Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84366
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪一平(YP Hung)
dc.contributor.authorSheng-Kai Huangen
dc.contributor.author黃聲凱zh_TW
dc.date.accessioned2023-03-19T22:09:32Z-
dc.date.copyright2022-07-05
dc.date.issued2022
dc.date.submitted2022-04-25
dc.identifier.citation[1]  Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superpoint: Self­ supervised interest point detection and description. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pages 224–236, 2018. [2]  Yuki Ono, Eduard Trulls, Pascal Fua, and Kwang Moo Yi. Lf­net: Learning local features from images. arXiv preprint arXiv:1805.09662, 2018. [3]  MihaiDusmanu,IgnacioRocco,TomasPajdla,MarcPollefeys,JosefSivic,Akihiko Torii, and Torsten Sattler. D2­net: A trainable cnn for joint description and detection of local features. In Proceedings of the ieee/cvf conference on computer vision and pattern recognition, pages 8092–8101, 2019. [4]  JeromeRevaud,PhilippeWeinzaepfel,CésarDeSouza,NoePion,GabrielaCsurka, Yohann Cabon, and Martin Humenberger. R2d2: repeatable and reliable detector and descriptor. arXiv preprint arXiv:1906.06195, 2019. [5]  Yurun Tian, Bin Fan, and Fuchao Wu. L2­net: Deep learning of discriminative patch descriptor in euclidean space. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 661–669, 2017. [6]  Zixin Luo, Lei Zhou, Xuyang Bai, Hongkai Chen, Jiahui Zhang, Yao Yao, Shiwei Li, Tian Fang, and Long Quan. Aslfeat: Learning local features of accurate shape and localization. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 6589–6598, 2020. [7]  Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic. Netvlad: Cnn architecture for weakly supervised place recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 5297– 5307, 2016. [8]  David G Lowe. Distinctive image features from scale­invariant keypoints. International journal of computer vision, 60(2):91–110, 2004. [9]  Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded­up robust features (surf). Computer vision and image understanding, 110(3):346–359, 2008. [10]  Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer net­ works. Advances in neural information processing systems, 28:2017–2025, 2015. [11]  Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable convolutional networks. In Proceedings of the IEEE international conference on computer vision, pages 764–773, 2017. [12]  TorstenSattler,BastianLeibe,andLeifKobbelt.Fastimage­basedlocalizationusing direct 2d­to­3d matching. In 2011 International Conference on Computer Vision, pages 667–674. IEEE, 2011. [13]  Pierre Moulon, Pascal Monasse, and Renaud Marlet. Global fusion of relative mo­ tions for robust, accurate and scalable structure from motion. In Proceedings of the IEEE International Conference on Computer Vision, pages 3248–3255, 2013. [14]  Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Efficient & effective prioritized matching for large­scale image­based localization. IEEE transactions on pattern analysis and machine intelligence, 39(9):1744–1756, 2016. [15]  Liu Liu, Hongdong Li, and Yuchao Dai. Efficient global 2d­3d matching for cam­ era localization in a large­scale 3d map. In Proceedings of the IEEE International Conference on Computer Vision, pages 2372–2381, 2017. [16]  Hajime Taira, Masatoshi Okutomi, Torsten Sattler, Mircea Cimpoi, Marc Pollefeys, Josef Sivic, Tomas Pajdla, and Akihiko Torii. Inloc: Indoor visual localization with dense matching and view synthesis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 7199–7209, 2018. [17]  Johannes L Schonberger and Jan­Michael Frahm. Structure­from­motion revisited. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4104–4113, 2016. [18]  Yongyi Tang, Xing Zhang, Lin Ma, Jingwen Wang, Shaoxiang Chen, and Yu­Gang Jiang. Non­local netvlad encoding for video classification. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, pages 0–0, 2018. [19]  Peng Tang, Xinggang Wang, Baoguang Shi, Xiang Bai, Wenyu Liu, and Zhuowen Tu. Deep fishernet for object classification. arXiv preprint arXiv:1608.00182, 2016. [20]  Eric Brachmann and Carsten Rother. Learning less is more­6d camera localization via 3d surface regression. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4654–4662, 2018. [21]  Eric Brachmann and Carsten Rother. Expert sample consensus applied to camera re­localization. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 7525–7534, 2019. [22]  Eric Brachmann and Carsten Rother. Visual camera re­localization from rgb and rgb­d images using dsac. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021. [23]  XiaotianLi,ShuzheWang,YiZhao,JakobVerbeek,andJuhoKannala.Hierarchical scene coordinate classification and regression for visual localization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11983–11992, 2020. [24]  Jamie Shotton, Ben Glocker, Christopher Zach, Shahram Izadi, Antonio Criminisi, and Andrew Fitzgibbon. Scene coordinate regression forests for camera relocaliza­ tion in rgb­d images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2930–2937, 2013. [25]  YihongWuandZhanyiHu.Pnpproblemrevisited.JournalofMathematicalImaging and Vision, 24(1):131–141, 2006. [26]  Relja Arandjelovic and Andrew Zisserman. All about vlad. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages 1578–1585, 2013. [27]  Vincent Lepetit, Francesc Moreno­Noguer, and Pascal Fua. Epnp: An accurate o (n) solution to the pnp problem. International journal of computer vision, 81(2):155, 2009. [28]  Laurent Kneip, Hongdong Li, and Yongduek Seo. Upnp: An optimal o (n) solution to the absolute pose problem with universal applicability. In European Conference on Computer Vision, pages 127–142. Springer, 2014. [29]  Torsten Sattler, Will Maddern, Carl Toft, Akihiko Torii, Lars Hammarstrand, Erik Stenborg, Daniel Safari, Masatoshi Okutomi, Marc Pollefeys, Josef Sivic, et al. Benchmarking 6dof outdoor visual localization in changing conditions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 8601–8610, 2018. [30]  Long­term visuallocalization. https://www.visuallocalization.net. Ac­ cessed: 2021­09­30.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84366-
dc.description.abstract近年來攝影機自我定位在很多方面都有產業化的發展,比如機器人和無人駕駛車需要視覺定位來估計其位置,由此,自我定位技術之重要性可想而知。視覺定位其中最普遍的一個方法就是基於影像特徵,此篇論文就是比較傳統特徵和深度學習特徵運用在單一影像法之定位準確度之影響,並且本次實驗所選用的單一影像法是基於影像檢索。論文中會選用兩種經典的傳統特徵提取方法以及五種最近幾年比較熱門的深度學習特徵提取方法,實驗的數據集包含季節變化和照明變化(天氣變化)的影像,在不同精確範圍下比較定位準確度,分析產生性能優劣之可能性,並討論各種方法的優缺點。這將為後續的影像定位研究提供思路與改善方向,尤其是在針對具有照明變化的定位研究。zh_TW
dc.description.abstractIn recent years, camera ego-positioning has been industrialized in many aspects. For example, robots and unmanned vehicles need visual positioning to estimate their position. Therefore, the importance of ego-positioning technology can be imagined. One of the most common methods of ego-positioning is based on image features. This paper compares the performance of traditional features and deep-learning features on the localization accuracy of a single-shot localization method, and the single-shot localization method used in this experiment is based on image retrieval . In the paper, two classic traditional feature extraction methods and five deep-learning feature extraction methods that have been popular in recent years will be selected. The experimental datasets contain images of seasonal changes and lighting changes(weather changes). The localization accuracy is compared under different accuracy ranges. Analyze the possibility of performance pros and cons, and discuss the pros and cons of various methods. This will provide ideas and improvement directions for subsequent image localization research, especially for localization research with lighting changes.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:09:32Z (GMT). No. of bitstreams: 1
U0001-1810202118590100.pdf: 3570968 bytes, checksum: 2c770ff86ee13d7952339a3cbc6f4d68 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsAcknowledgements i 摘要 ii Abstract iii Contents v List of Figures viii List of Tables ix Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Feature Extraction Techniques 2 1.3 Single­-Shot Camera Localization Techniques 2 Chapter 2 Related Works 4 2.1 Feature Extraction 4 2.1.1 SIFT 4 2.1.2 SURF 5 2.1.3 SuperPoint 6 2.1.4 LF­-Net 7 2.1.5 D2­-Net 8 2.1.6 R2D2 9 2.1.7 ASLFeat 11 2.2 Single­-Shot Camera Localization 12 2.2.1 Methods Introduction 12 2.2.2 Methods Summary 13 Chapter 3 Single­-Shot Camera Localization for Feature Comparison 15 3.1 Similarity­-based Pairing 16 3.2 Perspective­-n-­Point (PnP) 17 3.3 Summary of Experimental Methods 18 Chapter 4 Experiments 19 4.1 Data 19 4.1.1 Aachen Day-­Night Dataset 20 4.1.2 RobotCar Seasons Dataset 20 4.2 Setup 23 4.3 Similarity­-based Pairing 23 4.4 Accuracy Comparison 23 4.4.1 Accuracy Comparison Experiment Details 23 4.4.1.1 Accuracy Comparison Results (Aachen) 24 4.4.1.2 Accuracy Comparison Results (RobotCar Seasons) 27 4.5 Time Comparison 31 4.5.1 Time Comparison Results (Aachen) 31 4.5.2 Time Comparison Results (RobotCar Seasons) 32 4.6 Summary of Comparison on Camera Localization 33 Chapter 5 Discussion 34 Chapter 6 Conclusions and Future Work 37 References 38
dc.language.isoen
dc.subject影像檢索zh_TW
dc.subject深度學習zh_TW
dc.subject視覺定位zh_TW
dc.subject特徵提取zh_TW
dc.subject自我定位zh_TW
dc.subject單一影像法zh_TW
dc.subjectsingle­-shot camera localizationen
dc.subjectvisual positioningen
dc.subjectimage retrievalen
dc.subjectdeep learningen
dc.subjectfeature extractionen
dc.subjectego­-positioningen
dc.title使用傳統或深度學習特徵於單一影像攝影機定位法之效能zh_TW
dc.titlePerformance on Single­-Shot Camera Localization Using Handcrafted or Deep­-Learning Featuresen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李明穗(MS Lee),陳冠文(Kuan-Wen Chen)
dc.subject.keyword自我定位,特徵提取,深度學習,影像檢索,視覺定位,單一影像法,zh_TW
dc.subject.keywordego­-positioning,feature extraction,deep learning,image retrieval,visual positioning,single­-shot camera localization,en
dc.relation.page42
dc.identifier.doi10.6342/NTU202103840
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-04-25
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
dc.date.embargo-lift2022-07-05-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
U0001-1810202118590100.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved