請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84420完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 連豊力(Feng-Li Lian) | |
| dc.contributor.author | Jie Wang | en |
| dc.contributor.author | 王捷 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:11:01Z | - |
| dc.date.copyright | 2022-10-20 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-30 | |
| dc.identifier.citation | [1: Tomic et al. 2012]Teodor Tomic, Korbinian Schmid, Philipp Lutz, Andreas Domel, Michael Kassecker, Elmar Mair, Iris Lynne Grixa, Felix Ruess, Michael Suppa, and Darius Burschka, “Toward a Fully Autonomous UAV: Research Platform for Indoor and Outdoor Urban Search and Rescue,” IEEE Robotics and Automation Magazine, Vol. 19, No. 3, pp. 44-56, Oct. 2012. [2: Sung & Nielsen 2020]Inkyung Sung, and Peter Nielsen, “Zoning a Service Area of Unmanned Aerial Vehicles for Package Delivery Services,” Journal of Intelligent & Robotic Systems, Vol. 97, No. 1, pp. 719–731, March 2020. [3: Das et al. 2021]Dyutimoy Nirupam Das, Rohan Sewani, Junwei Wang, and Manoj Kumar Tiwari, “Synchronized Truck and Drone Routing in Package Delivery Logistics,” IEEE Transactions on Intelligent Transportation Systems, Vol. 22, No. 9, pp. 5772-5782, Sept. 2021. [4: Bryson et al. 2010]Mitch Bryson, Alistair Reid, Fabio Ramos, and Salah Sukkarieh, “Airborne Vision-Based Mapping and Classification of Large Farmland Environments,” Journal of Field Robotics, Vol. 27, No. 5, pp. 632-655, Aug. 2010. [5: Motlagh et al. 2017]Naser Hossein Motlagh, Miloud Bagaa, and Tarik Taleb, “UAV-Based IoT Platform: A Crowd Surveillance Use Case,” IEEE Communications Magazine, Vol. 55, No. 2, pp. 128-134, Feb. 2017. [6: Bonatti et al. 2020]Rogerio Bonatti, Wenshan Wang, Cherie Ho, Aayush Ahuja, Mirko Gschwindt, Efe Camci, Erdal Kayacan, Sanjiban Choudhury, and Sebastian Scherer, “Autonomous aerial cinematography in unstructured environments with learned artistic decision-making,” Journal of Field Robotics, Vol. 37, No. 4, pp. 606-641, June 2020. [7: Schöllig et al. 2010]Angela Schöllig, Federico Augugliaro, Sergei Lupashin, and Raffaello D'Andrea, “Synchronizing the motion of a quadrocopter to music,” in Proceedings of IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, pp. 3355-3360, May 3-8, 2010. [8: Chung et al. 2018]Soon-Jo Chung, Aditya Avinash Paranjape, Philip Dames, Shaojie Shen, and Vijay Kumar, “A Survey on Aerial Swarm Robotics,” IEEE Transactions on Robotics, Vol. 34, No. 4, pp. 837-855, Aug. 2018. [9: Madridano et al. 2021]Ángel Madridano, Abdulla Al-Kaff, David Martín, and Arturo de la Escalera, “Trajectory planning for multi-robot systems: Methods and applications,” Expert Systems with Applications, Vol. 173, No. 1, pp. 1-14, July 2021. [10: Huang et al. 2019]Sunan Huang, Rodney Swee Huat Teo, and Kok Kiong Tan, “Collision Avoidance of Multi Unmanned Aerial Vehicles: A Review,” Annual Reviews in Control, Vol. 48, pp. 147-164, 2019. [11: Yasin et al. 2020]Jawad N. Yasin, Sherif A. S. Mohamed, Mohammad-Hashem Haghbayan, Jukka Heikkonen, Hannu Tenhunen, and Juha Plosila, “Unmanned Aerial Vehicles (UAVs): Collision Avoidance Systems and Approaches,” IEEE Access, Vol. 8, pp. 105139-105155, June 2020. [12: Fiorini & Shiller 1998]Paolo Fiorini, and Zvi Shiller, “Motion Planning in Dynamic Environments Using Velocity Obstacles,” The International Journal of Robotics Research, Vol. 17, No. 7, pp. 760-772, July 1998. [13: van den Berg et al. 2008]Jur van den Berg, Ming Lin, and Dinesh Manocha, “Reciprocal Velocity Obstacles for real-time multi-agent navigation,” in Proceedings of IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, pp. 1050-4729, May 19-23, 2008. [14: Snape et al. 2011]Jamie Snape, Jur van den Berg, Stephen J. Guy, and Dinesh Manocha, “The Hybrid Reciprocal Velocity Obstacle,” IEEE Transactions on Robotics, Vol. 27, No. 4, pp. 696-706, Apr. 2011. [15: van den Berg et al. 2011]Jur van den Berg, Jamie Snape, Stephen J. Guy, and Dinesh Manohar, “Reciprocal collision avoidance with acceleration-velocity obstacles,” in Proceedings of 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, pp. 3475–3482, May 2011. [16: Alonso-Mora et al. 2013]Javier Alonso-Mora, Andreas Breitenmoser, Martin Rufli, Paul Beardsley, and Roland Siegwart, “Optimal Reciprocal Collision Avoidance for Multiple Non-Holonomic Robots,” in Distributed Autonomous Robotic Systems, Vol. 83, pp. 203–216, 2013. [17: Alonso-Mora et al. 2015]Javier Alonso-Mora, Tobias Naegeli, Roland Siegwart, and Paul Beardsley, “Collision avoidance for aerial vehicles in multi-agent scenarios,” Autonomous Robots, Vol. 39, No. 1, pp. 101–121, Jan. 2015. [18: Khatib 1986]Oussama Khatib, “Real-Time Obstacle Avoidance for Manipulators and Mobile Robots,” The International Journal of Robotics Research, Vol. 5, No. 1, pp. 90–98, 1986. [19: Cosío & Castañeda 2004]F. Arambula Cosío, and M.A. Padilla Castañeda, “Autonomous Robot Navigation using Adaptive Potential Fields,” Mathematical and Computer Modelling, Vol. 40, No. 9-10, pp. 1141–1156, Nov. 2004. [20: Hoffmann & Tomlin 2008]Gabriel M. Hoffmann and Claire J. Tomlin, “Decentralized Cooperative Collision Avoidance for Acceleration Constrained Vehicles,” in Proceedings of 47th IEEE Conference on Decision and Control, Cancun, Mexico, pp. 4357–4363, Dec. 9-11, 2008. [21: Dimarogonas 2012]Dimos V. Dimarogonas, “Sufficient Conditions for Decentralized Potential Functions Based Controllers Using Canonical Vector Fields,” IEEE Transactions on Automatic Control, Vol. 57, No. 10, pp. 2621-2626, Oct. 2012. [22: Sun et al. 2017]Jiayi Sun, Jun Tang, and Songyang Lao, “Collision Avoidance for Cooperative UAVs With Optimized Artificial Potential Field Algorithm,” IEEE Access, Vol.5, pp. 18382-18390, Aug. 2017. [23: Zhou et al. 2018]Dingjiang Zhou, Zijian Wang, and Mac Schwager, “Agile Coordination and Assistive Collision Avoidance for Quadrotor Swarms Using Virtual Structures,” IEEE Transactions on Robotics, Vol. 34, No. 4, pp. 916-923, Aug. 2018. [24: Phillips & Likhachev 2011]Mike Phillips, and Maxim Likhachev, “SIPP: Safe Interval Path Planning for Dynamic Environments,” in Proceedings of 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai International Conference Center, Shanghai, China, pp. 5628-5635, May 9-13, 2011. [25: Luna & Bekris 2011]Ryan Luna, and Kostas E. Bekris, “Efficient and Complete Centralized Multi-Robot Path Planning,” in Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Francisco, CA, USA, pp. 3268-3275, Sep. 25-30, 2011. [26: Sharon et al. 2015]Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant, “Conflict-based search for optimal multi-agent pathfinding,” Artificial Intelligence, Vol. 219, pp. 40–66, Feb. 2015. [27: Honig et al. 2016]Wolfgang Honig, T. K. Satish Kumar, Liron Cohen, Hang Ma, Hong Xu, Nora Ayanian, and Sven Koenig, “Multi-Agent Path Finding with Kinematic Constraints,” in Proceedings of Proceedings of the Twenty-Sixth International Conference on Automated Planning and Scheduling (ICAPS 2016), London, UK, pp. 477-485, June 12–17, 2016. [28: Honig et al. 2018]Wolfgang Honig, James A. Preiss, T. K. Satish Kumar, Gaurav S. Sukhatme, and Nora Ayanian, “Trajectory Planning for Quadrotor Swarms,” IEEE Transactions on Robotics, Vol. 34, No. 4, pp. 856–869, Aug. 2018. [29: Chen et al. 2017]Yu Fan Chen, Miao Liu, Michael Everett, and Jonathan P. How, “Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning,” in Proceedings of 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, pp. 285–292, May 2017. [30: Semnani et al. 2020]Samaneh Hosseini Semnani, Hugh Liu, Michael Everett, Anton de Ruiter, and Jonathan P. How, “Multi-Agent Motion Planning for Dense and Dynamic Environments via Deep Reinforcement Learning,” IEEE Robotics and Automation Letters, Vol. 5, No. 2, pp. 3221–3226, Apr. 2020. [31: Shi et al. 2020]Guanya Shi, Wolfgang Honig, Yisong Yue, and Soon-Jo Chung, “Neural-Swarm: Decentralized Close-Proximity Multirotor Control Using Learned Interactions,” in Proceedings of 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, pp. 3241–3247, May 2020. [32: Riviere et al. 2020]Benjamin Riviere, Wolfgang Honig, Yisong Yue, and Soon-Jo Chung, “GLAS: Global-to-Local Safe Autonomy Synthesis for Multi-Robot Motion Planning with End-to-End Learning,” IEEE Robotics and Automation Letters, Vol. 5, No. 3, pp. 4249–4256, Jul. 2020. [33: Zhu et al. 2021]Hai Zhu, Francisco Martinez Claramunt, Bruno Brito, and Javier Alonso-Mora, “Learning Interaction-Aware Trajectory Predictions for Decentralized Multi-Robot Motion Planning in Dynamic Environments,” IEEE Robotics and Automation Letters, Vol. 6, No. 2, pp. 2256–2263, Apr. 2021. [34: Richards & How 2002]A. Richards, and J.P. How, “Aircraft trajectory planning with collision avoidance using mixed integer linear programming,” in Proceedings of 2002 American Control Conference, Anchorage, AK, USA, pp. 1936-1941, May 8-10, 2002. [35: Mellinger et al. 2012]Daniel Mellinger, Alex Kushleyev, and Vijay Kumar, “Mixed-integer quadratic program trajectory generation for heterogeneous quadrotor teams,” in Proceedings of 2012 IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, USA, pp. 477-483, May 14-18, 2012. [36: Augugliaro et al. 2012]Federico Augugliaro, Angela P. Schoellig, and Raffaello D'Andrea, “Generation of collision-free trajectories for a quadrocopter fleet: A sequential convex programming approach,” in Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, pp. 1917-1922, Oct. 7-12, 2012. [37: Chen et al. 2015]Yufan Chen, Mark Cutler, and Jonathan P. How, “Decoupled multiagent path planning via incremental sequential convex programming,” in Proceedings of 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, pp. 5954-5961, May 26-30, 2015. [38: Morgan et al. 2016]Daniel Morgan, Giri P Subramanian, Soon-Jo Chung, and Fred Y Hadaegh, “Swarm assignment and trajectory optimization using variable-swarm, distributed auction assignment and sequential convex programming,” The International Journal of Robotics Research, Vol. 35, No. 10, pp. 1261-1285, Feb. 2016. [39: Baca et al. 2018]Tomas Baca, Daniel Hert, Giuseppe Loianno, Martin Saska, and Vijay Kumar, “Model Predictive Trajectory Tracking and Collision Avoidance for Reliable Outdoor Deployment of Unmanned Aerial Vehicles,” in Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, pp. 6753-6760, Oct. 1-5, 2018. [40: Kamel et al. 2017]Mina Kamel, Javier Alonso-Mora, Roland Siegwart, and Juan Nieto, “Robust collision avoidance for multiple micro aerial vehicles using nonlinear model predictive control,” in Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, pp. 236–243, Sep. 24-28, 2017. [41: Zhu & Alonso-Mora 2019]Hai Zhu, and Javier Alonso-Mora, “Chance-Constrained Collision Avoidance for MAVs in Dynamic Environments,” IEEE Robotics and Automation Letters, Vol. 4, No. 2, pp. 776–783, Apr. 2019. [42: Luis et al. 2020]Carlos E. Luis, Marijan Vukosavljev, and Angela P. Schoellig, “Online Trajectory Generation with Distributed Model Predictive Control for Multi-Robot Motion Planning,” IEEE Robotics and Automation Letters, Vol. 5, No. 2, pp. 604–611, Apr. 2020. [43: Morgan et al. 2014]Daniel Morgan, Soon-Jo Chung, and Fred Y. Hadaegh, “Model Predictive Control of Swarms of Spacecraft Using Sequential Convex Programming,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 6, pp. 1725-1740, Nov. 2014. [44: Hamer et al. 2019]Michael Hamer, Lino Widmer, and Raffaello D’andrea, “Fast Generation of Collision-Free Trajectories for Robot Swarms Using GPU Acceleration,” IEEE Access, Vol. 7, pp. 6679–6690, 2019. [45: Zhou et al. 2017]Dingjiang Zhou, Zijian Wang, Saptarshi Bandyopadhyay, and Mac Schwager, “Fast, On-line Collision Avoidance for Dynamic Vehicles Using Buffered Voronoi Cells,” IEEE Robotics and Automation Letters, Vol. 2, No. 2, pp. 1047–1054, Apr. 2017. [46: Park et al. 2020]Jungwon Park, Junha Kim, Inkyu Jang, and H. Jin Kim, “Efficient Multi-Agent Trajectory Planning with Feasibility Guarantee using Relative Bernstein Polynomial,” in Proceedings of 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, pp. 434-440, May 31- Aug 31, 2020. [47: Mellinger & Kumar 2011]Daniel Mellinger, and Vijay Kumar, “Minimum snap trajectory generation and control for quadrotors,” in Proceedings of 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, pp. 2520-2525, May 9-13, 2011. [48: Oleynikova et al. 2016]Helen Oleynikova, Michael Burri, Zachary Taylor, Juan Nieto, Roland Siegwart, and Enric Galceran, “Continuous-Time Trajectory Optimization for Online UAV Replanning,” in Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, pp. 5332–5339, Oct. 9-14, 2016. [49: Richter et al. 2013]Charles Richter, Adam Bry and Nicholas Roy, “Polynomial Trajectory Planning for Aggressive Quadrotor Flight in Dense Indoor Environments,” in Proceedings of the International Symposium on Robotics Research, Singapore, pp. 649-666, Dec. 16-19, 2013. [50: Wang et al. 2021]Zhepei Wang, Xin Zhou, Chao Xu, and Fei Gao, “Geometrically Constrained Trajectory Optimization for Multicopters,” in arXiv: 2103.00190v2, Sep. 16, 2021. [51: Sahingoz 2014]Ozgur Koray Sahingoz, “Generation of Bezier Curve-Based Flyable Trajectories for Multi-UAV Systems with Parallel Genetic Algorithm,” Journal of Intelligent & Robotic Systems, Vol. 74, No. 1, pp. 499–511, April 2014. [52: Tordesillas et al. 2019]Jesus Tordesillas, Brett T. Lopez, and Jonathan P. How, “FASTER: Fast and Safe Trajectory Planner for Flights in Unknown Environments,” in Proceedings of 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, pp. 1934–1940, Nov. 3-8, 2019. [53: Tordesillas & How 2021]Jesus Tordesillas, and Jonathan P. How, “MINVO Basis: Finding Simplexes with Minimum Volume Enclosing Polynomial Curves,” in arXiv: 2010.10726v4, Sep. 15, 2021. [54: Usenko et al. 2017]Vladyslav Usenko, Lukas von Stumberg, Andrej Pangercic, and Daniel Cremers, “Real-Time Trajectory Replanning for MAVs using Uniform B-splines and a 3D Circular Buffer,” in Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, pp. 215–222, Sep. 24-28, 2017. [55: Laganière 2011]Robert Laganière, “Estimating Projective Relations in Images,” in OpenCV 2 computer vision application programming cookbook: Over 50 recipes to master this library of programming functions for real-time computer vision. Packt Pub, Birmingham, UK, 2011. [56: Kalman 1960]Rudolf Emil Kalman, “A New Approach to Linear Filtering and Prediction Problems,” ASME Journal of Basic Engineering, Vol. 82, No. 1, pp. 35-45, 1960. [57: Garrido-Jurado et al. 2014]S. Garrido-Jurado, R. Muñoz-Salinas, F.J. Madrid-Cuevas, and M.J. Marín-Jiménez, “Automatic generation and detection of highly reliable fiducial markers under occlusion,” Elsevier Pattern Recognition, Vol. 47, No. 6, pp. 2280-2292, Jun. 2014. [58: Otsu 1979]Nobuyuki Otsu, “A Threshold Selection Method from Gray-Level Histograms,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 9, No. 1, pp. 62-66, Jan. 1979. [59: Marquardt 1963]Donald W. Marquardt, “An Algorithm for Least-Squares Estimation of Nonlinear Parameters,” Journal of the Society for Industrial and Applied Mathematics, Vol. 11, No. 2, pp. 431-441, 1963. [60: Qi & Moore 2002]Honghui Qi, and J.B. Moore, “Direct Kalman Filtering Approach for GPS/INS Integration,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 38, No. 2, pp. 687-693, Apr. 2002. [61: Bar-Shalom & Li 2001]Yaakov Bar-Shalom, and X. Rong Li, “Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software,” John Wiley & Sons, p. 274, 2001. [62: Liang et al. 2018]Xiao Liang, Yongchun Fang, Ning Sun, and He Lin, “Nonlinear Hierarchical Control for Unmanned Quadrotor Transportation Systems,” IEEE Transactions on Industrial Electronics, Vol. 65, No. 4, pp. 3395-3405, Apr. 2018. [63: 台北時報]台北時報, “Drone crash during light display at lantern festival,” [Online]. Available: https://www.taipeitimes.com/News/taiwan/archives/2020/02/24/2003731529 [64: 中時新聞網]中時新聞網, “台灣燈會無人機墜毀48架 專業玩家:GPS訊號遭干擾,” [Online]. Available: https://www.chinatimes.com/realtimenews/20200223001886-260402?chdtv [65: 聯合新聞網]聯合新聞網, “台灣燈會摔48架無人機 玩家指應檢視3原因,” [Online]. Available: https://udn.com/news/story/7320/4364681?from=udn-referralnews_ch2artbottom [66: RYZE, Inc.]RYZE, Inc. Tello. [Online]. Available: https://www.ryzerobotics.com/zh-tw/tello?from=store-product-page [67: appie-17]appie-17. tello_driver. [Online]. Available: http://wiki.ros.org/tello_driver | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84420 | - |
| dc.description.abstract | 本篇論文為多台無人機的導航系統提出一個完整的系統架構,在此架構中有以下三個主要探討議題: (1) 所產生出來的軌跡能避免無人機之間發生碰撞,並抵達目標位置 (2) 適合群體系統的計算效率 (3) 飛行器的動態特性。本篇論文提出了一個能夠解決上述三個課題的多台無人機軌跡規劃系統。 其軌跡規劃系統可分為兩部分,基於標誌物的視覺定位系統以及基於最佳化的路徑規劃系統。視覺定位系統主要負責提供無人機自體定位資訊。在這個系統中,每台無人機所搭載的相機會偵測已知位置的標誌物,並利用影像中的標誌物來估測出其之間的轉換關係。由於標誌物容易因為丟失影像造成無法取得定位資訊,因此本系統中使用了卡爾曼濾波器估測位置狀態,並透過融合慣性測量單元提升定位的穩定性與精準度。而軌跡規劃系統則根據視覺定位系統所提供的無人機位置資訊,計算出移動到目標位置最佳的軌跡。由於多台無人機導航系統需要良好的計算效率,因此所提出的軌跡規劃系統,首先採用全局路徑規劃器產生離散路徑並分解為局部目標點。局部規劃器再根據此目標點規劃出平滑且符合飛行器動態特性的軌跡。此局部規劃採用分布式模型預測的方式,且無人機群體之間彼此能夠交換軌跡的資訊,因此可以通過預測軌跡來檢測和避免可能發生的碰撞。 最後,本論文展示了多項模擬結果,以證明此系統的可行性以及性能。 | zh_TW |
| dc.description.abstract | In this thesis, a complete system architecture for the navigation system of multiple UAVs is proposed. There are three main topics discussed in this system architecture: (1) the generated trajectory can avoid collisions between UAVs and reach the target position (2) computational efficiency of the multiple UAV system (3) dynamics of the system. This thesis proposes a trajectory planning system that can solve the above three issues. The trajectory planning system can be divided into two parts, a marker-based visual positioning system and an optimization-based path planning system. The visual positioning system is responsible for providing UAV position information. In this system, each UAV uses camera to detect markers, which were deployed at known locations. The markers in the image are used for estimating the transformation relationship between UAV and them. Since it is easy to lose the image of the marker and thus cannot obtain the positioning information, the system uses a Kalman filter to estimate the position state and enhances the stability and accuracy by fusing with the inertial measurement unit. The trajectory planning system finds out the best trajectory for moving to the target position according to the position information of the UAV provided by the visual positioning system. Since multiple UAV navigation systems require computational efficiency, the proposed trajectory planning system first uses a global path planner to generate discrete paths and decompose them into local goals. Based on the local goals, the local planner plans a smooth trajectory that satisfies to the dynamic characteristics of the UAV. The local planning adopts the distributed model prediction approach, in which UAVs exchange trajectory information with other; therefore, the possible collision can be detected and avoided through the predicted trajectory. Finally, this thesis presents a number of simulation to demonstrate the feasibility and performance of the proposed system. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:11:01Z (GMT). No. of bitstreams: 1 U0001-2909202216491000.pdf: 4889595 bytes, checksum: 9bc14fbe29caf4b7582b1d26239a7908 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 摘要 i ABSTRACT iii CONTENTS v LIST OF FIGURES vii LIST OF TABLES ix Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Problem Formulation 4 1.2.1 Pose Estimation 6 1.2.2 Communication Networks 7 1.2.3 Collision-free Trajectory Planning 8 1.3 Contributions 9 1.4 Organization of the Thesis 11 Chapter 2 Background and Literature Survey 12 2.1 Collision Avoidance Control Strategies 12 2.2 Optimization-based Collision Avoidance 17 2.3 Trajectory Parameterization for UAVs 20 Chapter 3 Related Algorithms 23 3.1 Pinhole Camera Model 23 3.2 Kalman Filter 27 3.3 ArUco Marker 30 3.3.1 Marker Generation 31 3.3.2 Marker Detection and Pose Estimation 34 Chapter 4 System Overview 37 4.1 Coordinate Systems 37 4.1.1 The Quadrotor Coordinate System 38 4.1.2 The ArUco Marker Coordinate System 39 4.2 System Architecture 41 Chapter 5 Marker-based Multi-sensor Fusion Localization System 46 5.1 Marker-based Pose Estimation 46 5.2 Multi-sensor Information Fusion 51 Chapter 6 Optimization-based Collision-free Trajectory Planning Method 63 6.1 Discrete Path Planning 65 6.2 Local Trajectory Generation 71 6.2.1 Optimization Problem and Collision Constraints 72 6.2.2 Trajectory Generation 75 6.3 Online Trajectory Replanning 78 Chapter 7 Experimental Results and Analysis 80 7.1 Experiment Setup 80 7.1.1 Hardware Platform 80 7.1.2 Software Platform 81 7.2 Simulations 81 7.2.1 Comparison of Avoidance Behavior 82 7.2.2 Comparison of Performance 87 Chapter 8 Conclusions and Future Works 91 8.1 Conclusions 91 8.2 Future Works 92 References 95 | |
| dc.language.iso | en | |
| dc.subject | 模型預測控制 | zh_TW |
| dc.subject | 無人飛行器 | zh_TW |
| dc.subject | 多智能體系統 | zh_TW |
| dc.subject | 即時系統 | zh_TW |
| dc.subject | 最佳化路徑規劃 | zh_TW |
| dc.subject | 碰撞避免 | zh_TW |
| dc.subject | real-time systems | en |
| dc.subject | model predictive control | en |
| dc.subject | collision avoidance | en |
| dc.subject | optimal trajectory planning | en |
| dc.subject | Unmanned aerial vehicles | en |
| dc.subject | multi-agent systems | en |
| dc.title | 基於最佳化之多台無人機系統無碰撞軌跡規劃 | zh_TW |
| dc.title | Optimization-based Collision-free Trajectory Planning for Multiple Unmanned Aerial Vehicles System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李後燦(Hou-Tsan Lee),黃正民(Cheng-Ming Huang),許志明(Chih-Ming Hsu) | |
| dc.subject.keyword | 無人飛行器,多智能體系統,即時系統,最佳化路徑規劃,碰撞避免,模型預測控制, | zh_TW |
| dc.subject.keyword | Unmanned aerial vehicles,multi-agent systems,real-time systems,optimal trajectory planning,collision avoidance,model predictive control, | en |
| dc.relation.page | 103 | |
| dc.identifier.doi | 10.6342/NTU202204238 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-09-30 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-10-20 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2909202216491000.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
