Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8438
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉志文(Chih-Wen Liu)
dc.contributor.authorWei-Ming Huangen
dc.contributor.author黃威銘zh_TW
dc.date.accessioned2021-05-20T00:54:28Z-
dc.date.available2020-08-06
dc.date.available2021-05-20T00:54:28Z-
dc.date.copyright2020-08-06
dc.date.issued2020
dc.date.submitted2020-07-30
dc.identifier.citation[1] 衛生福利部. '108年死因記者會簡報.' [Online]. Available: https://dep.mohw.gov.tw/DOS/cp-4927-54467-113.html
[2] 以色列GivenImaging官方網站. [Online]. Available: http://www.givenimaging.com
[3] Yu-Dong Zhang, Zhengchao Dong, Xianqing Chen, Wenjuan Jia, Sidan Du, Khan Muhammad, Shui-Hua Wang. “Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation.” Multimed Tools Appl 78, 3613–3632 (2019)
[4] Agnieszka Mikołajczyk and Michał Grochowski. “Data augmentation for improving deep learning in image classification problem.” 2018 International Interdisciplinary PhD Workshop (IIPhDW), Swinoujście, 2018, pp. 117-122, doi: 10.1109/IIPHDW.2018.8388338. (2018)
[5] Jelmer Wolterink, Anna Dinkla, Mark Savenije, Peter Seevinck, Cornelis A.T. van den Berg, Ivana Išgum. “Deep MR to CT synthesis using unpaired data.” In: SASHIMI. pp. 14–23 (2017)
[6] Gi-Shih Lien, Chih-Wen Liu, Joe-Air Jiang, Cheng-Long Chuang and Ming-Tsung Teng. “Magnetic Control System Targeted for Capsule Endoscopic Operations in the Stomach—Design, Fabrication, and in vitro and ex vivo Evaluations.” in IEEE Transactions on Biomedical Engineering, vol. 59, no. 7, pp. 2068-2079, July (2012)
[7] 高振翔. “磁控膠囊內視鏡在腸道內移動之研究.” 臺灣大學碩士論文. (2017)
[8] 京都科學官方網站. [Online]. Available: https://www.kyotokagaku.com/products/detail01/m40.html
[9] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative Adversarial Nets.” In NIPS’2014. (2014)
[10] Jemma. “GAN入門理解及公式推導.” [Online]. Available: https://zhuanlan.zhihu.com/p/28853704
[11] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. “Unpaired image-to-image translation using cycle-consistent adversarial networks.” In: CoRR, abs/1703.10593 (2017)
[12] Cycle-GAN 2017. Cycle-GAN: Open Source GAN. [Online]. Available: https://junyanz.github.io/CycleGAN/
[13] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. “Rich feature hierarchies for accurate object detection and semantic segmentation.” In: CoRR abs/1311.2524 (2013)
[14] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. “You Only Look Once: Unified, Real-Time Object Detection.” In: arXiv: 1506.02640 (2015)
[15] Joseph Redmon. Darknet: Open Source Neural Network. [Online]. Available: https://pjreddie.com/darknet/yolo/
[16] Joseph Redmon, Ali Farhadi. “YOLOv3: An Incremental Improvement.” In: arXiv: 1804.02767 (2018)
[17] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, Andrew Zisserman. “The PASCAL Visual Object Classes (VOC) Challenge.” Int J Comput Vis 88, 303–338 (2010).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8438-
dc.description.abstract近年來,在科技的不斷進步之下,電腦視覺將直接應用在各行各業中。於此同時,由於高效能圖形處理器 (Graphics Processing Unit,GPU) 的效能大幅進步,也使得深度學習的相關研究相當熱門。憑藉良好的訓練模型與充足的訓練數據,深度學習將電腦視覺之研究推進至一個新紀元。
在本論文中,我們將深度學習應用於辨識腸腔並取得其位置,達到磁控大腸膠囊內視鏡自動導航之方法。使用了最新的即時目標偵測深度學習模型-YOLO (You Only Look Once)。我們使用KVASIR之腸道圖像資料集來驗證YOLO模型之腸腔偵測效果,但是KVASIR之腸道圖像的數量仍然很少。
由於腸道圖像的不足,本文目的是使用資料擴增技術使KVASIR之腸道圖像增加,以便將其用於YOLO模型訓練以提高檢測效果。我們使用兩種擴增方式:傳統之資料擴增與生成對抗網路 (Generative Adversarial Networks, GAN) 。傳統之資料擴增使用五種擴增方式:圖像平移、圖像旋轉、圖像縮放、圖像加入高斯雜訊與圖像加入動態模糊;而生成對抗網路使用Cycle-GAN將模擬腸道圖像轉換成KVASIR之腸道圖像。
zh_TW
dc.description.abstractIn recent years, with the continuous progress of science and technology, computer vision will be directly applied in all walks of life. At the same time, due to the efficiency of highly efficient graphics processing unit (GPU) greatly improved, the related research of deep learning is quite popular. With good training models and sufficient training data, deep learning advances the research of computer vision into a new era.
In this paper, we apply deep learning technology to identify the lumen and obtain its position, so as to achieve the novel navigation for magnetic field control endoscope. We use the state-of-the-art, real-time object detection deep learning model - YOLO (You Only Look Once). KVASIR dataset was used to evaluate the performance of lumen detection, but images of the KVASIR dataset are still few.
Due to insufficient intestinal images, this thesis aims at using data augmentation technology to increase the intestinal images of KVASIR dataset, so as to apply it to YOLO model training to improve the detection effect. We used two data augmentation methods: traditional data augmentation and Generative Adversarial Networks (GAN). Traditional data augmentation methods include image translation, image rotation, image scaling, image adding Gaussian noise and image adding motion blur; Cycle-GAN was used to transform the simulated intestinal images into the real intestinal images of KVASIR dataset.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T00:54:28Z (GMT). No. of bitstreams: 1
U0001-1707202016253600.pdf: 2769171 bytes, checksum: 09e2c626228fb9f9d4ad78e044a51a06 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
ABSTRACT iv
目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機及研究目的 3
1.3 文獻回顧 4
1.4 章節摘要 7
第二章 磁牽引平台與磁控膠囊內視鏡之介紹 8
2.1 MFN之概況與演進 8
2.1.1 手持式MFN 8
2.1.2 磁牽引平台 (MFN Platform) 10
2.1.3 第一代MFN Platform與第二代MFN Platform之比較 12
2.2 磁控膠囊內視鏡之概況 13
2.3 動物試驗之成果 15
2.3.1 大腸鏡訓練模型 15
2.3.2 豬隻活體試驗 17
2.3.3 豬隻活體試驗之結果 19
2.3.4 結論與未來工作 22
第三章 資料擴增 24
3.1 幾何變換類 24
3.2 顏色變換類 28
第四章 生成對抗網路 31
4.1 生成對抗網路 31
4.2 Cycle-GAN 33
4.3 損失函數 35
第五章 腸腔辨識 39
5.1 YOLO 39
5.2 YOLO 演算法 41
5.2.1 網格單元 (Grid Cell) 41
5.2.2 YOLO神經網路架構 43
5.2.3 非極大值抑制 (Non-max suppression,NMS) 43
5.2.4 損失函數 (Loss Function) 44
5.3 YOLOv3 47
第六章 實驗架構與成果討論 49
6.1 硬體與架構 49
6.2 資料集 49
6.3 資料處理 49
6.4 性能指標 50
6.5 實驗結果 54
6.5.1 資料擴增 54
6.5.2 Cycle-GAN 64
6.5.3 YOLOv3腸腔辨識 69
第七章 結論與未來工作 72
7.1 結論 72
7.2 未來工作 73
參考文獻 74
dc.language.isozh-TW
dc.title基於資料擴增與深度學習的改善磁控膠囊內視鏡辨識腸道之研究zh_TW
dc.titleStudy on the Improvement of Intestinal Identification by Magnetic Controlled Capsule Endoscope Based on Data Augmentation and Deep Learningen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee連吉時(Gi-Shih Lien),粟發滿(Fat-Moon Suk)
dc.subject.keyword膠囊內視鏡,電腦視覺,資料擴增,生成對抗網路,人工智慧,深度學習,腸腔偵測,zh_TW
dc.subject.keywordCapsule endoscope,Computer vision,Data augmentation,Generative Adversarial Network,Artificial neural networks,Deep learning,Lumen detection,en
dc.relation.page75
dc.identifier.doi10.6342/NTU202001603
dc.rights.note同意授權(全球公開)
dc.date.accepted2020-07-31
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
U0001-1707202016253600.pdf2.7 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved