Ma, S.-J., M. Mizutani, J. Hiratake, K. Hayashi, K. Yagi, N. Watanabe, and K. Sakata. 2001. Substrate specificity of β-primeverosidase, a key enzyme in aroma formation during oolong tea and black tea manufacturing. Biosci. Biotechnol. Biochem. 65:2719-2729. Maeda, H. and N. Dudareva. 2012. The shikimate pathway and aromatic amino Acid biosynthesis in plants. Annu. Rev. Plant Biol. 63:73-105. McGarvey, D.J. and R. Croteau. 1995. Terpenoid metabolism. The plant cell 7:1015. Mei, X., X. Liu, Y. Zhou, X. Wang, L. Zeng, X. Fu, J. Li, J. Tang, F. Dong, and Z. Yang. 2017. Formation and emission of linalool in tea (Camellia sinensis) leaves infested by tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda). Food Chem. 237:356-363. Nisar, N., L. Li, S. Lu, N.C. Khin, and B.J. Pogson. 2015. Carotenoid metabolism in plants. Mol. Plant 8:68-82. Pripdeevech, P. and T. Machan. 2011. Fingerprint of volatile flavour constituents and antioxidant activities of teas from Thailand. Food Chem. 125:797-802. Qin, J.-H., N. Li, P.-F. Tu, Z.-Z. Ma, and L. Zhang. 2012. Change in tea polyphenol and purine alkaloid composition during solid-state fungal fermentation of postfermented tea. J. Agric. Food Chem. 60:1213-1217. Rahardiyan, D. 2019. Antibacterial potential of catechin of tea (Camellia sinensis) and its applications. Food Res. 3:1-6. Ren, G., Q. Fan, X. He, W. Li, and X. Tang. 2020. Applicability of multifunctional preprocessing device for simultaneous estimation of spreading of green tea, withering of black tea and shaking of oolong tea. J. Sci. Food Agric. 100:560-569. Riu-Aumatell, M., L. Vargas, S. Vichi, J.M. Guadayol, E. López-Tamames, and S. Buxaderas. 2011. Characterisation of volatile composition of white salsify (Tragopogon porrifolius L.) by headspace solid-phase microextraction (HS-SPME) and simultaneous distillation–extraction (SDE) coupled to GC–MS. Food Chem. 129:557-564. Sanderson, G.W. and H.N. Grahamm. 1973. Formation of black tea aroma. J. Agric. Food Chem. 21:576-585. Sheibani, E., S.E. Duncan, D.D. Kuhn, A.M. Dietrich, and S.F. O'Keefe. 2016. SDE and SPME analysis of flavor compounds in Jin Xuan oolong tea. J. Food Sci. 81:C348-358. Sides, A., K. Robards, and S. Helliwell. 2000. Developments in extraction techniques and their application to analysis of volatiles in foods. Trac-Trend Anal. Chem. 19:322-329. Stahl‐Biskup, E., F. Intert, J. Holthuijzen, M. Stengele, and G. Schulz. 1993. Glycosidically bound volatiles—a review 1986-1991. Flavour Frag. J. 8:61-80. Stevenson, R.J., X.D. Chen, and O.E. Mills. 1996. Modern analyses and binding studies of flavour volatiles with particular reference to dairy protein products. Food Res. Int. 29:265-290. Subeki, H. Matsuura, K. Takahashi, M. Yamasaki, O. Yamato, Y. Maede, K. Katakura, S. Kobayashi, Trimurningsih, Chairul, and T. Yoshihara. 2005. Anti-babesial and anti-plasmodial compounds from Phyllanthus niruri. J. Nat. Prod. 68:537-539. Subramanian, N., P. Venkatesh, S. Ganguli, and V.P. Sinkar. 1999. Role of polyphenol oxidase and peroxidase in the generation of black tea theaflavins. J. Agric. Food Chem. 47:2571-2578. Sugimoto, K., K. Matsui, Y. Iijima, Y. Akakabe, S. Muramoto, R. Ozawa, M. Uefune, R. Sasaki, K.M. Alamgir, S. Akitake, T. Nobuke, I. Galis, K. Aoki, D. Shibata, and J. Takabayashi. 2014. Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. Proc. Natl. Acad. Sci. 111:7144-7149. Tanaka, T. and I. Kouno. 2003. Oxidation of tea catechins: chemical structures and reaction mechanism. Food Sci. Technol. Res. 9:128-133. Theppakorn, T. 2016. Stability and chemical changes of phenolic compounds during oolong tea processing. Int. Food Res. J. 23:564-574. Tieman, D., M. Taylor, N. Schauer, A.R. Fernie, A.D. Hanson, and H.J. Klee. 2006. Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proc. Nat. Acad. Sci. 103:8287-8292. Tieman, D.M., H.M. Loucas, J.Y. Kim, D.G. Clark, and H.J. Klee. 2007. Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol. Phytochemistry 68:2660-2669. ul Hassan, M.N., Z. Zainal, and I. Ismail. 2015. Green leaf volatiles: biosynthesis, biological functions and their applications in biotechnology. Plant Biotechnol. J. 13:727-739. Ulrich, S. 2000. Solid-phase microextraction in biomedical analysis. J. Chromatogr. A 902:167-194. Vas, G. and K. Vekey. 2004. Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. J. Mass Spectrom. 39:233-254. Vickers, C.E., J. Gershenzon, M.T. Lerdau, and F. Loreto. 2009. A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat. Chem. Biol. 5:283-291. Wang, D., T. Yoshimura, K. Kubota, and A. Kobayashi. 2000. Analysis of glycosidically bound aroma precursors in tea leaves. 1. Qualitative and quantitative analyses of glycosides with aglycons as aroma compounds. J. Agric. Food Chem. 48:5411-5418. Wang, J., N. Zhang, M. Zhao, T. Jing, J. Jin, B. Wu, X. Wan, W. Schwab, and C. Song. 2020. Carotenoid cleavage dioxygenase 4 catalyzes the formation of carotenoid-derived volatile β-ionone during tea (Camellia sinensis) withering. J. Agric. Food Chem. 68:1684-1690. Wang, X., L. Zeng, Y. Liao, J. Li, J. Tang, and Z. Yang. 2019. Formation of α-Farnesene in tea (Camellia sinensis) leaves induced by herbivore-derived wounding and its effect on neighboring tea plants. Int. J. Mol. Sci. 20:4151. Wang, X., L. Zeng, Y. Liao, Y. Zhou, X. Xu, F. Dong, and Z. Yang. 2019. An alternative pathway for the formation of aromatic aroma compounds derived from l-phenylalanine via phenylpyruvic acid in tea (Camellia sinensis (L.) O. Kuntze) leaves. Food Chem. 270:17-24. Wang, Y., L. Gao, Y. Shan, Y. Liu, Y. Tian, and T. Xia. 2012. Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze). Sci. Hortic. 141:7-16. Wang, Y., Z. Kan, H.J. Thompson, T. Ling, C.T. Ho, D. Li, and X. Wan. 2019. Impact of Six Typical Processing Methods on the Chemical Composition of Tea Leaves Using a Single Camellia sinensis Cultivar, Longjing 43. J. Agric. Food Chem. 67:5423-5436. Wang, Y., P.C. Zheng, P.P. Liu, X.W. Song, F. Guo, Y.Y. Li, D.J. Ni, and C.J. Jiang. 2019. Novel insight into the role of withering process in characteristic flavor formation of teas using transcriptome analysis and metabolite profiling. Food Chem. 272:313-322. Winterhalter, P. and G.K. Skouroumounis. 1997. Glycoconjugated aroma compounds: occurrence, role and biotechnological transformation. Adv. Biochem. Eng. Biotechnol. 55:73-105. Xiong, L., J. Li, Y. Li, L. Yuan, S. Liu, J. Huang, and Z. Liu. 2013. Dynamic changes in catechin levels and catechin biosynthesis-related gene expression in albino tea plants (Camellia sinensis L.). Plant Physiol. Biochem. 71:132-143. Xu, Y.Q., P.P. Liu, J. Shi, Y. Gao, Q.S. Wang, and J.F. Yin. 2018. Quality development and main chemical components of Tieguanyin oolong teas processed from different parts of fresh shoots. Food Chem. 249:176-183. Yang, Z.Y., S. Baldermann, and N. Watanabe. 2013. Recent studies of the volatile compounds in tea. Food Res. Int. 53:585-599. Yu, F., C. Chen, S. Chen, K. Wang, H. Huang, Y. Wu, P. He, Y. Tu, and B. Li. 2022. Dynamic changes and mechanisms of organic acids during black tea manufacturing process. Food Control 132:108535. Zeng, L., Y. Liao, J. Li, Y. Zhou, J. Tang, F. Dong, and Z. Yang. 2017. alpha-Farnesene and ocimene induce metabolite changes by volatile signaling in neighboring tea (Camellia sinensis) plants. Plant Sci. 264:29-36. Zeng, L., X. Wang, Y. Liao, D. Gu, F. Dong, and Z. Yang. 2019. Formation of and changes in phytohormone levels in response to stress during the manufacturing process of oolong tea (Camellia sinensis). Postharvest Biol. Technol. 157:110974. Zeng, L., N. Watanabe, and Z. Yang. 2019. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Crit. Rev. Food Sci. Nutr. 59:2321-2334. Zeng, L., Y. Zhou, X. Fu, Y. Liao, Y. Yuan, Y. Jia, F. Dong, and Z. Yang. 2018. Biosynthesis of jasmine lactone in tea (Camellia sinensis) leaves and its formation in response to multiple stresses. J. Agric. Food Chem. 66:3899-3909. Zeng, L., Y. Zhou, J. Gui, X. Fu, X. Mei, Y. Zhen, T. Ye, B. Du, F. Dong, N. Watanabe, and Z. Yang. 2016. Formation of volatile tea constituent indole during the oolong tea manufacturing process. J. Agric. Food Chem. 64:5011-5019. Zhao, X., S. Chen, S. Wang, W. Shan, X. Wang, Y. Lin, F. Su, Z. Yang, and X. Yu. 2019. Defensive responses of tea plants (Camellia sinensis) against tea green leafhopper attack: a multi-omics study. Front. Plant Sci. 10:1705. Zhou, Y., X. Liu, and Z. Yang. 2019. Characterization of terpene synthase from tea green leafhopper being involved in formation of geraniol in tea (Camellia sinensis) leaves and potential effect of geraniol on insect-derived endobacteria. Biomolecules 9:808. Zhou, Y., L. Zeng, J. Gui, Y. Liao, J. Li, J. Tang, Q. Meng, F. Dong, and Z. Yang. 2017. Functional characterizations of beta-glucosidases involved in aroma compound formation in tea (Camellia sinensis). Food Res. Int. 96:206-214. Zhou, Y., L. Zeng, X. Liu, J. Gui, X. Mei, X. Fu, F. Dong, J. Tang, L. Zhang, and Z. Yang. 2017. Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing. Food Chem. 231:78-86.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84430-
dc.description.abstract包種茶製程中,攪拌與靜置是形塑包種茶香氣滋味的關鍵步驟。本研究鎖定第 二次攪拌及靜置過程,由攪拌時機與攪拌力道兩個方面,經由茶菁內容物成分分析,探討攪拌操作的條件對茶菁及後續變化的影響。以台茶12號茶菁,分別於2020年冬季與2021年春季製作包種茶,依慣行方法進行日光萎凋及第一次攪拌靜置,再分別於不同的靜置時間開始進行第二次攪拌,以靜置時間標示不同的第二次攪拌時機處理。攪拌力道的試驗則以2021年冬季茶菁進行包種茶製作,慣行製作至第二次攪拌時,分別以不同趟數的人工攪拌及以攪拌機攪拌不同旋轉圈數,作為兩者攪拌方式的攪拌力道處理。所有試驗處理皆於攪拌前、攪拌後及靜置期間分別取樣,分析茶菁中非揮發性成分含量與揮發性成分組成。沒食子酸、咖啡因及兒茶素異構物的含量,在不同攪拌時機處理間無顯著差異,但攪拌強度較高時,攪拌後的兒茶素含量顯著較高。不同攪拌時機下的茶菁,氣味分子組成以香葉醇、吲哚、羅勒烯及金合歡烯的相對含量有顯著差異,為主要氣味貢獻化合物,其不同的組成比例可區別不同的第二次攪拌時機。在第二次攪拌前,吲哚、苯乙醛、羅勒烯及金合歡烯隨著攪拌啟動時機越晚相對含量增加;在攪拌後靜置期間,吲哚在靜置60至150分鐘後進行攪拌的處理組中相對含量最高,而羅勒烯及金合歡烯在靜置270至330分鐘後進行攪拌的處理組中相對含量有下降的趨勢。以人工攪拌與攪拌機攪拌,在攪拌剛完成時的氣味組成,人工攪拌組中有較高相對含量的反式己烯醛與反式β紫羅蘭酮,而茉莉內酯的相對含量以攪拌機攪拌的處理較高。攪拌後靜置60分鐘,單萜類的芳樟醇、羅勒烯,倍半萜類的橙花叔醇、金合歡烯,以及苯丙烷類衍生物的吲哚、苯乙醛,以攪拌機攪拌的相對含量顯著較高;而在靜置120分鐘時,羅勒烯、吲哚、橙花叔醇及金合歡烯則以人工攪拌相對含量較高。所有處理在靜置過程中都顯示氣味成分的相對含量會持續累積。依據本研究的結果,第二次攪拌時的啟動時機點,約以60至80分鐘為一個循環,第一次靜置時間越長,吲哚、羅勒烯、金合歡烯等成分會有較顯著的累積。攪拌強度越強,會顯著增加攪拌後的兒茶素含量,兒茶素含量越高,在靜置後金合歡烯、苯乙醛及茉莉內酯的表現越顯著。攪拌啟動時機及攪拌強度顯著影響氣味組成及後續的氣味變化,特定的關鍵氣味組成可作為包種茶製作時判別攪拌條件之評估指標。zh_TW
dc.description.abstractIn the process of manufacturing paochung tea, the shaking and resting process are the crucial steps in the formation of aroma and taste. The study targets the second shaking and resting process in terms of shaking timing and intensity. The volatile organic compounds (VOCs) and the non-volatile constitutes of fresh tea leaves are analyzed to explore the effects of shaking condition. In the experiment of shaking timing, paochung tea was made in the 2020 winter and 2021 spring with cv. TTES No.12 (Jhinhsuan). After sun withering and first shaking process, the treatments of the second shaking process by different resting time interval were acitivated respectively. In the experiment of shaking intensity, paochung tea was made in the 2021 winter. The treatments were performed by manual shaking and mechanical stirring with stirrer respectively. All treatments were sampled before shaking process, and during the resting process after shaking. The VOCs and nonvolatile components of fresh tea leaves were analyzed. The results showed that there was no significant difference in the content of gallic acid, caffeine and catechin isomers between the treatments with various shaking timing while the catechin content was increased in higher shaking intensity. In addition, geraniol, indole, β-ocimene and α-farnesene were the main odor-contributing compounds in the volatile components of fresh tea leaves during the second shaking process, which could distinguish different treatments of shaking timing. Before the second shaking process, the relative content of indole, benzeneacetaldehyde, β-ocimene and α-farnesene was increased with the growth of shaking timing. During the resting period, the relative content of indole was highest in the treatments after resting for 60 to 150 minutes, while the relative content of β-ocimene and α-farnesene was decreased in the treatments after resting for 270 to 330 minutes. Compared to treatments of manual shaking and mechanical stirring with stirrer, the relative content of trans-2-hexenal and trans-β-ionone was significantly higher in manual shaking. In contrast, jasmine lactone had higher relative content in mechanical stirring than manual shaking. Samples that rested for 60 minutes in all mechanical stirring treatments showed higher relative content in linalool and β-ocimene (monoterpenoids), nerolidol and α-farnesene (sesquiterpenoids), and indole and benzeneacetaldehyde (phenylpropanoids). Samples that rested for 120 minutes in all manual shaking treatments have higher relative contents of β-ocimene, indole, nerolidol and α-farnesen. It is worth noting that VOCs had kept accumulating during resting process in all treatments. The results of this study showed that the change of odor components in various shaking timing before the second shaking process had presented a interval of 60 to 80 minutes approximately. As an increasing resting time, there was a significant accumulation in the relative content of indole, β-ocimene and α-farnesene. With a growing level of shaking intensity, the catechin content after shaking process increased significantly. The higher content of catechin, the higher relative content of α-farnesene, benzeneacetaldehyde and jasmine lactone was observed. Thus, the effects of shaking timing and shaking intensity were clearly on VOCs component and subsequent variations of VOCs. The specific odor composition could be used as a key indicator for shaking process during the manufacturing of paochong tea.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:11:20Z (GMT). No. of bitstreams: 1
U0001-1609202222390000.pdf: 3324367 bytes, checksum: 91775c15ca46fa87064476d82f5bdfc2 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 i 摘要 ii Abstract iv 目 錄 vi 表目錄 viii 圖目錄 x 第一章、 前言 1 第二章、 文獻回顧 2 2.1 茶的分類及製程 2 2.2 茶葉中的多元酚類及揮發性成分 3 2.2.1多元酚類的化學結構與生合成 3 2.2.2 常見揮發性化合物的結構與生合成 5 2.3 傷害逆境反應對茶菁非揮發及揮發性成分之影響 11 2.3.1 非生物性及生物性促成的傷害逆境 11 2.3.2 揮發性及非揮發性成分的關聯性 12 2.4 植物揮發性化合物分析中常見的萃取技術應用 13 2.5 研究動機 15 第三章、 材料與方法 17 3.1 植物材料 17 3.2 試驗設計 17 3.2.1 第二次攪拌時機對揮發性成分及非揮發性成分的影響 17 3.2.2 第二次攪拌力道對揮發性成分及非揮發性成分的影響 18 3.3 試藥及儀器 19 3.3.1 高效液相層析分析使用之藥品 19 3.3.2 揮發性化合物分析使用之藥品 19 3.3.3 儀器及設備 19 3.4 試驗方法 20 3.4.1 高效液相層析分析 20 3.4.2 氣相層析質譜分析 22 第四章、 結果與討論 24 4.1 第二次攪拌時機與內容物之變化 24 4.1.1 非揮發性主要成分的變化 24 4.1.2 揮發性成分的變化 26 4.2 不同攪拌力道處理 38 4.2.1非揮發性主要成分的變化 38 4.2.2 揮發性成分的變化 39 第五章、 結論 47 表 49 圖 86 參考文獻 104 附錄 115
dc.language.isozh-TW
dc.subject烏龍茶zh_TW
dc.subject攪拌條件zh_TW
dc.subject氣味指紋zh_TW
dc.subject靜置zh_TW
dc.subject包種茶zh_TW
dc.subject氣味成分zh_TW
dc.subject兒茶素zh_TW
dc.subjectoolongen
dc.subjectpaochung teaen
dc.subjectcatechinen
dc.subjectvolatile componenten
dc.subjectaromatic profileen
dc.subjectshaking conditionen
dc.subjectresting processen
dc.title萎凋時間及攪拌強度對包種茶前期製程茶菁內容物之影響zh_TW
dc.titleEffects of withering duration and stirring intensity on tea leaves components in early manufacturing of Paochung teaen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳國任(Kuo-Renn Chen),陳柏安(Po-An Chen)
dc.subject.keyword包種茶,烏龍茶,兒茶素,氣味成分,氣味指紋,攪拌條件,靜置,zh_TW
dc.subject.keywordpaochung tea,oolong,catechin,volatile component,aromatic profile,shaking condition,resting process,en
dc.relation.page121
dc.identifier.doi10.6342/NTU202203497
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-27
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
dc.date.embargo-lift2024-09-26-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
U0001-1609202222390000.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved