Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 食品安全與健康研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84417
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳焜裕(Kuen-Yuh Wu)
dc.contributor.authorYu-Hsuan Kuoen
dc.contributor.author郭郁萱zh_TW
dc.date.accessioned2023-03-19T22:10:56Z-
dc.date.copyright2022-10-17
dc.date.issued2022
dc.date.submitted2022-09-26
dc.identifier.citationAeenehvand, S., Toudehrousta, Z., Kamankesh, M., Mashayekh, M., Tavakoli, H. R., & Mohammadi, A. (2016). Evaluation and application of microwave-assisted extraction and dispersive liquid–liquid microextraction followed by high-performance liquid chromatography for the determination of polar heterocyclic aromatic amines in hamburger patties. Food Chemistry, 190, 429-435. https://doi.org/https://doi.org/10.1016/j.foodchem.2015.05.103 Alaejos, M. S., & Afonso, A. M. (2011). Factors That Affect the Content of Heterocyclic Aromatic Amines in Foods. Comprehensive Reviews in Food Science and Food Safety, 10(2), 52-108. https://doi.org/https://doi.org/10.1111/j.1541-4337.2010.00141.x Arvidsson, P., Van Boekel, M., Skog, K., Solyakov, A., & Jägerstad, M. (1999). Formation of heterocyclic amines in a meat juice model system. Journal of Food Science, 64(2), 216-221. Cobos, Á., & Díaz, O. (2015). Chemical Composition of Meat and Meat Products. In P. C. K. Cheung (Ed.), Handbook of Food Chemistry (pp. 1-32). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-41609-5_6-1 Delannée, V., Langouët, S., Siegel, A., & Théret, N. (2019). In silico prediction of Heterocyclic Aromatic Amines metabolism susceptible to form DNA adducts in humans. Toxicology Letters, 300, 18-30. https://doi.org/https://doi.org/10.1016/j.toxlet.2018.10.011 Fujii, K., Sakai, A., Nomoto, K.-I., & Nakamura, K. (1988). Tumor induction in mice administered neonatally with 2-amino-6-methyldipyrido[1,2-a : 3′,2′-d]imidazole or 2-amino-dipyrido[1,2-a : 3′,2′-d]imidazole. Cancer Letters, 41(1), 75-80. https://doi.org/https://doi.org/10.1016/0304-3835(88)90057-2 Gibis, M. (2016). Heterocyclic Aromatic Amines in Cooked Meat Products: Causes, Formation, Occurrence, and Risk Assessment. Comprehensive Reviews in Food Science and Food Safety, 15(2), 269-302. https://doi.org/https://doi.org/10.1111/1541-4337.12186 Gibis, M., Kruwinnus, M., & Weiss, J. (2015). Impact of different pan-frying conditions on the formation of heterocyclic aromatic amines and sensory quality in fried bacon. Food Chemistry, 168, 383-389. https://doi.org/https://doi.org/10.1016/j.foodchem.2014.07.074 Gibis, M., & Weiss, J. (2015). Impact of Precursors Creatine, Creatinine, and Glucose on the Formation of Heterocyclic Aromatic Amines in Grilled Patties of Various Animal Species. Journal of Food Science, 80(11), C2430-C2439. https://doi.org/https://doi.org/10.1111/1750-3841.13090 Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 19(2), 139-152. https://doi.org/10.2753/MTP1069-6679190202 Hasegawa, R., Sano, M., Tamano, S., Imaida, K., Shirai, T., Nagao, M., Sugimura, T., & Ito, N. (1993). Dose-dependence of 2-amino-1-methy1–6-phenylimidazo[4, 5-b]-pyridine (PhIP) carcinogenicity in rats. Carcinogenesis, 14(12), 2553-2557. https://doi.org/10.1093/carcin/14.12.2553 Helmus, D. S., Thompson, C. L., Zelenskiy, S., Tucker, T. C., & Li, L. (2013). Red meat-derived heterocyclic amines increase risk of colon cancer: a population-based case-control study. Nutr Cancer, 65(8), 1141-1150. https://doi.org/10.1080/01635581.2013.834945 Hsu, K.-Y., & Chen, B.-H. (2020). Analysis and reduction of heterocyclic amines and cholesterol oxidation products in chicken by controlling flavorings and roasting condition. Food Research International, 131, 109004. https://doi.org/https://doi.org/10.1016/j.foodres.2020.109004 Hsu, K. Y., Inbaraj, B. S., & Chen, B. H. (2020). Evaluation of analysis of cholesterol oxidation products and heterocyclic amines in duck and their formation as affected by roasting methods. J Food Drug Anal, 28(2), 322-336. https://doi.org/10.38212/2224-6614.1066 Imaida, K., Hagiwara, A., Yada, H., Masui, T., Hasegawa, R., Hirose, M., Sugimura, T., Ito, N., & Shirai, T. (1996). Dose-dependent Induction of Mammary Carcinomas in Female Sprague-Dawley Rats with 2-Amino-l-methyl-6-phenylimidazo[4,5-b]pyridine. Japanese Journal of Cancer Research, 87(11), 1116-1120. https://doi.org/https://doi.org/10.1111/j.1349-7006.1996.tb03120.x Ishak, A. A., Jinap, S., Sukor, R., Sulaiman, R., Abdulmalek, E., & Nor Hasyimah, A. K. (2022). Simultaneous kinetics formation of heterocyclic amines and polycyclic aromatic hydrocarbons in phenylalanine model system. Food Chemistry, 384, 132372. https://doi.org/https://doi.org/10.1016/j.foodchem.2022.132372 Iwasaki, M., & Tsugane, S. (2021). Dietary heterocyclic aromatic amine intake and cancer risk: epidemiological evidence from Japanese studies. Genes and Environment, 43(1), 33. https://doi.org/10.1186/s41021-021-00202-5 Jian, S.-H., Yeh, P.-J., Wang, C.-H., Chen, H.-C., & Chen, S.-F. (2019). Analysis of heterocyclic amines in meat products by liquid chromatography – Tandem mass spectrometry. Journal of Food and Drug Analysis, 27(2), 595-602. https://doi.org/https://doi.org/10.1016/j.jfda.2018.10.002 Jinap, S., Mohd-Mokhtar, M. S., Farhadian, A., Hasnol, N. D. S., Jaafar, S. N., & Hajeb, P. (2013). Effects of varying degrees of doneness on the formation of Heterocyclic Aromatic Amines in chicken and beef satay. Meat Science, 94(2), 202-207. https://doi.org/https://doi.org/10.1016/j.meatsci.2013.01.013 John, K., & Beedanagari, S. (2014). Heterocyclic Aromatic Amines. In P. Wexler (Ed.), Encyclopedia of Toxicology (Third Edition) (pp. 855-863). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-386454-3.01127-1 Kim, S., & Lee, K.-G. (2010). Effects of cooking variables on formation of heterocyclic amines (HCA) in roasted pork and mackerel. Journal of Toxicology and Environmental Health, Part A, 73(21-22), 1599-1609. Kushida, H., Wakabayashi, K., Sato, H., Katami, M., Kurosaka, R., & Nagao, M. (1994). Dose-response study of MeIQx carcinogenicity in F344 male rats. Cancer Letters, 83(1), 31-35. https://doi.org/https://doi.org/10.1016/0304-3835(94)90295-X Layton, D. W., Bogen, K. T., Knize, M. G., Hatch, F. T., Johnson, V. M., & Felton, J. S. (1995). Cancer risk of heterocyclic amines in cooked foods: an analysis and implications for research. Carcinogenesis, 16(1), 39-52. https://doi.org/10.1093/carcin/16.1.39 Liao, G. Z., Wang, G. Y., Xu, X. L., & Zhou, G. H. (2010). Effect of cooking methods on the formation of heterocyclic aromatic amines in chicken and duck breast. Meat Science, 85(1), 149-154. https://doi.org/https://doi.org/10.1016/j.meatsci.2009.12.018 Matsukura, N., Kawachi, T., Morino, K., Ohgaki, H., Sugimura, T., & Takayama, S. (1981). Carcinogenicity in mice of mutagenic compounds from a tryptophan pyrolyzate. Science, 213(4505), 346-347. https://doi.org/10.1126/science.7244619 Messner, C., & Murkovic, M. (2004). Evaluation of a new model system for studying the formation of heterocyclic amines. Journal of Chromatography B, 802(1), 19-26. https://doi.org/https://doi.org/10.1016/j.jchromb.2003.11.015 NAGELKERKE, N. J. D. (1991). A note on a general definition of the coefficient of determination. Biometrika, 78(3), 691-692. https://doi.org/10.1093/biomet/78.3.691 Ni, W., McNaughton, L., LeMaster, D. M., Sinha, R., & Turesky, R. J. (2008). Quantitation of 13 Heterocyclic Aromatic Amines in Cooked Beef, Pork, and Chicken by Liquid Chromatography−Electrospray Ionization/Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 56(1), 68-78. https://doi.org/10.1021/jf072461a NTP(National Toxicology Program). (2016). 14th Report on carcinogens (Report on Carcinogens, Issue. https://ntp.niehs.nih.gov/pubhealth/roc/index-1.html Ohgaki, H., Hasegawa, H., Kato, T., Suenaga, M., Ubukata, M., Sato, S., Takayama, S., & Sugimura, T. (1986). Carcinogenicity in mice and rats of heterocyclic amines in cooked foods. Environ Health Perspect, 67, 129-134. https://doi.org/10.1289/ehp.8667129 Ohgaki, H., Hasegawa, H., Suenaga, M., Kato, T., Sato, S., Takayama, S., & Sugimura, T. (1986). Induction of hepatocellular carcinoma and highly metastatic squamous cell carcinomas in the forestomach of mice by feeding 2-amino-3,4-dimethylimidazo[4,5-f]quinoline. Carcinogenesis, 7(11), 1889-1893. https://doi.org/10.1093/carcin/7.11.1889 Ohgaki, H., Kusama, K., Matsukura, N., Morino, K., Hasegawa, H., Sato, S., Takayama, S., & Sugimura, T. (1984). Carcinogenicity in mice of a mutagenic compound, 2-amino-3-methylimidazo[4,5-f]quinoline, from broiled sardine, cooked beef and beef extract. Carcinogenesis, 5(7), 921-924. https://doi.org/10.1093/carcin/5.7.921 OLALEKAN ADEYEYE, S. A., & ASHAOLU, T. J. (2021). Heterocyclic Amine Formation and Mitigation in Processed Meat and Meat Products: A Mini-Review. Journal of Food Protection, 84(11), 1868-1877. https://doi.org/10.4315/jfp-20-471 Pais, P., Salmon, C. P., Knize, M. G., & Felton, J. S. (1999). Formation of Mutagenic/Carcinogenic Heterocyclic Amines in Dry-Heated Model Systems, Meats, and Meat Drippings. Journal of Agricultural and Food Chemistry, 47(3), 1098-1108. https://doi.org/10.1021/jf980644e Pouzou, J. G., Costard, S., & Zagmutt, F. J. (2018). Probabilistic assessment of dietary exposure to heterocyclic amines and polycyclic aromatic hydrocarbons from consumption of meats and breads in the United States. Food Chem Toxicol, 114, 361-374. https://doi.org/10.1016/j.fct.2018.02.004 Rizwan Khan, M., Naushad, M., & Abdullah Alothman, Z. (2017). Presence of heterocyclic amine carcinogens in home-cooked and fast-food camel meat burgers commonly consumed in Saudi Arabia. Scientific Reports, 7(1), 1707. https://doi.org/10.1038/s41598-017-01968-x Sinha, R., Gustafson, D. R., Kulldorff, M., Wen, W.-Q., Cerhan, J. R., & Zheng, W. (2000). 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, a Carcinogen in High- Temperature-Cooked Meat, and Breast Cancer Risk. JNCI: Journal of the National Cancer Institute, 92(16), 1352-1354. https://doi.org/10.1093/jnci/92.16.1352 Sugimura, T. (1977). Mutagen-carcinogens in foods with special reference to highly mutagenic pyrolytic products in broiled foods. Origins of human cancer. Szterk, A. (2015). Heterocyclic aromatic amines in grilled beef: The influence of free amino acids, nitrogenous bases, nucleosides, protein and glucose on HAAs content. Journal of Food Composition and Analysis, 40, 39-46. https://doi.org/https://doi.org/10.1016/j.jfca.2014.12.011 Turesky, R. J. (2002). HETEROCYCLIC AROMATIC AMINE METABOLISM, DNA ADDUCT FORMATION, MUTAGENESIS, AND CARCINOGENESIS. Drug Metabolism Reviews, 34(3), 625-650. https://doi.org/10.1081/DMR-120005665 U.S. Environmental Protection Agency. Benchmark Dose Tools. https://www.epa.gov/bmds U.S. EPA. (1992). Guidelines for Human Exposure Assessment. https://www.epa.gov/risk/guidelines-human-exposure-assessment U.S. EPA. (2005). Guidelines for Carcinogen Risk Assessment. https://www.epa.gov/risk/guidelines-carcinogen-risk-assessment UCLA: Statistical Consulting Group. FAQ: WHAT ARE PSEUDO R-SQUAREDS? https://stats.oarc.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds/ Warzecha, L., Janoszka, B., Błaszczyk, U., Stróżyk, M., Bodzek, D., & Dobosz, C. (2004). Determination of heterocyclic aromatic amines (HAs) content in samples of household-prepared meat dishes. Journal of Chromatography B, 802(1), 95-106. https://doi.org/https://doi.org/10.1016/j.jchromb.2003.09.027 Wong, K. Y., Su, J., Knize, M. G., Koh, W. P., & Seow, A. (2005). Dietary exposure to heterocyclic amines in a Chinese population. Nutr Cancer, 52(2), 147-155. https://doi.org/10.1207/s15327914nc5202_5 Yan, Y., Zhang, S., Tao, G.-j., You, F.-h., Chen, J., & Zeng, M.-m. (2017). Acetonitrile extraction coupled with UHPLC–MS/MS for the accurate quantification of 17 heterocyclic aromatic amines in meat products. Journal of Chromatography B, 1068-1069, 173-179. https://doi.org/https://doi.org/10.1016/j.jchromb.2017.10.015 Yang, D., He, Z., Gao, D., Qin, F., Deng, S., Wang, P., Xu, X., Chen, J., & Zeng, M. (2019). Effects of smoking or baking procedures during sausage processing on the formation of heterocyclic amines measured using UPLC-MS/MS. Food Chemistry, 276, 195-201. https://doi.org/https://doi.org/10.1016/j.foodchem.2018.09.160 Yang, Z., Lu, R., Song, H., Zhang, Y., Tang, J., & Zhou, N. (2017). Effect of Different Cooking Methods on the Formation of Aroma Components and Heterocyclic Amines in Pork Loin. Journal of Food Processing and Preservation, 41(3), e12981. https://doi.org/https://doi.org/10.1111/jfpp.12981 趙泓威. (2021). 利用高通量體外試驗評估異環胺的基因毒性及其應用. https://hdl.handle.net/11296/nt74ka
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84417-
dc.description.abstract異環胺(HCAs)可自發性的在高溫烹調的肉品形成,科學家已鑑定出約有30種HCAs,其中10種被國際癌症研究機構(IARC)歸為致癌物。HCAs在體內會被CYP 4501A2、轉硫酵素(sulfotransferase)和 N-乙醯轉移酶(N-acetyltransferase)代謝進而與DNA鹼基反應,導致基因傷害而可能形成癌組織。食用高溫烹調的肉品而暴露HCAs,進而潛在對健康的造成影響,但肉品中HCAs的含量因受烹飪溫度和時間影響。但是一般家庭製備高溫烹飪肉品時或是食用即時高溫烹飪肉品並不會量烹飪時間與溫度因此評估食用高溫烹飪肉品的HCA暴露與風險時,需要利用HCAs化學動力學,以估算在可能烹飪的溫度與時間下的肉品中可能產生的各種HCA的含量。因此,本研究目的是建立在高溫烹飪肉品中HCAs的化學動力學模式,以評估國人食用高溫烹調肉品暴露多種HCA的致癌風險。 為建立HCAs的化學動力學以估算在特定烹飪溫度(T)和時間(t)下肉品中HCAs含量。首先假設HCAs降解率可以忽略不計時(k2≈0),可以導出HCA濃度Ct=C_0+(k_1×M×t)/V。第二假設降解率不可忽略時,可以導出動力學方程式為Ct=C_0 e^(-(k_2×t)/V)+M×k_1/k_2 (1-e^((-k_2×t)/V)),其中Ct為在特定溫度下烹飪時間為t的HCA濃度(ng/g),C_0為在特定溫度下的HCA起始濃度(ng/g),k_1為HCA生成的速率常數,k_2為HCA降解的速率常數(g/min),M為反應物的濃度,V為肉品的體積(g)。而k_1會先用Eyring方程式以RStudio 4.1.0寫程式碼。接著,在Excel中作線性回歸和RStudio 4.1.0軟體中作非線性回歸模擬文獻數據以估算數學模型的參數。接著寫Python程式碼作蒙地卡羅模擬,進行溫度及時間為一統計分佈進行隨時抽樣,自動計算HCAs每日終生平均劑量和致癌風險。 以國人每日高溫烹飪肉品攝取量結合撰寫的Python指令進行風險評估,國人每日高溫烹飪肉品攝取量(kg/天)×特定肉類中的Ct(mg/kg)x特定HCA的致癌斜率因子/體重(kg)來評估風險。並利用蒙特卡羅(Monte Carlo simulation)進行10,000次試算,得到致癌風險的統計分佈。 本篇研究藉由數學模型的建構,結合R與Excel軟體獲得參數,再以Python自寫軟體進行風險評估,也計算濃度、終生平均每天暴露劑量與風險值在不同的時間或溫度下,隨溫度或時間的變化,得到牛肉、鯖魚與豬肉最適合的烹調條件,在以Python自寫軟體進行風險評估的情況下,使得風險評估容易執行,以此可提供政府相關機構有效的管理與監測高溫肉品的致癌風險模式。zh_TW
dc.description.abstractHeterocyclic amines (HCAs) are spontaneously formed in meats processed at high-temperature. Approximate 30 HCAs have been identified, and 10 of them are classified as carcinogens by International Agency for Research on Cancer (IARC). HCAs could be metabolized by CYP 4501A2, sulfotransferase, and N-acetyltransferas in vivo, and their active metabolites can react with DNA and are probably responsible for genotoxicity and carcinogenicity. The potential risks from intakes of HCAs due to daily consumption of high-temperature processed meats have been of great concerns. However, the formation of HCAs in the high-temperature processed meats were reported mainly affected by the cooking temperature and time, which are usually not measured when they were cooked at home or restaurant. To assess HCAs exposures and cancer risk, the chemical kinetics are needed to formulate to estimate HCAs residues in high-temperature processed meats. Therefore, the objective of this study was to assess exposures and cancer risk to multiple HCAs through daily consumption of high-temperature processed meats by incorporating the chemical kinetics of HCAs. The chemical kinetics of an individual HCA was formulated first as a function of cooking temperature (T) and time (t) in a particular meat product. Therefore, an HCA at t when the degradation rate is negligible (k2≈0) can be described by Ct and Ct=C_0+(k_1×M×t)/V. And the generalized model when the degradation rate is not negligible can be Ct=C_0 e^(-(k_2×t)/V)+M×k_1/k_2 (1-e^((-k_2×t)/V)). The Ct is the concentration of HCA at time t (ng/g), C_0 is the concentration of HCA before cooking at a particular temperature(ng/g), k_1 is the reaction rate constant of HCA formation , k_2 is the reaction rate constant of HCA degradation (g/min), M is the concentration of reactant include creatine、reducing sugar and amino acid, V is the volume of the model system(g or ml). Since k_1 is a function of T and can be described with the Eyring equation, and the kinetic models can be fit with experimental data by simple linear regression or using self-programmed nonlinear regression code under RStudio 4.1.0. Probabilistic cancer risk assessment for HCAs was performed with self-programmed code using the Python 3.10 to automatically calculate the lifetime average daily dose and cancer risk while HCAs concentrations were estimated with the kinetic models by assuming normally-distributed processed time and temperature for a given meat and HCA. The distribution of life-time cancer risk can be estimated with meat intake rate (kg/day) × Ct in a particular meat (mg/kg) x cancer slope factor of a particular HCA / body weight (kg). The Monte Carlo simulation was run for 10,000 trials with Python program to estimate the distribution of cancer risk. In this study, mathematical model is successfully built, and R and Excel software calculate the parameters. Then, use Python self-written software to implement risk assessment and calculate the concentration, lifetime averagedaily dose and cancer risk at different times or temperatures. With changing in temperature or time, this study could obtain the most suitable cooking conditions for beef, mackerel and pork. This Python software makes the risk assessment easy to conduct, and provides relevant government agencies to effectively manage and monitor the cancer risk of high-temperature meat products.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:10:56Z (GMT). No. of bitstreams: 1
U0001-2209202217031500.pdf: 31088114 bytes, checksum: 72351d080731b6823df4f7b9c8ac9c6e (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents論文口試委員審定書 ii 謝辭 vii 中文摘要 viii Abstract x 目 錄 xii 圖目錄 xiv 表目錄 xxx 第一章 前言 1 1.1 異環胺簡介 1 1.2 異環胺的致癌性 2 1.3 異環胺致癌的作用模式(Mode of action) 3 1.4 異環胺的流行病學研究 4 1.5 健康風險評估簡介 5 1.6 回顧HCAs動力學建立方式 6 1.7 不同肉品之蛋白質組成差異 7 1.8 研究目標 8 第二章 材料與方法 9 2.1 研究架構 9 2.2 建構異環胺生成之數學動力學模型 9 2.3 非線性回歸計算動力學模型參數 11 2.3.1 k1值計算 11 2.3.2 動力學模型參數計算 12 2.3.3 模型解釋力與適合度計算(R-squared計算) 13 2.4 回顧致癌斜率因子(CSF)研究 14 2.5 以Python 3.10設計與建立估算異環胺之軟體 15 2.5.1 機率風險評估執行程式 15 2.5.2 點估計風險評估執行程式 21 2.5.3 執行檔輸出 22 2.6 濃度隨時間或溫度變化趨勢 23 2.7 健康風險評估 23 第三章 研究結果 25 3.1 利用R非線性回歸計算動力學模型參數 25 3.1.1 牛肉汁模型 25 3.1.2 鯖魚模型 26 3.1.3 豬肉模型 28 3.2 線性回歸動力學模型 29 3.3 濃度、LADD與風險值隨時間或溫度變化趨勢 30 3.3.1 濃度值隨時間變化趨勢 30 3.3.2 濃度值隨溫度變化趨勢 31 3.3.3 LADD與風險值隨時間或溫度變化趨勢 31 3.4 健康風險評估 32 第四章 討論 33 4.1 HCAs的化學動力學與隨時間或溫度變化趨勢 33 4.2 與過去HCAs文獻比較 33 4.3 研究限制 35 第五章 結論與建議 36 參考文獻 227 附錄 231
dc.language.isozh-TW
dc.subject異環胺zh_TW
dc.subject致癌風險zh_TW
dc.subject化學動力學zh_TW
dc.subject高溫烹飪肉品zh_TW
dc.subject機率風險評估zh_TW
dc.subjecthigh-temperature processed meatsen
dc.subjectcancer risken
dc.subjectprobabilistic risk assessmenten
dc.subjectChemical kineticsen
dc.subjectheterocyclic aminesen
dc.title考慮異環胺化學動力學以評估國人食用高溫烹飪肉品的機率風險zh_TW
dc.titleIncorporating the chemical kinetics of heterocyclic amines into probabilistic risk assessment on high-temperature processed meatsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林菀俞(Wan-Yu Lin),鄭尊仁(Tsun-Jen Cheng),羅宇軒(Yu-Syuan Luo),王宗櫚(Tzong-Liu Wang)
dc.subject.keyword異環胺,化學動力學,高溫烹飪肉品,機率風險評估,致癌風險,zh_TW
dc.subject.keywordheterocyclic amines,Chemical kinetics,high-temperature processed meats,probabilistic risk assessment,cancer risk,en
dc.relation.page342
dc.identifier.doi10.6342/NTU202203837
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-27
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept食品安全與健康研究所zh_TW
dc.date.embargo-lift2022-10-17-
顯示於系所單位:食品安全與健康研究所

文件中的檔案:
檔案 大小格式 
U0001-2209202217031500.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
30.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved