請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84351完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳信希(HSIN-HSI CHEN) | |
| dc.contributor.author | Hong-Jin Tsai | en |
| dc.contributor.author | 蔡宏晉 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:09:11Z | - |
| dc.date.copyright | 2022-07-05 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-05-19 | |
| dc.identifier.citation | Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer. arXiv preprint arXiv:2004.05150, 2020. Eugene Garfield, Irving H Sher, and Richard J Torpie. The use of citation data in writing the history of science. Technical report, Institute for Scientific Information Inc Philadelphia PA, 1964. Henry Small. Co-citation in the scientific literature: A new measure of the rela- tionship between two documents. Journal of the American Society for information Science, 24(4):265–269, 1973. Yicong Liang, Qing Li, and Tieyun Qian. Finding relevant papers based on citation relations. In International conference on web-age information management, pages 403–414. Springer, 2011. William Tanner, Esra Akbas, and Mir Hasan. Paper recommendation based on ci- tation relation. In 2019 IEEE international conference on big data (big data), pages 3053–3059. IEEE, 2019. Nazmus Sakib, Rodina Binti Ahmad, and Khalid Haruna. A collaborative ap- proach toward scientific paper recommendation using citation context. IEEE Access, 8:51246–51255, 2020. Vahed Qazvinian and Dragomir R Radev. Scientific paper summarization using ci- tation summary networks. arXiv preprint arXiv:0807.1560, 2008. Vahed Qazvinian and Dragomir Radev. Identifying non-explicit citing sentences for citation-based summarization. In Proceedings of the 48th annual meeting of the association for computational linguistics, pages 555–564, 2010. Vahed Qazvinian, Dragomir Radev, and Arzucan Özgür. Citation summarization through keyphrase extraction. In Proceedings of the 23rd international conference on computational linguistics (COLING 2010), pages 895–903, 2010. Amjad Abu-Jbara and Dragomir Radev. Coherent citation-based summarization of scientific papers. In Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies, pages 500–509, 2011. Arman Cohan and Nazli Goharian. Scientific article summarization using citation- context and article’s discourse structure. arXiv preprint arXiv:1704.06619, 2017. Arman Cohan and Nazli Goharian. Scientific document summarization via citation contextualization and scientific discourse. International Journal on Digital Libraries, 19(2):287–303, 2018. Michihiro Yasunaga, Jungo Kasai, Rui Zhang, Alexander R Fabbri, Irene Li, Dan Friedman, and Dragomir R Radev. Scisummnet: A large annotated corpus and content-impact models for scientific paper summarization with citation networks. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 7386–7393, 2019. Chenxin An, Ming Zhong, Yiran Chen, Danqing Wang, Xipeng Qiu, and Xuan- jing Huang. Enhancing scientific papers summarization with citation graph. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 12498–12506, 2021. Simone Teufel, Advaith Siddharthan, and Dan Tidhar. Automatic classification of citation function. In Proceedings of the 2006 conference on empirical methods in natural language processing, pages 103–110, 2006. Amjad Abu-Jbara, Jefferson Ezra, and Dragomir Radev. Purpose and polarity of citation: Towards nlp-based bibliometrics. In Proceedings of the 2013 conference of the North American chapter of the association for computational linguistics: Human language technologies, pages 596–606, 2013. Haixia Liu. Sentiment analysis of citations using word2vec. arXiv preprint arXiv:1704.00177, 2017. David Jurgens, Srijan Kumar, Raine Hoover, Dan McFarland, and Dan Jurafsky. Measuring the evolution of a scientific field through citation frames. Transactions of the Association for Computational Linguistics, 6:391–406, 2018. Arman Cohan, Waleed Ammar, Madeleine Van Zuylen, and Field Cady. Structural scaffolds for citation intent classification in scientific publications. arXiv preprint arXiv:1904.01608, 2019. Imran Ihsan and M Abdul Qadir. An nlp-based citation reason analysis using ccro. Scientometrics, 126(6):4769–4791, 2021. Anne Lauscher, Brandon Ko, Bailey Kuehl, Sophie Johnson, David Jurgens, Arman Cohan, and Kyle Lo. Multicite: Modeling realistic citations requires moving beyond the single-sentence single-label setting. arXiv preprint arXiv:2107.00414, 2021. AshishVaswani,NoamShazeer,NikiParmar,JakobUszkoreit,LlionJones,AidanN Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing systems, pages 5998–6008, 2017. Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph se- quence neural networks, 2017. Bruno Latour. Science in action: How to follow scientists and engineers through society. Harvard university press, 1987. John Swales. Citation analysis and discourse analysis. Applied linguistics, 7(1):39– 56, 1986. Howard D White. Citation analysis and discourse analysis revisited. Applied linguistics, 25(1):89–116, 2004. Iz Beltagy, Kyle Lo, and Arman Cohan. Scibert: A pretrained language model for scientific text. arXiv preprint arXiv:1903.10676, 2019. Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019. Dain Kaplan, Ryu Iida, and Takenobu Tokunaga. Automatic extraction of citation contexts for research paper summarization: A coreference-chain based approach. In Proceedings of the 2009 Workshop on Text and Citation Analysis for Scholarly Digital Libraries (NLPIR4DL), pages 88–95, 2009. Chenrui Guo, Haoran Cui, Li Zhang, Jiamin Wang, Wei Lu, and Jian Wu. SmartCiteCon: Implicit citation context extraction from academic literature using supervised learning. In Proceedings of the 8th International Workshop on Mining Scientific Publications, pages 21–26, Wuhan, China, 05 August 2020. Association for Computational Linguistics. Vahed Qazvinian and Dragomir R. Radev. Identifying non-explicit citing sentences for citation-based summarization. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages 555–564, Uppsala, Sweden, July 2010. Association for Computational Linguistics. Parikshit Sondhi and ChengXiang Zhai. A constrained hidden markov model ap- proach for non-explicit citation context extraction. In Proceedings of the 2014 SIAM International Conference on Data Mining, pages 361–369. SIAM, 2014. MarcBertin,PierreJonin,FrédéricArmetta,andIanaAtanassova.Determiningcita- tion blocks using end-to-end neural coreference resolution model for citation context analysis. In 17th International Conference on Scientometrics & Informetrics, vol- ume 2, page 2720, 2019. Tan Ying and Tang Yifei. Extracting citation contents with coreference resolution. Data Analysis and Knowledge Discovery, 5(8):25–33, 2021. Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Olga Uryupina, and Yuchen Zhang. Conll-2012 shared task: Modeling multilingual unrestricted coreference in ontonotes. In Joint Conference on EMNLP and CoNLL-Shared Task, pages 1–40, 2012. Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh Hajishirzi. Multi-task iden- tification of entities, relations, and coreference for scientific knowledge graph con- struction. arXiv preprint arXiv:1808.09602, 2018. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 2012. ZeguanXiao,JiarunWu,QingliangChen,andCongjianDeng.Bert4gcn:Usingbert intermediate layers to augment gcn for aspect-based sentiment classification, 2021. Thomas N Kipf and Max Welling. Semi-supervised classification with graph con- volutional networks. arXiv preprint arXiv:1609.02907, 2016. Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2020. Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(56):1929–1958, 2014. Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint arXiv:1607.06450, 2016. Yufeng Zhang, Xueli Yu, Zeyu Cui, Shu Wu, Zhongzhen Wen, and Liang Wang. Every document owns its structure: Inductive text classification via graph neural networks. arXiv preprint arXiv:2004.13826, 2020. JunyoungChung,CaglarGulcehre,KyungHyunCho,andYoshuaBengio.Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014. Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017. Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davi- son, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Can- wen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 38–45, Online, October 2020. Associa- tion for Computational Linguistics. Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics, pages 311–318, 2002. Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization branches out, pages 74–81, 2004. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84351 | - |
| dc.description.abstract | 當撰寫科技論文時,若在內文提及先前相關研究,作者往往會使用規定格式來引用相關論文。引用除了可以給予被引用論文之作者應有的尊重外,並提供讀者獲得更詳細訊息的查找方向。由於引用往往是作者在撰寫時有目的的選取相關之研究,並在內文中提及提及,因此引用的目的也應該是可以被大眾所利用的資訊。以往已經有一些先前研究是以引用句當作唯一的線索,去分析預測作者撰寫時引用對應論文之目的。然而要判斷引用目的所需要的資訊,有時卻不只內涵引用符號的引用句而已,相關的上下文內容在最近的研究也也被證實對判斷引用目地有幫助。但現存的方法中,並沒有一個模型可以同時預測引用目的,同時說明為何模型會認為這項引用包含此引用目的。我們相信引用的目的和對應的上下文,對於研究論文之間關係有所幫助,因此在此篇碩士論文,我們提出一個結合Transformer encoder,並利用GGCN把指代連結圖的訊息一併納入的方法。實驗結果顯示我們的方法除了可以有效預測引用句的引用目的,也可輸出對判斷各個目的有幫助的上下文。 | zh_TW |
| dc.description.abstract | In a scientific paper, authors usually use the prescribed format to cite the related papers when mentioning the previous works in the text. Citations not only give credit to the authors of the cited papers, but also provide readers the detailed information with a clear search direction. Because citations are often the authors' purposeful selection of the related research, the intention of the references should also be useful information to the public. Although there have been several previous works using the citing sentence as the only clue to analyze and predict the author's purpose of citing the corresponding paper, the recent work shows that it is necessary to judge the citation intent with the information from both the citing sentence and the related contexts. However, none of the existing methods predict the citation intent and offer the evidence simultaneously when the model deems that the citation contains the citing intent. We believe that the identifying the purpose of citation and the corresponding context is useful for investigating the relationship between papers. In this work, we propose a deep learning method that combines a Transformer encoder and uses Gated Graph Convolution Network (GGCN) to incorporate information implied in the coreference graph. Experimental results show that our method not only can effectively predict the citation intent of the citing sentence but also recognize the contexts that help judge each intent. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:09:11Z (GMT). No. of bitstreams: 1 U0001-2204202222524100.pdf: 6424191 bytes, checksum: c2f5dfd6e0f79c7ed1fd1de7cc0a4324 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i Acknowledgements ii 摘要 iii Abstract iv Contents vi List of Figures x List of Tables xi Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 2 1.3 Thesis Organization 5 Chapter 2 Related Work 7 2.1 Citation Intent Classification 7 2.1.1 Task Definition 7 2.1.2 ACL-ARC 8 2.1.3 SciCite 9 2.1.4 MultiCite 9 2.2 Implicit Citation Sentence Extraction 11 2.2.1 Task Definition 12 2.2.2 Supervised Learning 12 2.2.3 Unsupervised Learning 13 2.2.4 Implicit Citation Context Extraction using Coreference Resolution 14 Chapter 3 Methodology 15 3.1 Task Definition 15 3.2 Overview 15 3.3 Graph Edge Construction 18 3.3.2 SciIE 19 3.3.3 Other Types of Edges 20 3.4 Graph Node Initialization 21 3.4.1 Transformer Encoder 22 3.4.1.1 Longformer 22 3.4.1.2 SciBERT 23 3.4.2 Other Details 24 3.4.2.1 Encoder Hidden Layer Output 24 3.4.2.2 Postprocessing 24 3.5 Graph Convolution and Prediction 25 3.5.1 Sentence-level Positional Encoding and Citance ID Encoding 25 3.5.2 Gated Graph Neural Network (GGCN) 27 3.5.2.1 Feature Processing 27 3.5.2.2 Graph Updating 28 3.5.2.3 GGCN Layer 29 3.5.3 Classifier 29 Chapter 4 Experiments 31 4.1 Baseline Models 31 4.1.1 Longformer Context Baseline (LC) 32 4.1.2 Different Input Size Baseline (DIS) 32 4.2 Implementation Details 33 4.2.1 Optimization 33 4.2.2 Loss Function 34 4.3 Splitting and Window Size 35 4.4 Evaluation Metrics 37 4.4.1 Metrics Inspired by Classification Tasks 37 4.4.2 Metrics Inspired by Generation Tasks 38 4.5 Results 39 4.5.1 Citation Intent Classification 39 4.5.2 Citation Context Extraction 41 Chapter 5 Discussion 45 5.1 Additional Information from the Encoder 45 5.2 Ablation Study 46 5.3 Combining SciBERT and Longformer as the Encoder 49 5.4 Case Study 50 Chapter 6 Conclusion & Future Work 54 6.1 Conclusion 54 6.2 Future Work 54 References 56 | |
| dc.language.iso | zh-TW | |
| dc.subject | 指向圖 | zh_TW |
| dc.subject | 引用目的 | zh_TW |
| dc.subject | 與引用意圖相關之上下文 | zh_TW |
| dc.subject | Coreference Graph | en |
| dc.subject | Citation Intent | en |
| dc.subject | Citation Context of Intent | en |
| dc.title | 利用指向圖資訊分類多標籤引用目的之研究 | zh_TW |
| dc.title | Multi-label Citation Intent Classification with Coreference Graph | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭卜壬(Pu-Jen Cheng),蘇家玉(Chia-Yu Su),黃瀚萱(Hen-Hsen Huang) | |
| dc.subject.keyword | 引用目的,與引用意圖相關之上下文,指向圖, | zh_TW |
| dc.subject.keyword | Citation Intent,Citation Context of Intent,Coreference Graph, | en |
| dc.relation.page | 62 | |
| dc.identifier.doi | 10.6342/NTU202200717 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-05-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2027-05-19 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2204202222524100.pdf 未授權公開取用 | 6.27 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
