請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84372
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳培哲(Pei-Jer Chen) | |
dc.contributor.author | Chang-Ru Wu | en |
dc.contributor.author | 吳章如 | zh_TW |
dc.date.accessioned | 2023-03-19T22:09:40Z | - |
dc.date.copyright | 2022-04-26 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-04-14 | |
dc.identifier.citation | 1. Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z, Huang Y, et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife 2012;1:e00049. 2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021;71:209-249. 3. Brind A, Jiang J, Samuel D, Gigou M, Feray C, Brechot C, Kremsdorf D. Evidence for selection of hepatitis B mutants after liver transplantation through peripheral blood mononuclear cell infection. J Hepatol 1997;26:228-235. 4. European Association for the Study of the Liver. Electronic address eee. EASL Clinical Practice Guidelines: Liver transplantation. J Hepatol 2016;64:433-485. 5. Dane DS, Cameron CH, Briggs M. Virus-like particles in serum of patients with Australia-antigen-associated hepatitis. Lancet 1970;1:695-698. 6. Dupinay T, Gheit T, Roques P, Cova L, Chevallier-Queyron P, Tasahsu SI, Le Grand R, et al. Discovery of naturally occurring transmissible chronic hepatitis B virus infection among Macaca fascicularis from Mauritius Island. Hepatology 2013;58:1610-1620. 7. Walter E, Keist R, Niederost B, Pult I, Blum HE. Hepatitis B virus infection of tupaia hepatocytes in vitro and in vivo. Hepatology 1996;24:1-5. 8. Liu J, Zhang E, Ma Z, Wu W, Kosinska A, Zhang X, Moller I, et al. Enhancing virus-specific immunity in vivo by combining therapeutic vaccination and PD-L1 blockade in chronic hepadnaviral infection. PLoS Pathog 2014;10:e1003856. 9. Suda T, Gao X, Stolz DB, Liu D. Structural impact of hydrodynamic injection on mouse liver. Gene Ther 2007;14:129-137. 10. Huang LR, Wu HL, Chen PJ, Chen DS. An immunocompetent mouse model for the tolerance of human chronic hepatitis B virus infection. Proc Natl Acad Sci U S A 2006;103:17862-17867. 11. Chou HH, Chien WH, Wu LL, Cheng CH, Chung CH, Horng JH, Ni YH, et al. Age-related immune clearance of hepatitis B virus infection requires the establishment of gut microbiota. Proc Natl Acad Sci U S A 2015;112:2175-2180. 12. Rhim JA, Sandgren EP, Degen JL, Palmiter RD, Brinster RL. Replacement of diseased mouse liver by hepatic cell transplantation. Science 1994;263:1149-1152. 13. Mueller H, Wildum S, Luangsay S, Walther J, Lopez A, Tropberger P, Ottaviani G, et al. A novel orally available small molecule that inhibits hepatitis B virus expression. J Hepatol 2018;68:412-420. 14. Oehler N, Volz T, Bhadra OD, Kah J, Allweiss L, Giersch K, Bierwolf J, et al. Binding of hepatitis B virus to its cellular receptor alters the expression profile of genes of bile acid metabolism. Hepatology 2014;60:1483-1493. 15. Zhang Z, Trippler M, Real CI, Werner M, Luo X, Schefczyk S, Kemper T, et al. Hepatitis B Virus Particles Activate Toll-Like Receptor 2 Signaling Initially Upon Infection of Primary Human Hepatocytes. Hepatology 2020;72:829-844. 16. Azuma H, Paulk N, Ranade A, Dorrell C, Al-Dhalimy M, Ellis E, Strom S, et al. Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/- mice. Nat Biotechnol 2007;25:903-910. 17. Chen J, Li Y, Lai F, Wang Y, Sutter K, Dittmer U, Ye J, et al. Functional Comparison of Interferon-alpha Subtypes Reveals Potent Hepatitis B Virus Suppression by a Concerted Action of Interferon-alpha and Interferon-gamma Signaling. Hepatology 2021;73:486-502. 18. Lai F, Wee CYY, Chen Q. Establishment of Humanized Mice for the Study of HBV. Front Immunol 2021;12:638447. 19. Fung J, Lai CL, Seto WK, Yuen MF. Nucleoside/nucleotide analogues in the treatment of chronic hepatitis B. J Antimicrob Chemother 2011;66:2715-2725. 20. Ghany MG, Doo EC. Antiviral resistance and hepatitis B therapy. Hepatology 2009;49:S174-184. 21. Carman WF, Zanetti AR, Karayiannis P, Waters J, Manzillo G, Tanzi E, Zuckerman AJ, et al. Vaccine-induced escape mutant of hepatitis B virus. Lancet 1990;336:325-329. 22. Samuel D, Muller R, Alexander G, Fassati L, Ducot B, Benhamou JP, Bismuth H. Liver transplantation in European patients with the hepatitis B surface antigen. N Engl J Med 1993;329:1842-1847. 23. Protzer-Knolle U, Naumann U, Bartenschlager R, Berg T, Hopf U, Meyer zum Buschenfelde KH, Neuhaus P, et al. Hepatitis B virus with antigenically altered hepatitis B surface antigen is selected by high-dose hepatitis B immune globulin after liver transplantation. Hepatology 1998;27:254-263. 24. Gane EJ, Angus PW, Strasser S, Crawford DH, Ring J, Jeffrey GP, McCaughan GW, et al. Lamivudine plus low-dose hepatitis B immunoglobulin to prevent recurrent hepatitis B following liver transplantation. Gastroenterology 2007;132:931-937. 25. Chames P, Van Regenmortel M, Weiss E, Baty D. Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 2009;157:220-233. 26. Hehle V, Beretta M, Bourgine M, Ait-Goughoulte M, Planchais C, Morisse S, Vesin B, et al. Potent human broadly neutralizing antibodies to hepatitis B virus from natural controllers. J Exp Med 2020;217. 27. Wang W, Sun L, Li T, Ma Y, Li J, Liu Y, Li M, et al. A human monoclonal antibody against small envelope protein of hepatitis B virus with potent neutralization effect. MAbs 2016;8:468-477. 28. Shi B, Wu Y, Wang C, Li X, Yu F, Wang B, Yang Z, et al. Evaluation of antiviral - passive - active immunization ('sandwich') therapeutic strategy for functional cure of chronic hepatitis B in mice. EBioMedicine 2019;49:247-257. 29. Zhang TY, Yuan Q, Zhao JH, Zhang YL, Yuan LZ, Lan Y, Lo YC, et al. Prolonged suppression of HBV in mice by a novel antibody that targets a unique epitope on hepatitis B surface antigen. Gut 2016;65:658-671. 30. Li D, He W, Liu X, Zheng S, Qi Y, Li H, Mao F, et al. A potent human neutralizing antibody Fc-dependently reduces established HBV infections. Elife 2017;6. 31. Neumann AU, Phillips S, Levine I, Ijaz S, Dahari H, Eren R, Dagan S, et al. Novel mechanism of antibodies to hepatitis B virus in blocking viral particle release from cells. Hepatology 2010;52:875-885. 32. Galun E, Eren R, Safadi R, Ashour Y, Terrault N, Keeffe EB, Matot E, et al. Clinical evaluation (phase I) of a combination of two human monoclonal antibodies to HBV: safety and antiviral properties. Hepatology 2002;35:673-679. 33. Shin YW, Ryoo KH, Hong KW, Chang KH, Choi JS, So M, Kim PK, et al. Human monoclonal antibody against Hepatitis B virus surface antigen (HBsAg). Antiviral Res 2007;75:113-120. 34. Kim SH, Shin YW, Hong KW, Chang KH, Ryoo KH, Paik SH, Kim JM, et al. Neutralization of hepatitis B virus (HBV) by human monoclonal antibody against HBV surface antigen (HBsAg) in chimpanzees. Antiviral Res 2008;79:188-191. 35. Lee HW, Park JY, Hong T, Park MS, Ahn SH. Efficacy of Lenvervimab, a Recombinant Human Immunoglobulin, in Treatment of Chronic Hepatitis B Virus Infection. Clin Gastroenterol Hepatol 2020;18:3043-3045 e3041. 36. Jeong GU, Ahn BY, Jung J, Kim H, Kim TH, Kim W, Lee A, et al. A recombinant human immunoglobulin with coherent avidity to hepatitis B virus surface antigens of various viral genotypes and clinical mutants. PLoS One 2020;15:e0236704. 37. Bissig KD, Le TT, Woods NB, Verma IM. Repopulation of adult and neonatal mice with human hepatocytes: a chimeric animal model. Proc Natl Acad Sci U S A 2007;104:20507-20511. 38. Iwamoto M, Watashi K, Tsukuda S, Aly HH, Fukasawa M, Fujimoto A, Suzuki R, et al. Evaluation and identification of hepatitis B virus entry inhibitors using HepG2 cells overexpressing a membrane transporter NTCP. Biochem Biophys Res Commun 2014;443:808-813. 39. Galibert F, Mandart E, Fitoussi F, Tiollais P, Charnay P. Nucleotide sequence of the hepatitis B virus genome (subtype ayw) cloned in E. coli. Nature 1979;281:646-650. 40. Mehmankhah M, Bhat R, Anvar MS, Ali S, Alam A, Farooqui A, Amir F, et al. Structure-Guided Approach to Identify Potential Inhibitors of Large Envelope Protein to Prevent Hepatitis B Virus Infection. Oxid Med Cell Longev 2019;2019:1297484. 41. Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 2010;5:725-738. 42. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 2007;35:W375-383. 43. Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, Verma V, et al. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci 2018;27:293-315. 44. Heo L, Park H, Seok C. GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Res 2013;41:W384-388. 45. McMahon G, Ehrlich PH, Moustafa ZA, McCarthy LA, Dottavio D, Tolpin MD, Nadler PI, et al. Genetic alterations in the gene encoding the major HBsAg: DNA and immunological analysis of recurrent HBsAg derived from monoclonal antibody-treated liver transplant patients. Hepatology 1992;15:757-766. 46. Ghany MG, Ayola B, Villamil FG, Gish RG, Rojter S, Vierling JM, Lok AS. Hepatitis B virus S mutants in liver transplant recipients who were reinfected despite hepatitis B immune globulin prophylaxis. Hepatology 1998;27:213-222. 47. Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol 2007;7:118-130. 48. Dandri M, Burda MR, Torok E, Pollok JM, Iwanska A, Sommer G, Rogiers X, et al. Repopulation of mouse liver with human hepatocytes and in vivo infection with hepatitis B virus. Hepatology 2001;33:981-988. 49. Mahgoub S, Candotti D, El Ekiaby M, Allain JP. Hepatitis B virus (HBV) infection and recombination between HBV genotypes D and E in asymptomatic blood donors from Khartoum, Sudan. J Clin Microbiol 2011;49:298-306. 50. Candotti D, Grabarczyk P, Ghiazza P, Roig R, Casamitjana N, Iudicone P, Schmidt M, et al. Characterization of occult hepatitis B virus from blood donors carrying genotype A2 or genotype D strains. J Hepatol 2008;49:537-547. 51. Huang CH, Yuan Q, Chen PJ, Zhang YL, Chen CR, Zheng QB, Yeh SH, et al. Influence of mutations in hepatitis B virus surface protein on viral antigenicity and phenotype in occult HBV strains from blood donors. J Hepatol 2012;57:720-729. 52. Wu C, Zhang X, Tian Y, Song J, Yang D, Roggendorf M, Lu M, et al. Biological significance of amino acid substitutions in hepatitis B surface antigen (HBsAg) for glycosylation, secretion, antigenicity and immunogenicity of HBsAg and hepatitis B virus replication. J Gen Virol 2010;91:483-492. 53. Shin Y-W, Ryoo K-H, Hong K-W, Chang K-H, Choi J-S, So M, Kim P-K, et al. Human monoclonal antibody against Hepatitis B virus surface antigen (HBsAg). Antiviral Research 2007;75:113-120. 54. Eren R, Ilan E, Nussbaum O, Lubin I, Terkieltaub D, Arazi Y, Ben-Moshe O, et al. Preclinical evaluation of two human anti-hepatitis B virus (HBV) monoclonal antibodies in the HBV-trimera mouse model and in HBV chronic carrier chimpanzees. Hepatology 2000;32:588-596. 55. Klein F, Halper-Stromberg A, Horwitz JA, Gruell H, Scheid JF, Bournazos S, Mouquet H, et al. HIV therapy by a combination of broadly neutralizing antibodies in humanized mice. Nature 2012;492:118-122. 56. Tang XC, Agnihothram SS, Jiao Y, Stanhope J, Graham RL, Peterson EC, Avnir Y, et al. Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution. Proc Natl Acad Sci U S A 2014;111:E2018-2026. 57. Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JC, Muecksch F, et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. Elife 2020;9. 58. Horwitz JA, Halper-Stromberg A, Mouquet H, Gitlin AD, Tretiakova A, Eisenreich TR, Malbec M, et al. HIV-1 suppression and durable control by combining single broadly neutralizing antibodies and antiretroviral drugs in humanized mice. Proc Natl Acad Sci U S A 2013;110:16538-16543. 59. Schoofs T, Klein F, Braunschweig M, Kreider EF, Feldmann A, Nogueira L, Oliveira T, et al. HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1. Science 2016;352:997-1001. 60. Niessl J, Baxter AE, Mendoza P, Jankovic M, Cohen YZ, Butler AL, Lu CL, et al. Combination anti-HIV-1 antibody therapy is associated with increased virus-specific T cell immunity. Nat Med 2020;26:222-227. 61. Hoofnagle JH. Serologic markers of hepatitis B virus infection. Annu Rev Med 1981;32:1-11. 62. Whalley SA, Murray JM, Brown D, Webster GJ, Emery VC, Dusheiko GM, Perelson AS. Kinetics of acute hepatitis B virus infection in humans. J Exp Med 2001;193:847-854. 63. Chisari FV. Cytotoxic T cells and viral hepatitis. J Clin Invest 1997;99:1472-1477. 64. Hoofnagle JH, Doo E, Liang TJ, Fleischer R, Lok AS. Management of hepatitis B: summary of a clinical research workshop. Hepatology 2007;45:1056-1075. 65. Lok AS, Heathcote EJ, Hoofnagle JH. Management of hepatitis B: 2000--summary of a workshop. Gastroenterology 2001;120:1828-1853. 66. McMahon BJ. The natural history of chronic hepatitis B virus infection. Hepatology 2009;49:S45-55. 67. Hui CK, Leung N, Yuen ST, Zhang HY, Leung KW, Lu L, Cheung SK, et al. Natural history and disease progression in Chinese chronic hepatitis B patients in immune-tolerant phase. Hepatology 2007;46:395-401. 68. Wieland S, Thimme R, Purcell RH, Chisari FV. Genomic analysis of the host response to hepatitis B virus infection. Proc Natl Acad Sci U S A 2004;101:6669-6674. 69. Dunn C, Peppa D, Khanna P, Nebbia G, Jones M, Brendish N, Lascar RM, et al. Temporal analysis of early immune responses in patients with acute hepatitis B virus infection. Gastroenterology 2009;137:1289-1300. 70. Buchmann K. Evolution of Innate Immunity: Clues from Invertebrates via Fish to Mammals. Front Immunol 2014;5:459. 71. Loo YM, Gale M, Jr. Immune signaling by RIG-I-like receptors. Immunity 2011;34:680-692. 72. Franchi L, Warner N, Viani K, Nunez G. Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev 2009;227:106-128. 73. Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol 2014;5:461. 74. Cai X, Chiu YH, Chen ZJ. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol Cell 2014;54:289-296. 75. Zlotnik A, Burkhardt AM, Homey B. Homeostatic chemokine receptors and organ-specific metastasis. Nat Rev Immunol 2011;11:597-606. 76. Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol 2014;32:659-702. 77. Fletcher SP, Chin DJ, Cheng DT, Ravindran P, Bitter H, Gruenbaum L, Cote PJ, et al. Identification of an intrahepatic transcriptional signature associated with self-limiting infection in the woodchuck model of hepatitis B. Hepatology 2013;57:13-22. 78. Mutz P, Metz P, Lempp FA, Bender S, Qu B, Schoneweis K, Seitz S, et al. HBV Bypasses the Innate Immune Response and Does Not Protect HCV From Antiviral Activity of Interferon. Gastroenterology 2018;154:1791-1804 e1722. 79. Cheng X, Xia Y, Serti E, Block PD, Chung M, Chayama K, Rehermann B, et al. Hepatitis B virus evades innate immunity of hepatocytes but activates cytokine production by macrophages. Hepatology 2017;66:1779-1793. 80. Suslov A, Boldanova T, Wang X, Wieland S, Heim MH. Hepatitis B Virus Does Not Interfere With Innate Immune Responses in the Human Liver. Gastroenterology 2018;154:1778-1790. 81. Luangsay S, Gruffaz M, Isorce N, Testoni B, Michelet M, Faure-Dupuy S, Maadadi S, et al. Early inhibition of hepatocyte innate responses by hepatitis B virus. J Hepatol 2015;63:1314-1322. 82. Lutgehetmann M, Bornscheuer T, Volz T, Allweiss L, Bockmann JH, Pollok JM, Lohse AW, et al. Hepatitis B virus limits response of human hepatocytes to interferon-alpha in chimeric mice. Gastroenterology 2011;140:2074-2083, 2083 e2071-2072. 83. Martinet J, Dufeu-Duchesne T, Bruder Costa J, Larrat S, Marlu A, Leroy V, Plumas J, et al. Altered functions of plasmacytoid dendritic cells and reduced cytolytic activity of natural killer cells in patients with chronic HBV infection. Gastroenterology 2012;143:1586-1596 e1588. 84. Sato S, Li K, Kameyama T, Hayashi T, Ishida Y, Murakami S, Watanabe T, et al. The RNA sensor RIG-I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus. Immunity 2015;42:123-132. 85. Yang PL, Althage A, Chung J, Maier H, Wieland S, Isogawa M, Chisari FV. Immune effectors required for hepatitis B virus clearance. Proc Natl Acad Sci U S A 2010;107:798-802. 86. Wu LL, Peng WH, Wu HL, Miaw SC, Yeh SH, Yang HC, Liao PH, et al. Lymphocyte Antigen 6 Complex, Locus C(+) Monocytes and Kupffer Cells Orchestrate Liver Immune Responses Against Hepatitis B Virus in Mice. Hepatology 2019;69:2364-2380. 87. Blumberg BS. Australia antigen and the biology of hepatitis B. Science 1977;197:17-25. 88. Wang S, Chen Z, Hu C, Qian F, Cheng Y, Wu M, Shi B, et al. Hepatitis B virus surface antigen selectively inhibits TLR2 ligand-induced IL-12 production in monocytes/macrophages by interfering with JNK activation. J Immunol 2013;190:5142-5151. 89. Op den Brouw ML, Binda RS, van Roosmalen MH, Protzer U, Janssen HL, van der Molen RG, Woltman AM. Hepatitis B virus surface antigen impairs myeloid dendritic cell function: a possible immune escape mechanism of hepatitis B virus. Immunology 2009;126:280-289. 90. Bazinet M, Pantea V, Placinta G, Moscalu I, Cebotarescu V, Cojuhari L, Jimbei P, et al. Safety and Efficacy of 48 Weeks REP 2139 or REP 2165, Tenofovir Disoproxil, and Pegylated Interferon Alfa-2a in Patients With Chronic HBV Infection Naive to Nucleos(t)ide Therapy. Gastroenterology 2020;158:2180-2194. 91. Zeissig S, Murata K, Sweet L, Publicover J, Hu Z, Kaser A, Bosse E, et al. Hepatitis B virus-induced lipid alterations contribute to natural killer T cell-dependent protective immunity. Nat Med 2012;18:1060-1068. 92. Lin YJ, Huang LR, Yang HC, Tzeng HT, Hsu PN, Wu HL, Chen PJ, et al. Hepatitis B virus core antigen determines viral persistence in a C57BL/6 mouse model. Proc Natl Acad Sci U S A 2010;107:9340-9345. 93. Lin YJ, Wu HL, Chen DS, Chen PJ. Hepatitis B virus nucleocapsid but not free core antigen controls viral clearance in mice. J Virol 2012;86:9266-9273. 94. Ferrari C, Penna A, Bertoletti A, Valli A, Antoni AD, Giuberti T, Cavalli A, et al. Cellular immune response to hepatitis B virus-encoded antigens in acute and chronic hepatitis B virus infection. J Immunol 1990;145:3442-3449. 95. Yi H, Zhang Y, Yang X, Li M, Hu H, Xiong J, Wang N, et al. Hepatitis B Core Antigen Impairs the Polarization While Promoting the Production of Inflammatory Cytokines of M2 Macrophages via the TLR2 Pathway. Front Immunol 2020;11:535. 96. Milich DR, Chen M, Schodel F, Peterson DL, Jones JE, Hughes JL. Role of B cells in antigen presentation of the hepatitis B core. Proc Natl Acad Sci U S A 1997;94:14648-14653. 97. Lee BO, Tucker A, Frelin L, Sallberg M, Jones J, Peters C, Hughes J, et al. Interaction of the hepatitis B core antigen and the innate immune system. J Immunol 2009;182:6670-6681. 98. Yu X, Lan P, Hou X, Han Q, Lu N, Li T, Jiao C, et al. HBV inhibits LPS-induced NLRP3 inflammasome activation and IL-1beta production via suppressing the NF-kappaB pathway and ROS production. J Hepatol 2017;66:693-702. 99. Liu S, Peng N, Xie J, Hao Q, Zhang M, Zhang Y, Xia Z, et al. Human hepatitis B virus surface and e antigens inhibit major vault protein signaling in interferon induction pathways. J Hepatol 2015;62:1015-1023. 100. Liaw YF. HBeAg seroconversion as an important end point in the treatment of chronic hepatitis B. Hepatol Int 2009;3:425-433. 101. Wang X, Li Y, Mao A, Li C, Li Y, Tien P. Hepatitis B virus X protein suppresses virus-triggered IRF3 activation and IFN-beta induction by disrupting the VISA-associated complex. Cell Mol Immunol 2010;7:341-348. 102. Wei C, Ni C, Song T, Liu Y, Yang X, Zheng Z, Jia Y, et al. The hepatitis B virus X protein disrupts innate immunity by downregulating mitochondrial antiviral signaling protein. J Immunol 2010;185:1158-1168. 103. Wang H, Ryu WS. Hepatitis B virus polymerase blocks pattern recognition receptor signaling via interaction with DDX3: implications for immune evasion. PLoS Pathog 2010;6:e1000986. 104. Hosel M, Quasdorff M, Ringelhan M, Kashkar H, Debey-Pascher S, Sprinzl MF, Bockmann JH, et al. Hepatitis B Virus Activates Signal Transducer and Activator of Transcription 3 Supporting Hepatocyte Survival and Virus Replication. Cell Mol Gastroenterol Hepatol 2017;4:339-363. 105. Kurahashi T, Yoshida Y, Ogura S, Egawa M, Furuta K, Hikita H, Kodama T, et al. Forkhead Box M1 Transcription Factor Drives Liver Inflammation Linking to Hepatocarcinogenesis in Mice. Cell Mol Gastroenterol Hepatol 2020;9:425-446. 106. Bonnardel J, T'Jonck W, Gaublomme D, Browaeys R, Scott CL, Martens L, Vanneste B, et al. Stellate Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes Colonizing the Liver Macrophage Niche. Immunity 2019;51:638-654 e639. 107. Lefkowitch JH, Haythe JH, Regent N. Kupffer cell aggregation and perivenular distribution in steatohepatitis. Mod Pathol 2002;15:699-704. 108. Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 2008;88:125-172. 109. Wu J, Li J, Salcedo R, Mivechi NF, Trinchieri G, Horuzsko A. The proinflammatory myeloid cell receptor TREM-1 controls Kupffer cell activation and development of hepatocellular carcinoma. Cancer Res 2012;72:3977-3986. 110. Xi S, Zheng X, Li X, Jiang Y, Wu Y, Gong J, Jie Y, et al. Activated Hepatic Stellate Cells Induce Infiltration and Formation of CD163(+) Macrophages via CCL2/CCR2 Pathway. Front Med (Lausanne) 2021;8:627927. 111. Connolly MK, Bedrosian AS, Malhotra A, Henning JR, Ibrahim J, Vera V, Cieza-Rubio NE, et al. In hepatic fibrosis, liver sinusoidal endothelial cells acquire enhanced immunogenicity. J Immunol 2010;185:2200-2208. 112. Aizarani N, Saviano A, Sagar, Mailly L, Durand S, Herman JS, Pessaux P, et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 2019;572:199-204. 113. Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 2010;5:99-118. 114. Eggert T, Wolter K, Ji J, Ma C, Yevsa T, Klotz S, Medina-Echeverz J, et al. Distinct Functions of Senescence-Associated Immune Responses in Liver Tumor Surveillance and Tumor Progression. Cancer Cell 2016;30:533-547. 115. Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, Athineos D, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 2013;15:978-990. 116. Duncan AW, Hanlon Newell AE, Smith L, Wilson EM, Olson SB, Thayer MJ, Strom SC, et al. Frequent aneuploidy among normal human hepatocytes. Gastroenterology 2012;142:25-28. 117. Duncan AW, Taylor MH, Hickey RD, Hanlon Newell AE, Lenzi ML, Olson SB, Finegold MJ, et al. The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature 2010;467:707-710. 118. Duncan AW, Hickey RD, Paulk NK, Culberson AJ, Olson SB, Finegold MJ, Grompe M. Ploidy reductions in murine fusion-derived hepatocytes. PLoS Genet 2009;5:e1000385. 119. Wang MJ, Chen F, Li JX, Liu CC, Zhang HB, Xia Y, Yu B, et al. Reversal of hepatocyte senescence after continuous in vivo cell proliferation. Hepatology 2014;60:349-361. 120. Loo TM, Kamachi F, Watanabe Y, Yoshimoto S, Kanda H, Arai Y, Nakajima-Takagi Y, et al. Gut Microbiota Promotes Obesity-Associated Liver Cancer through PGE2-Mediated Suppression of Antitumor Immunity. Cancer Discov 2017;7:522-538. 121. Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, Iwakura Y, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013;499:97-101. 122. Michalopoulos GK, DeFrances MC. Liver regeneration. Science 1997;276:60-66. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84372 | - |
dc.description.abstract | 長久以來,B型肝炎病毒被認為無法由傳統已知的先天性免疫反應辨認,因此B型肝炎病毒有”隱形病毒”之稱。在B型肝炎病毒感染後,有95%成人6個月內都能將病毒清除,說明後天性免疫反應的活化及功能均可正常發揮,因此先天性免疫反應仍應存在。然而,仍有5%的成人在感染病毒後演變成慢性帶原,最終可能導致肝癌發生。根據GLOBOCAN資料庫統計,2020年原發性肝癌全球發生率為4.7%,而其中有56%的肝癌是由B肝病毒慢性帶原造成,肝臟移植提供肝癌病患一個選擇,而移植前後給予B肝病毒陽性病患B型肝炎免疫球蛋白,能夠直接中和病毒避免B肝病毒再次感染,然而其昂貴及有潛在感染風險的缺點,使新型抗B肝病毒表面抗原抗體持續研發,以取代傳統的B型肝炎免疫球蛋白。 本篇研究分為二個主題,分別是找尋一種新型B肝病毒表面抗原抗體的抗原表位,以及探討B型肝炎病毒與先天性免疫反應之間相互調控的機制。 主題一:以人肝嵌合鼠篩選抗單株抗體突變病毒以分析抗體之抗原表位 Lenvervimab為一進入第三期臨床試驗的B肝病毒表面抗原人類單株抗體,而抗體的抗原表位(epitope)對於病毒突變與抗體治療效果息息相關。本篇文章利用人肝嵌合鼠進行抗體篩選找出Lenvervimab可能的抗原表位。研究結果顯示,人肝嵌合鼠的B肝病毒表面抗原在注射抗體初期迅速下降,但隨著注射次數增加其逐漸回升,進一步分析人肝嵌合鼠血清與肝臟內的病毒序列發現,表面抗原胺基酸在140與164位置發生突變,140由蘇胺酸(Threonine)突變成異白胺酸(Isoleucine),而164則由麩胺酸(Glutamic acid)變異為甘胺酸(Glycine),經由體外細胞感染模型證實,兩種突變株對sLenvervimab產生強弱不一的抗性,說明表面抗原胺基酸140及164兩個位點對於sLenvervimab辨認有重要角色。除了小鼠體內篩選系統之外,利用原態膠體電泳法(Native-PAGE)發現表面抗原胺基酸160從離胺酸(Lysine)突變為天門冬醯胺酸(Asparagine)亦使sLenvervimab無法辨認,最後也經由體外細胞感染模型證實160位點對於sLenvervimab結合的重要性。 本次實驗結果利用人肝嵌合鼠體內篩選系統,以及原態膠體電泳法找到B肝病毒變異株對Lenvervimab結合力的影響,並利用體外細胞感染模型驗證其抵抗性,藉此找到Lenvervimab可能的抗原結合位,解決了一個臨床重要的問題。 主題二:以高壓注射小鼠探討B型肝炎病毒與宿主先天性免疫反應的相互調控 本篇研究利用B型肝炎病毒質體高壓注射小鼠,在注射後不同時間點收集小鼠肝臟進行染色。本次實驗搭配細胞激素或趨化因子的RNA原位雜交化學技術,以及病毒蛋白的免疫組織化學染色,在同一個肝臟切片分析病毒與免疫反應間的交互作用及空間分布。結果顯示,腫瘤壞死因子(TNFα)的表現無論在控制組或野生型(wild-type)與B型肝炎病毒核心蛋白去除組(core-null)幾乎偵測不到;然而,和控制組相比,野生型B型肝炎病毒注射後48小時肝臟內的免疫細胞數量顯著增加,而且單核細胞趨化蛋白-1 (MCP-1; CCL2)表現顯著提升。研究發現單核細胞趨化蛋白-1集中表現在一小部分的肝臟細胞,以及聚集的免疫細胞,但將病毒核心蛋白去除後,肝臟內的免疫細胞數量與單核細胞趨化蛋白-1表現則與控制組沒有差別。這個結果說明表現單核細胞趨化蛋白-1的少部分肝臟細胞及免疫細胞可能為觸發後續免疫反應的重要媒介。 本次研究結果顯示,B型肝炎病毒,尤其是病毒核心蛋白,可能會引發一小部分特定的肝臟細胞和免疫細胞表現單核細胞趨化蛋白-1,吸引周邊血液中的單核球進入肝臟,進而幫助清除B型肝炎病毒,然而,這些特定的肝臟細胞與免疫細胞為何及其特性需要進一步釐清。 | zh_TW |
dc.description.abstract | Topic 1: Mapping the conformational epitope of an anti-HBs antibody by in vivo selection of HBV escape variants Background & Aims Hepatitis B immunoglobulin (HBIG) has been routinely applied in the liver transplantation setting to block hepatitis B virus (HBV) reinfection of grafts. However, new monoclonal anti-HBV surface (HBs) antibodies have been developed to replace HBIG. The epitopes of such monoclonal antibodies may impact the emergence of escape variants and deserve study. Approach & Results The conformational epitope of sLenvervimab, a surrogate form of Lenvervimab, which is a monoclonal anti-HBs antigen (HBsAg) antibody currently under phase III trial, was investigated by selecting escape mutants from a human liver chimeric mouse. HBV-infected chimeric mice treated with sLenvervimab monotherapy showed an initial decline in circulating HBsAg levels, followed by a quick rebound in one month. Sequencing of circulating or liver HBV DNA revealed emerging variants, with replacement of amino acid E164 or T140. E164 HBV variants strongly resisted sLenvervimab neutralization in cell culture infection, and the T140 variant moderately resisted sLenvervimab neutralization. Natural HBV variants with amino acid replacements adjacent to E164 were constructed and examined for sLenvervimab neutralization effects. Variants with K160 replacement also resisted neutralization. These data revealed the conformational epitope of sLenvervimab. Conclusions Selection of antibody-escape HBV variants in human chimeric mice works efficiently. Analysis of such emerging variants helps to identify anchor amino acid residues of the conformational epitope that are difficult to discover by conventional approaches. Topic 2: The innate immune response between hepatitis B virus and host Background & Aims Hepatitis B virus is generally considered as a stealth virus that does not trigger conventional innate immune response in host. However, the adaptive immune response activates subsequently and clears virus infection in the liver. Therefore, it is interesting to investigate whether and how the innate immune response is stimulated by HBV during acute infection stage by the HDI-HBV model. Approach & Results The HBV innate immune mechanism was studied using in situ hybridization and immunohistochemistry co-staining in mouse liver exposed to hydrodynamic injection of HBV DNA. Spatial and single-cell distribution facilitates analysis of HBV interactions with different cells in the liver. The BALB/c mouse was exposed to vector, wild-type HBV, or core-null HBV using hydrodynamic injection. The mice were sacrificed at 24, 36, 48, or 72 hours after injection and the liver was collected for staining. The cells with TNFα expression were scarcely observed in vector control and both HBV group. In contrast, the CCL2 expression significantly increased in a small subset of immune cells in wild-type HBV mouse compared to that of vector control at 48 hr after hydrodynamic injection. Meanwhile, the number of immune cells was also increased dramatically in wild-type HBV mouse. However, the phenomenon disappeared in mouse injected with core-null HBV. These results revealed a role of a subset of immune cells expressing CCL2 as a candidate triggering subsequent immune responses. Conclusions HBV might induce a small proportion of hepatocytes to attract immune cells to express CCL2, thereby further attracting circulating monocytes to help clear HBV in the liver. The HBV core protein may be an essential viral factor, but the properties of these responsive hepatocytes require further study. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:09:40Z (GMT). No. of bitstreams: 1 U0001-1204202217294200.pdf: 5348546 bytes, checksum: ca58456d713f590ccf562e2179ab7834 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 國立台灣大學(碩)博士學位論文口試委員審定書 II 誌謝 III 中文摘要 IV Abstract VI Topic 1: Mapping the conformational epitope of an anti-HBs antibody by in vivo selection of HBV escape variants - Introduction 1 1. Chronic hepatitis B infection and the adverse outcomes 1 2. Animal models of hepatitis B virus 2 2.1 HBV hydrodynamic injection mouse 3 2.2 Human liver chimeric mouse 3 3. Antiviral therapy of Nucleoside analogues 4 4. Immunotherapies of HBV surface antigen neutralizing antibodies 5 4.1 Treatment of the polyclonal hepatitis B immunoglobulin 6 4.2 Anti-HBs antibody treatment in preclinical animal study 7 4.3 Anti-HBs antibody therapy at clinical study stage 8 4.4 Lenvervimab 8 Materials and Methods 11 Mouse models 11 Cells 11 The surrogate Lenvervimab (sLenvervimab) mAb 12 In vitro infection with antibody and HBV mixtures 12 Samples and DNA extraction from serum and the liver 13 HBV DNA PCR amplification and Sanger sequencing 13 Next generation sequencing 14 HBV mutant plasmid construction 14 Cell transfection for HBV production and purification 14 HBV virion quantification 15 ELISA detection of HBsAg and HBeAg 16 Northern blotting 16 HBsAg structure prediction 17 Immunofluorescence staining 17 Results 18 Experimental scheme for in vivo selection of sLenvervimab-escape HBV mutants in Hu-FRG mice 18 Sequencing for possible sLenvervimab-escape HBV mutants from the serum and liver of Hu-FRG mice 21 In vitro neutralizing activity of sLenvervimab in NTCP cells 23 Limitation of the in vivo selection approach and complementary methods 25 Possible conformational epitope of sLenvervimab in escape HBV mutants 27 Discussion 30 Topic 2: The innate immune response between hepatitis B virus and host – Introduction 37 1. Natural infection history of hepatitis B virus 37 2. Innate immune response 38 3. HBV innate immune response: an interesting but unresolved issue 40 4. The HBV antigens innate immunological aspects 43 4.1 HBV surface antigen 43 4.2 HBV core antigen 44 4.3 HBV e antigen 45 4.4 HBV x antigen 46 4.5 HBV polymerase 47 5. Hypothesis 48 Materials and Methods 50 1. Hydrodynamic mouse model 50 2. pAAV/HBV1.2 plasmid 50 3. In situ hybridization (ISH) and Immunohistochemistry (IHC) 50 4. TUNEL staining 51 5. Statistics and data analysis 52 Results 53 1. Few non-parenchymal cells expressed TNFα or IL-10 in HBV mice at 48 hr after HDI 53 2. CCL2 was produced in liver in WT HBV mouse 53 3. FoxM1 prompts hepatocyte apoptosis but is not relate to CCL2 expression after HBV exposure 55 Discussion 57 Figures 64 Figure 1. sLenvervimab prevents HBV infection in Hu-FRG mice but subsequently results in escape HBV variants 64 Figure 2. Sanger sequencing and next generation sequencing of HBV genomes in serum and liver of mice before and after sLenvervimab monotherapy or combination treatment of ETV and sLenvervimab 66 Figure 3. sLenvervimab neutralization experiments of wild type and escape variants in HepG2-NTCP cell line 68 Figure 4. Titration of sLenvervimab titer in neutralizing T140I escape variant in HepG2-NTCP infections 69 Figure 5. Titration of sLenvervimab titer in neutralizing K160N variant in HepG2-NTCP cells 70 Figure 6. Characterization and structure of the predicted WT and mutated HBsAg models at residues 164, 140, and 160 71 Figure 7. Rare cells expressed TNFα and IL-10 in HBV-expressed mice. 73 Figure 8. Wild-type HBV triggers CCL2 expression in hepatocytes and immune cells. 76 Figure 9. FoxM1, HBsAg, and TUNEL in consecutive sections staining. 80 Figure 10. Wild-type HBV do not trigger CCL2 expression through FoxM1 pathway. 83 Supplementary Figures 84 Supplementary Figure 1. Serum HBV DNA and sLenvervimab quantification in human liver chimeric mice 84 Supplementary Figure 2. Next generation sequencing of HBV genomes in serum and liver of HBV-infected only mice 85 Supplementary Figure 3. Polymerase gene substitution and virion secretion of WT and sLenvermimab-selected HBV mutants 86 Supplementary Figure 4. Antibody concentration titration and determination 87 Supplementary Figure 5. Immunofluorescence staining of HBcAg in HepG2-NCTP cells 88 Supplementary Figure 6. In vitro neutralization of HBV substitutions around 164 residue with sLenvervimab at 500 ng/ml in HepG2-NTCP cells 89 Supplementary Figure 7. In vitro neutralization of HBV S155F and G145R mutants at 500 ng/ml in HepG2-NTCP cells 90 Supplementary Figure 8. Characterization and structure of the predicted HBsAg model 91 Supplementary Figure 9. Liver section staining at 36 and 72 hr after vector and WT HBV HDI 94 References 96 | |
dc.language.iso | en | |
dc.title | B型肝炎病毒與宿主間的免疫調控: 以小鼠模型篩選抗單株抗體病毒株以及研究宿主對B型肝炎病毒的先天性免疫反應 | zh_TW |
dc.title | Immune interaction between hepatitis B virus and host: Escape HBV mutants from monoclonal antibody treatment and innate immune response toward HBV in mice model | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 葉秀慧(Shiou-Hwei Yeh),楊宏志(Hung-Chih Yang),陶秘華(Mi-Hua Tao),黃麗蓉(Li-Rung Huang),游舒涵(Shu-Han Yu) | |
dc.subject.keyword | B型肝炎病毒,人肝嵌合鼠,B型肝炎病毒表面抗原抗體,HBV高壓注射小鼠,先天性免疫反應, | zh_TW |
dc.subject.keyword | hepatitis B virus,human liver chimeric mice,Lenvervimab,HBV hydrodynamic injection mice,innate immune response, | en |
dc.relation.page | 114 | |
dc.identifier.doi | 10.6342/NTU202200688 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-04-14 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
dc.date.embargo-lift | 2024-04-30 | - |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1204202217294200.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.22 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。