請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84374
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭安理(Ann-Lii Cheng) | |
dc.contributor.author | Wei-Wu Chen | en |
dc.contributor.author | 陳偉武 | zh_TW |
dc.date.accessioned | 2023-03-19T22:09:43Z | - |
dc.date.copyright | 2022-04-27 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-04-12 | |
dc.identifier.citation | Chapter 1. 1. Board WCoTE. Soft tissue and bone tumours 5th Edition.2020. 2. Hajdu SI. Soft Tissue Sarcomas: Classification and Natural History. CA: A Cancer Journal for Clinicians 1981; 31: 271-280. 3. Trojani M, Contesso G, Coindre JM et al. Soft-tissue sarcomas of adults; study of pathological prognostic variables and definition of a histopathological grading system. Int J Cancer 1984; 33: 37-42. 4. Deyrup AT, Weiss SW. Grading of soft tissue sarcomas: the challenge of providing precise information in an imprecise world. Histopathology 2006; 48: 42-50. 5. Portera CA, Jr., Ho V, Patel SR et al. Alveolar soft part sarcoma: clinical course and patterns of metastasis in 70 patients treated at a single institution. Cancer 2001; 91: 585-591. 6. Hung GY, Horng JL, Chen PC et al. Incidence of soft tissue sarcoma in Taiwan: A nationwide population-based study (2007-2013). Cancer Epidemiol 2019; 60: 185-192. 7. Mastrangelo G, Coindre JM, Ducimetiere F et al. Incidence of soft tissue sarcoma and beyond: a population-based prospective study in 3 European regions. Cancer 2012; 118: 5339-5348. 8. Pautier P, Genestie C, Rey A et al. Analysis of clinicopathologic prognostic factors for 157 uterine sarcomas and evaluation of a grading score validated for soft tissue sarcoma. Cancer 2000; 88: 1425-1431. 9. Callegaro D, Miceli R, Bonvalot S et al. Development and external validation of two nomograms to predict overall survival and occurrence of distant metastases in adults after surgical resection of localised soft-tissue sarcomas of the extremities: a retrospective analysis. Lancet Oncol 2016; 17: 671-680. 10. Raut CP, Callegaro D, Miceli R et al. Predicting Survival in Patients Undergoing Resection for Locally Recurrent Retroperitoneal Sarcoma: A Study and Novel Nomogram from TARPSWG. Clin Cancer Res 2019; 25: 2664-2671. 11. Pasquali S, Pizzamiglio S, Touati N et al. The impact of chemotherapy on survival of patients with extremity and trunk wall soft tissue sarcoma: revisiting the results of the EORTC-STBSG 62931 randomised trial. Eur J Cancer 2019; 109: 51-60. 12. Chibon F, Lagarde P, Salas S et al. Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity. Nat Med 2010; 16: 781-787. 13. Dufresne A, Brahmi M, Karanian M, Blay JY. Using biology to guide the treatment of sarcomas and aggressive connective-tissue tumours. Nat Rev Clin Oncol 2018; 15: 443-458. 14. Blay JY, Kang YK, Nishida T, von Mehren M. Gastrointestinal stromal tumours. Nat Rev Dis Primers 2021; 7: 22. 15. Cancer Genome Atlas Research Network. Electronic address edsc, Cancer Genome Atlas Research N. Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell 2017; 171: 950-965 e928. 16. Barretina J, Taylor BS, Banerji S et al. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat Genet 2010; 42: 715-721. 17. Pérot G, Chibon F, Montero A et al. Constant p53 pathway inactivation in a large series of soft tissue sarcomas with complex genetics. Am J Pathol 2010; 177: 2080-2090. 18. Italiano A, Chen CL, Thomas R et al. Alterations of the p53 and PIK3CA/AKT/mTOR pathways in angiosarcomas: a pattern distinct from other sarcomas with complex genomics. Cancer 2012; 118: 5878-5887. 19. Chudasama P, Mughal SS, Sanders MA et al. Integrative genomic and transcriptomic analysis of leiomyosarcoma. Nat Commun 2018; 9: 144. 20. Painter CA, Jain E, Tomson BN et al. The Angiosarcoma Project: enabling genomic and clinical discoveries in a rare cancer through patient-partnered research. Nat Med 2020; 26: 181-187. 21. Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 2012; 12: 298-306. 22. Bejarano L, Jordao MJC, Joyce JA. Therapeutic Targeting of the Tumor Microenvironment. Cancer Discov 2021; 11: 933-959. 23. Petitprez F, Meylan M, de Reynies A et al. The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies. Front Immunol 2020; 11: 784. 24. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science 2018; 359: 1350-1355. 25. Tang J, Shalabi A, Hubbard-Lucey VM. Comprehensive analysis of the clinical immuno-oncology landscape. Ann Oncol 2017. 26. Maleki Vareki S, Garrigos C, Duran I. Biomarkers of response to PD-1/PD-L1 inhibition. Crit Rev Oncol Hematol 2017; 116: 116-124. 27. Hsu CL, Ou DL, Bai LY et al. Exploring Markers of Exhausted CD8 T Cells to Predict Response to Immune Checkpoint Inhibitor Therapy for Hepatocellular Carcinoma. Liver Cancer 2021; 10: 346-359. 28. Huang AC, Postow MA, Orlowski RJ et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 2017; 545: 60-65. 29. Lee JC, Mehdizadeh S, Smith J et al. Regulatory T cell control of systemic immunity and immunotherapy response in liver metastasis. Sci Immunol 2020; 5. 30. Togashi Y, Shitara K, Nishikawa H. Regulatory T cells in cancer immunosuppression - implications for anticancer therapy. Nat Rev Clin Oncol 2019; 16: 356-371. 31. Kamada T, Togashi Y, Tay C et al. PD-1(+) regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc Natl Acad Sci U S A 2019; 116: 9999-10008. 32. Binnewies M, Roberts EW, Kersten K et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 2018; 24: 541-550. 33. D'Angelo SP, Shoushtari AN, Agaram NP et al. Prevalence of tumor-infiltrating lymphocytes and PD-L1 expression in the soft tissue sarcoma microenvironment. Hum Pathol 2015; 46: 357-365. 34. Fujii H, Arakawa A, Utsumi D et al. CD8(+) tumor-infiltrating lymphocytes at primary sites as a possible prognostic factor of cutaneous angiosarcoma. Int J Cancer 2014; 134: 2393-2402. 35. Shimizu A, Kaira K, Okubo Y et al. Positive PD-L1 Expression Predicts Worse Outcome in Cutaneous Angiosarcoma. J Glob Oncol 2017; 3: 360-369. 36. Lee CH, Espinosa I, Vrijaldenhoven S et al. Prognostic significance of macrophage infiltration in leiomyosarcomas. Clin Cancer Res 2008; 14: 1423-1430. 37. Kostine M, Briaire-de Bruijn IH, Cleven AHG et al. Increased infiltration of M2-macrophages, T-cells and PD-L1 expression in high grade leiomyosarcomas supports immunotherapeutic strategies. Oncoimmunology 2018; 7: e1386828. 38. Sturm G, Finotello F, Petitprez F et al. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology. Bioinformatics 2019; 35: i436-i445. 39. Petitprez F, Vano YA, Becht E et al. Transcriptomic analysis of the tumor microenvironment to guide prognosis and immunotherapies. Cancer Immunol Immunother 2018; 67: 981-988. 40. Becht E, Giraldo NA, Lacroix L et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol 2016; 17: 218. 41. Danaher P, Warren S, Dennis L et al. Gene expression markers of Tumor Infiltrating Leukocytes. J Immunother Cancer 2017; 5: 18. 42. Veldman-Jones MH, Brant R, Rooney C et al. Evaluating Robustness and Sensitivity of the NanoString Technologies nCounter Platform to Enable Multiplexed Gene Expression Analysis of Clinical Samples. Cancer Res 2015; 75: 2587-2593. 43. Tawbi HA, Burgess M, Bolejack V et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol 2017; 18: 1493-1501. 44. Toulmonde M, Penel N, Adam J et al. Use of PD-1 Targeting, Macrophage Infiltration, and IDO Pathway Activation in Sarcomas: A Phase 2 Clinical Trial. JAMA Oncol 2018; 4: 93-97. 45. D'Angelo SP, Mahoney MR, Van Tine BA et al. Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials. Lancet Oncol 2018; 19: 416-426. 46. Fukumura D, Kloepper J, Amoozgar Z et al. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol 2018; 15: 325-340. 47. Motz GT, Coukos G. The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat Rev Immunol 2011; 11: 702-711. 48. Khan KA, Kerbel RS. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat Rev Clin Oncol 2018; 15: 310-324. Chapter 2. 1. Torre LA, Bray F, Siegel RL et al. Global cancer statistics, 2012. CA: a cancer journal for clinicians 2015; 65: 87-108. 2. Wong P, Houghton P, Kirsch DG et al. Combining targeted agents with modern radiotherapy in soft tissue sarcomas. JNCI: Journal of the National Cancer Institute 2014; 106. 3. Orlandi A, Ferlosio A, Roselli M et al. Cardiac sarcomas: an update. Journal of Thoracic Oncology 2010; 5: 1483-1489. 4. Silverman NA. Primary cardiac tumors. Annals of surgery 1980; 191: 127. 5. Patel J, Sheppard MN. Pathological study of primary cardiac and pericardial tumours in a specialist UK Centre: surgical and autopsy series. Cardiovascular Pathology 2010; 19: 343-352. 6. Simpson L, Kumar SK, Okuno SH et al. Malignant primary cardiac tumors. Cancer 2008; 112: 2440-2446. 7. Xu Y, Wang K, Geng Y et al. A case of intimal sarcoma of the pulmonary artery successfully treated with chemotherapy. International journal of clinical oncology 2012; 17: 522-527. 8. Centofanti P, Di Rosa E, Deorsola L et al. Primary cardiac tumors: early and late results of surgical treatment in 91 patients. The Annals of thoracic surgery 1999; 68: 1236-1241. 9. Zhang PJ, Brooks JS, Goldblum JR et al. Primary cardiac sarcomas: a clinicopathologic analysis of a series with follow-up information in 17 patients and emphasis on long-term survival. Human pathology 2008; 39: 1385-1395. 10. Burnside N, MacGowan SW. Malignant primary cardiac tumours. Interactive cardiovascular and thoracic surgery 2012; 15: 1004-1006. 11. Randhawa JS, Budd GT, Randhawa M et al. Primary cardiac sarcoma: 25-year Cleveland Clinic experience. American journal of clinical oncology 2016; 39: 593-599. 12. Burke AP, Cowan D, Virmani R. Primary sarcomas of the heart. Cancer 1992; 69: 387-395. 13. Habertheuer A, Laufer G, Wiedemann D et al. Primary cardiac tumors on the verge of oblivion: a European experience over 15 years. Journal of cardiothoracic surgery 2015; 10: 56. 14. Isambert N, Ray-Coquard I, Italiano A et al. Primary cardiac sarcomas: a retrospective study of the French Sarcoma Group. European Journal of Cancer 2014; 50: 128-136. 15. Yusuf SW, Bathina JD, Qureshi S et al. Cardiac tumors in a tertiary care cancer hospital: clinical features, echocardiographic findings, treatment and outcomes. Heart international 2012; 7. 16. Castorino F, Masiello P, Quattrocchi E, Di Benedetto G. Primary cardiac rhabdomyosarcoma of the left atrium: an unusual presentation. Texas Heart Institute Journal 2000; 27: 206. 17. Lewin J, Garg S, Lau BY et al. Identifying actionable variants using next generation sequencing in patients with a historical diagnosis of undifferentiated pleomorphic sarcoma. International journal of cancer 2018; 142: 57-65. 18. Putnam JB, Sweeney MS, Colon R et al. Primary cardiac sarcomas. The Annals of thoracic surgery 1991; 51: 906-910. 19. Shapira OM, Korach A, Izhar U et al. Radical multidisciplinary approach to primary cardiac sarcomas. European Journal of Cardio-Thoracic Surgery 2013; 44: 330-336. 20. Ray-Coquard IL, Domont J, Tresch-Bruneel E et al. Paclitaxel given once per week with or without bevacizumab in patients with advanced angiosarcoma: a randomized phase II trial. Journal of Clinical Oncology 2015; 33: 2797-2802. 21. Penel N, Bui BN, Bay J-O et al. Phase II trial of weekly paclitaxel for unresectable angiosarcoma: the ANGIOTAX Study. Journal of Clinical Oncology 2008; 26: 5269-5274. 22. Neuville A, Collin F, Bruneval P et al. Intimal sarcoma is the most frequent primary cardiac sarcoma: clinicopathologic and molecular retrospective analysis of 100 primary cardiac sarcomas. The American journal of surgical pathology 2014; 38: 461-469. 23. Tamborini E, Casieri P, Miselli F et al. Analysis of potential receptor tyrosine kinase targets in intimal and mural sarcomas. The Journal of pathology 2007; 212: 227-235. 24. Dewaele B, Floris G, Finalet-Ferreiro J et al. Coactivated platelet-derived growth factor receptor α and epidermal growth factor receptor are potential therapeutic targets in intimal sarcoma. Cancer research 2010; 0008-5472. CAN-0010-1543. 25. Blackmon SH, Patel AR, Bruckner BA et al. Cardiac autotransplantation for malignant or complex primary left-heart tumors. Texas Heart Institute Journal 2008; 35: 296. Chapter 3. 1. Wagner MJ, Ravi V, Menter DG, Sood AK. Endothelial cell malignancies: new insights from the laboratory and clinic. NPJ Precis Oncol 2017; 1: 11. 2. Toro JR, Travis LB, Wu HJ et al. Incidence patterns of soft tissue sarcomas, regardless of primary site, in the surveillance, epidemiology and end results program, 1978-2001: An analysis of 26,758 cases. Int J Cancer 2006; 119: 2922-2930. 3. Young RJ, Brown NJ, Reed MW et al. Angiosarcoma. The Lancet Oncology 2010; 11: 983-991. 4. Nahar R, Zhai W, Zhang T et al. Elucidating the genomic architecture of Asian EGFR-mutant lung adenocarcinoma through multi-region exome sequencing. Nat Commun 2018; 9: 216. 5. Lin CH, Liau JY, Lu YS et al. Molecular subtypes of breast cancer emerging in young women in Taiwan: evidence for more than just westernization as a reason for the disease in Asia. Cancer Epidemiol Biomarkers Prev 2009; 18: 1807-1814. 6. Lewin J, Puri A, Quek R et al. Management of sarcoma in the Asia-Pacific region: resource-stratified guidelines. The Lancet Oncology 2013; 14: e562-e570. 7. Lahat G, Dhuka AR, Lahat S et al. Outcome of locally recurrent and metastatic angiosarcoma. Ann Surg Oncol 2009; 16: 2502-2509. 8. Italiano A, Cioffi A, Penel N et al. Comparison of doxorubicin and weekly paclitaxel efficacy in metastatic angiosarcomas. Cancer 2012; 118: 3330-3336. 9. D'Angelo SP, Munhoz RR, Kuk D et al. Outcomes of Systemic Therapy for Patients with Metastatic Angiosarcoma. Oncology 2015; 89: 205-214. 10. Hung GY, Horng JL, Chen PC et al. Incidence of soft tissue sarcoma in Taiwan: A nationwide population-based study (2007-2013). Cancer Epidemiol 2019; 60: 185-192. 11. Kuan CH, Yang HW, Huang HF et al. Prognostic significance of positive surgical margins for scalp angiosarcoma. J Formos Med Assoc 2021; 120: 217-225. 12. Casali PG, Abecassis N, Bauer S et al. Soft tissue and visceral sarcomas: ESMO–EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Annals of Oncology 2018; 29: iv51-iv67. 13. Bonvalot S, Gaignard E, Stoeckle E et al. Survival Benefit of the Surgical Management of Retroperitoneal Sarcoma in a Reference Center: A Nationwide Study of the French Sarcoma Group from the NetSarc Database. Ann Surg Oncol 2019; 26: 2286-2293. 14. Gabizon AA, Patil Y, La-Beck NM. New insights and evolving role of pegylated liposomal doxorubicin in cancer therapy. Drug Resist Updat 2016; 29: 90-106. 15. Young RJ, Natukunda A, Litiere S et al. First-line anthracycline-based chemotherapy for angiosarcoma and other soft tissue sarcoma subtypes: pooled analysis of eleven European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group trials. Eur J Cancer 2014; 50: 3178-3186. 16. Kollar A, Jones RL, Stacchiotti S et al. Pazopanib in advanced vascular sarcomas: an EORTC Soft Tissue and Bone Sarcoma Group (STBSG) retrospective analysis. Acta Oncol 2017; 56: 88-92. 17. Bui N, Kamat N, Ravi V et al. A multicenter phase II study of Q3 week or weekly paclitaxel in combination with bevacizumab for the treatment of metastatic or unresectable angiosarcoma. Rare Tumors 2018; 10: 2036361318771771. 18. Agulnik M, Yarber JL, Okuno SH et al. An open-label, multicenter, phase II study of bevacizumab for the treatment of angiosarcoma and epithelioid hemangioendotheliomas. Ann Oncol 2013; 24: 257-263. 19. Rosen LS, Gordon MS, Robert F, Matei DE. Endoglin for targeted cancer treatment. Curr Oncol Rep 2014; 16: 365. 20. Jones RL, Ravi V, Brohl AS et al. Results of the TAPPAS trial: An adaptive enrichment phase III trial of TRC105 and pazopanib (P) versus pazopanib alone in patients with advanced angiosarcoma (AS). Annals of Oncology 2019; 30: v683. 21. Florou V, Rosenberg AE, Wieder E et al. Angiosarcoma patients treated with immune checkpoint inhibitors: a case series of seven patients from a single institution. J Immunother Cancer 2019; 7: 213. 22. Painter CA, Jain E, Tomson BN et al. The Angiosarcoma Project: enabling genomic and clinical discoveries in a rare cancer through patient-partnered research. Nat Med 2020; 26: 181-187. 23. Merfeld E, Gabani P, Spraker MB et al. Clinical Outcomes and Prognostic Features of Angiosarcoma: Significance of Prior Radiation Therapy. Clin Oncol (R Coll Radiol) 2019; 31: 232-241. 24. Manner J, Radlwimmer B, Hohenberger P et al. MYC high level gene amplification is a distinctive feature of angiosarcomas after irradiation or chronic lymphedema. Am J Pathol 2010; 176: 34-39. Chapter 4. 1. Cancer Genome Atlas Research Network. Electronic address edsc, Cancer Genome Atlas Research N. Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell 2017; 171: 950-965 e928. 2. D'Angelo SP, Shoushtari AN, Agaram NP et al. Prevalence of tumor-infiltrating lymphocytes and PD-L1 expression in the soft tissue sarcoma microenvironment. Hum Pathol 2015; 46: 357-365. 3. Fujii H, Arakawa A, Utsumi D et al. CD8(+) tumor-infiltrating lymphocytes at primary sites as a possible prognostic factor of cutaneous angiosarcoma. Int J Cancer 2014; 134: 2393-2402. 4. Shurell E, Singh AS, Crompton JG et al. Characterizing the immune microenvironment of malignant peripheral nerve sheath tumor by PD-L1 expression and presence of CD8+ tumor infiltrating lymphocytes. Oncotarget 2016; 7: 64300-64308. 5. Bertucci F, Finetti P, Perrot D et al. PDL1 expression is a poor-prognosis factor in soft-tissue sarcomas. Oncoimmunology 2017; 6: e1278100. 6. Pollack SM, He Q, Yearley JH et al. T-cell infiltration and clonality correlate with programmed cell death protein 1 and programmed death-ligand 1 expression in patients with soft tissue sarcomas. Cancer 2017; 123: 3291-3304. 7. Becht E, Giraldo NA, Lacroix L et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol 2016; 17: 218. 8. Petitprez F, de Reynies A, Keung EZ et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 2020; 577: 556-560. 9. Sautes-Fridman C, Petitprez F, Calderaro J, Fridman WH. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer 2019; 19: 307-325. 10. Posch F, Silina K, Leibl S et al. Maturation of tertiary lymphoid structures and recurrence of stage II and III colorectal cancer. Oncoimmunology 2018; 7: e1378844. 11. Silina K, Soltermann A, Attar FM et al. Germinal Centers Determine the Prognostic Relevance of Tertiary Lymphoid Structures and Are Impaired by Corticosteroids in Lung Squamous Cell Carcinoma. Cancer Res 2018; 78: 1308-1320. 12. Sautes-Fridman C, Verneau J, Sun CM et al. Tertiary Lymphoid Structures and B cells: Clinical impact and therapeutic modulation in cancer. Semin Immunol 2020; 48: 101406. 13. Fridman WH, Petitprez F, Meylan M et al. B cells and cancer: To B or not to B? J Exp Med 2021; 218. 14. Tawbi HA, Burgess M, Bolejack V et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol 2017; 18: 1493-1501. Chapter 5. 1. Schoffski P, Chawla S, Maki RG et al. Eribulin versus dacarbazine in previously treated patients with advanced liposarcoma or leiomyosarcoma: a randomised, open-label, multicentre, phase 3 trial. Lancet 2016; 387: 1629-1637. 2. Blay JY, Schoffski P, Bauer S et al. Eribulin versus dacarbazine in patients with leiomyosarcoma: subgroup analysis from a phase 3, open-label, randomised study. Br J Cancer 2019; 120: 1026-1032. 3. Pautier P, Penel N, Ray-Coquard I et al. A phase II of gemcitabine combined with pazopanib followed by pazopanib maintenance, as second-line treatment in patients with advanced leiomyosarcomas: A unicancer French Sarcoma Group study (LMS03 study). Eur J Cancer 2020; 125: 31-37. 4. Schmoll HJ, Lindner LH, Reichardt P et al. Efficacy of Pazopanib With or Without Gemcitabine in Patients With Anthracycline- and/or Ifosfamide-Refractory Soft Tissue Sarcoma: Final Results of the PAPAGEMO Phase 2 Randomized Clinical Trial. JAMA Oncol 2021; 7: 255-262. 5. Dadone-Montaudie B, Laroche-Clary A, Mongis A et al. Novel Therapeutic Insights in Dedifferentiated Liposarcoma: A Role for FGFR and MDM2 Dual Targeting. Cancers (Basel) 2020; 12. 6. Chudasama P, Renner M, Straub M et al. Targeting Fibroblast Growth Factor Receptor 1 for Treatment of Soft-Tissue Sarcoma. Clin Cancer Res 2017; 23: 962-973. 7. Nakamichi S, Nokihara H, Yamamoto N et al. A phase 1 study of lenvatinib, multiple receptor tyrosine kinase inhibitor, in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol 2015; 76: 1153-1161. 8. Fukumura D, Kloepper J, Amoozgar Z et al. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol 2018; 15: 325-340. 9. Khan KA, Kerbel RS. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat Rev Clin Oncol 2018; 15: 310-324. 10. D'Angelo SP, Shoushtari AN, Agaram NP et al. Prevalence of tumor-infiltrating lymphocytes and PD-L1 expression in the soft tissue sarcoma microenvironment. Hum Pathol 2015; 46: 357-365. 11. Pollack SM, He Q, Yearley JH et al. T-cell infiltration and clonality correlate with programmed cell death protein 1 and programmed death-ligand 1 expression in patients with soft tissue sarcomas. Cancer 2017; 123: 3291-3304. 12. Petitprez F, de Reynies A, Keung EZ et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 2020; 577: 556-560. 13. Fridman WH, Zitvogel L, Sautes-Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol 2017; 14: 717-734. 14. Danaher P, Warren S, Dennis L et al. Gene expression markers of Tumor Infiltrating Leukocytes. J Immunother Cancer 2017; 5: 18. 15. Becht E, Giraldo NA, Lacroix L et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol 2016; 17: 218. 16. Kantidakis G, Litiere S, Neven A et al. Efficacy thresholds for clinical trials with advanced or metastatic leiomyosarcoma patients: A European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group meta-analysis based on a literature review for soft-tissue sarcomas. Eur J Cancer 2021; 154: 253-268. 17. Kato Y, Tabata K, Kimura T et al. Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+ T cells through reduction of tumor-associated macrophage and activation of the interferon pathway. PLoS One 2019; 14: e0212513. 18. Sautes-Fridman C, Petitprez F, Calderaro J, Fridman WH. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer 2019; 19: 307-325. 19. Skeate JG, Otsmaa ME, Prins R et al. TNFSF14: LIGHTing the Way for Effective Cancer Immunotherapy. Front Immunol 2020; 11: 922. 20. Lu Y, Zhao Q, Liao JY et al. Complement Signals Determine Opposite Effects of B Cells in Chemotherapy-Induced Immunity. Cell 2020; 180: 1081-1097 e1024. 21. Roumenina LT, Daugan MV, Petitprez F et al. Context-dependent roles of complement in cancer. Nat Rev Cancer 2019; 19: 698-715. 22. Matsuki M, Adachi Y, Ozawa Y et al. Targeting of tumor growth and angiogenesis underlies the enhanced antitumor activity of lenvatinib in combination with everolimus. Cancer Sci 2017; 108: 763-771. 23. Kimura T, Kato Y, Ozawa Y et al. Immunomodulatory activity of lenvatinib contributes to antitumor activity in the Hepa1-6 hepatocellular carcinoma model. Cancer Sci 2018; 109: 3993-4002. 24. Matsuki M, Hoshi T, Yamamoto Y et al. Lenvatinib inhibits angiogenesis and tumor fibroblast growth factor signaling pathways in human hepatocellular carcinoma models. Cancer Med 2018; 7: 2641-2653. 25. Motzer R, Alekseev B, Rha SY et al. Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma. N Engl J Med 2021; 384: 1289-1300. 26. Makker V, Colombo N, Casado Herraez A et al. Lenvatinib plus Pembrolizumab for Advanced Endometrial Cancer. N Engl J Med 2022; 386: 437-448. 27. Ueda S, Saeki T, Takeuchi H et al. In vivo imaging of eribulin-induced reoxygenation in advanced breast cancer patients: a comparison to bevacizumab. Br J Cancer 2016; 114: 1212-1218. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84374 | - |
dc.description.abstract | 軟組織惡性肉瘤與其他癌症最大不同之處在於惡性肉瘤可以源發於任何人體的器官與部位而且有超過一百種以上的病理組織型態。這樣的異質性讓惡性肉瘤的分類、預後的判斷以及治療的選擇面臨諸多挑戰。 目前惡性肉瘤較常分類的方式仍是利用組織型態來做區別。不過在我們與亞洲其他國家合作收集了276位晚期血管惡性肉瘤的研究中發現,不同的原發部位對於預後有顯著的影響 (表淺性的血管惡性肉瘤相對於內臟型的血管惡性肉瘤其對於存活的危險比(hazard ratio) 為0.63, p = 0.004)。此結果反映出的是即使為同一種組織型態中,不同的原發部位仍然會影響臨床的預後。不過,即使我們把惡性肉瘤的研究侷限在一個組織器官內,仍然可能會有不同的預後。在我們與三大洲國際上共五個醫學中心的合作計畫收納了61位源發於心臟的惡性肉瘤研究中,我們發現血管惡性肉瘤有傾向有較差的預後(危險比 1.84, p = 0.07)。以上的研究顯示,我們可能難以單純就組織型態或是原發部位的分類就能掌握惡性肉瘤病患的預後,我們必須從更接近腫瘤生物學相關的角度來切入了解。 癌症免疫治療的成功讓腫瘤免疫微環境 (tumor immune microenvironment)的研究再度獲得了重視。利用轉譯體為基礎的演算法目前已經可以直接將綜合各種細胞種類的RNA (bulk RNA-Seq) 拆解以及量化成各種不同的免疫細胞的比例。因為腫瘤免疫微環境是宿主與腫瘤交會反應的地方,因此我們假設可以利用腫瘤免疫微環境內的免疫細胞分布特性讓惡性肉瘤有更好的分類結果。我們與法國的研究者合作,包含了最開始的試驗設計以及利用該團隊所設計的運算法來分析惡性肉瘤的腫瘤免疫微環境。法國團隊分析結果顯示在綜合了各種組織型態的惡性肉瘤群體中,可以根據免疫細胞種類的差異,將所有的病患區分為五個免疫相關分類,分別為A至E五個組別。其中E組為免疫細胞浸潤最多的而且也發現B細胞不論是在哪種組織型態或是原發部位都對於預後都有顯著的正面影響 (p < 0.001)。而我們臺大醫院所提供的惡性肉瘤檢體分析也證實了以上的分析結果。另外也發現免疫組別 E 對於目前的免疫前哨抑制劑pembrolizumab有治療效果預測的能力 (p = 0.026)。 我們也希望知道腫瘤免疫微環境之組成是否可以幫助我們預測晚期惡性肉瘤病患接受其他非免疫藥物治療的效果預測性以及預後。我們收集總共34 個在我們所發起的”第 Ib/II 期單組檢測樂衛瑪 (lenvatinib) 合併賀樂維 (eribulin) 用於晚期惡性脂肪肉瘤以及惡性平滑肌肉瘤的臨床試驗”的檢體先用Nanostring nCounter 來做mRNA 的量化,而後再用之前提及的轉譯體演算法分析腫瘤免疫微環境中的免疫細胞比例。我們發現腫瘤免疫微環境在接受這些藥物治療後,樹突細胞會有顯著增加 (p = 0.037)。而且某些特定的免疫細胞變化也與腫瘤對於治療的控制的不惡化存活期有顯著的關係。這些結果顯示腫瘤免疫微環境中的免疫細胞是與惡性肉瘤與治療的預後有相關性的。 我們的研究顯示了腫瘤免疫微環境內的免疫細胞分類或許可以對現行已有的惡性肉瘤分類模式提供額外的訊息。我們會持續進行藉由免疫的特色來分類惡性肉瘤的研究也希望對於這個困難治療的癌症提供更精準的治療選擇。 | zh_TW |
dc.description.abstract | Soft tissue sarcoma (STS), unlike many other cancer types, could occur in any anatomical location and are associated with more than 100 different types of histology. This plethora of variations challenges a proper classification that could dictate both prognosis and treatment. Histopathology is the most common method proposed to classify STS. However, in our study in collaboration with seven Asian countries that collected 276 advanced angiosarcoma patients, primary site was the most important prognostic factor for survival (hazard ratio (HR) of cutaneous vs visceral angiosarcoma 0.63, p = 0.004), suggesting that within one histology type different primary anatomical locations have differential clinical outcomes. On the other hand, not all STS in the same anatomical location have similar outcomes. In our study that collaborated with 5 medical centers across 3 continents, among the 61 patients with primary cardiac sarcoma, angiosarcoma tended to have worse survival as compared to other histologies (HR 1.84, p = 0.07). The sophisticated complexity between histology and anatomical location in STS provides reasons to pursue biological-based factors other than histology and anatomy to assist in the classification of STS patients. The success of immunotherapy in oncology has brought forth attention to the tumor immune microenvironment (TIME). The development of transcriptomic-based algorithms that could decipher bulk RNA sequencing data into different immune cell types also improves our ability to understand TIME. Because the TIME represents the interaction between host and tumor, we hypothesized that features in the TIME may be able to classify STS irrespective of histology or anatomical location. We collaborated with French researchers and together, we conceptualized the idea to use cell type-based transcriptomic approach to decipher the TIME in multiple STS histology subtypes. Based on immune cell type distribution, STS patients were classified into five (A to E) different sarcoma immune classes (SIC) with different prognosis. The E cluster is the most inflamed. Further, B cell signature was prognostic for survival across different histologies and anatomical locations (p < 0.001). These findings were confirmed by NTUH cohorts. We also demonstrated the predictive value of the E cluster patients who were more likely to benefit from the treatment of immune checkpoint inhibitor (p = 0.026). To further explore whether TIME may also be prognostic or predictive for advanced STS patients receiving non-immunotherapeutic agents, a total of 32 clinical specimens from our clinical trial “A single-arm phase Ib/II study of the combination of lenvatinib and eribulin in advanced adipocytic sarcoma and leiomyosarcoma (LEADER)” were selected for mRNA quantification by Nanostring nCounter platform. We found that the treatment of lenvatinib and eribulin could increase the quantity of dendritic cells in the TIME (p = 0.037) and changes in different immune cell types were associated with progression-free survival duration. These results suggested that the immune cell components of TIME were associated with prognosis in advanced STS. Our studies have shown that TIME may form a backbone for a novel classification which could bolster current classifications that are based on histology and anatomy. Our future works will refine the model of immunologic classification for STS, and thereby to help develop precision medicine of this difficult tumor. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:09:43Z (GMT). No. of bitstreams: 1 U0001-0904202213021300.pdf: 3591926 bytes, checksum: 903a24d75b9962b79453a6c0a78f8d5b (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 論文口試委員審定書 i 致謝 ii 中文摘要 iii Abstract v Chapter 1. Classification of soft tissue sarcoma (STS): informing prognosis and predicting treatment outcome 1 1.1 Location, histology, genetics, microenvironment…which matters most? 1 1.2 The tumor microenvironment—a complex and sophisticated system that has long been neglected in STS 3 1.3 Exploring the immune microenvironment: proteins, cells, and transcriptome 4 1.4 Exploring a novel immune cell-based classifications in STS 6 Chapter 2 Prognostic factors of STS arising from a specific organ: the case of primary cardiac sarcoma 8 2.1 Introduction 8 2.2 Patients and Methods 9 2.3 Results 10 2.4 Discussion 13 Chapter 3. Prognostic factors of STS with a single histopathology subtype: the case of angiosarcoma 17 3.1 Introduction 17 3.2 Patients and Methods 18 3.3 Results 20 3.4 Discussion 24 Chapter 4 Immune cell -based classification of STS: the unique roles of B cell immunity and tertiary lymphoid structures 28 4.1 Introduction 28 4.2 Patients and Methods 29 4.3 Results 32 4.4 Discussion 34 Chapter 5. From prognosis to prediction of treatment efficacy: the immune contexture of patients with advanced STS treated with lenvatinib plus eribulin therapy 37 5.1 Introduction 37 5.2 Patients and Methods 38 5.3 Results 40 5.4 Discussion 44 Chapter 6. Summary and Future Perspectives 47 Chapter 7. Figures 50 Figure 1. The overall survival curves of primary cardiac sarcoma patients 50 Figure 2. Progression-free survival in advanced cardiac sarcoma patients 51 Figure 3. Sex ratio among different age bins of advanced angiosarcoma 52 Figure 4. Trend of chemotherapeutic drugs prescriptions for advanced angiosarcoma from 1995 to 2016 53 Figure 5. Overall survival (OS) of advanced angiosarcoma cohorts 54 Figure 6. Progression-free survival curves of first-line chemotherapy in advanced angiosarcoma 55 Figure 7. Validation of sarcoma immune classes (SIC) in NTUH samples. 56 Figure 8. Tertiary lymphoid structures are a distinguishing feature of the immune-high class of soft tissue sarcoma. 57 Figure 9. Location and maturation of tertiary lymphoid structures in sarcoma 59 Figure 10. The efficacy results of the combination of lenvatinib and eribulin 61 Figure 11. Cell type predictive of treatment efficacy 62 Figure 12. Changes of cell types based on (a) MCP-Counter and (b) Danaher module with post- vs pre-treatment samples 63 Figure 13. Changes of immune cell types as assessed by Danaher module in paired samples. 64 Figure 14. Selected boxplots showing changes of immune cell types that were associated with clinical efficacy of the combination of lenvatinib and eribulin 65 Figure 15. Volcano plots of differentially expressed genes of different clinical scenarios 65 Chapter 8. Tables 67 Table 1 Clinico-pathological characteristics of primary cardiac sarcoma patients 67 Table 2. Prognostic impact clinico-pathological variables based on uni- and multi-variate Cox proportional hazard models in primary cardiac sarcoma 69 Table 3. Chemotherapy regimens associated with response in the first-line chemotherapy in primary cardiac sarcoma 70 Table 4. Demographic and clinical data of the advanced angiosarcoma cohort 71 Table 5. Primary origins of the advanced angiosarcoma patients 73 Table 6. The characteristics of the chemotherapy treatment in advanced angiosarcoma cohort 74 Table 7. Univariate and multivariate models based on age, gender and primary site of angiosarcoma for overall survival 76 Table 8. Median overall survival (OS) and progression-free survival (PFS) of the first-line chemotherapy treatments in advance angiosarcoma 77 Table 9. The clinicopathological characteristics of all patients enrolled into the LEADER study 78 Table 10. Treatment-emergent adverse events (regardless of cause) 79 References 81 Chapter 1. 81 Chapter 2. 84 Chapter 3. 86 Chapter 4. 88 Chapter 5. 89 Appendix 91 | |
dc.language.iso | en | |
dc.title | 探討惡性軟組織肉瘤的新穎免疫分類法 | zh_TW |
dc.title | Exploring a novel immunologic classification of soft tissue sarcoma | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 楊慕華(Muh-Hwa Yang),許駿(Chiun Hsu),盧彥伸(Yen-Shen Lu),顏厥全(Chueh-Chuan Yen) | |
dc.subject.keyword | 惡性肉瘤,分類學,心臟惡性肉瘤,血管惡性肉瘤,腫瘤免疫微環境,轉譯學演算法, | zh_TW |
dc.subject.keyword | soft tissue sarcoma,classification,primary cardiac sarcoma,angiosarcoma,tumor immune microenvironment,transcriptomic-based algorithm, | en |
dc.relation.page | 91 | |
dc.identifier.doi | 10.6342/NTU202200683 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-04-12 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 腫瘤醫學研究所 | zh_TW |
dc.date.embargo-lift | 2022-04-27 | - |
顯示於系所單位: | 腫瘤醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0904202213021300.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.51 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。