Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84332
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉志文(Chih-Wen Liu)
dc.contributor.authorYu-Hang Hsiehen
dc.contributor.author謝宇航zh_TW
dc.date.accessioned2023-03-19T22:08:45Z-
dc.date.copyright2022-07-05
dc.date.issued2022
dc.date.submitted2022-05-29
dc.identifier.citationReferences [1] F. Gabriel, F. D. Belie, X. Neyt and P. Lataire, 'High-Frequency Issues Using Rotating Voltage Injections Intended For Position Self-Sensing,' IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5447-5457, Dec. 2013. [2] Z. Chen, J. Gao, F. Wang, Z. Ma, Z. Zhang and R. Kennel, 'Sensorless Control for SPMSM With Concentrated Windings Using Multisignal Injection Method,' IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6624-6634, Dec. 2014. [3] X. Luo, Q. Tang, A. Shen and Q. Zhang, 'PMSM Sensorless Control by Injecting HF Pulsating Carrier Signal Into Estimated Fixed-Frequency Rotating Reference Frame,' IEEE Trans. Ind. Electron., vol. 63, no. 4, pp. 2294-2303, April 2016. [4] P. L. Xu and Z. Q. Zhu, 'Novel Carrier Signal Injection Method Using Zero-Sequence Voltage for Sensorless Control of PMSM Drives,' IEEE Trans. Ind. Electron., vol. 63, no. 4, pp. 2053-2061, April 2016. [5] J. I. Ha, K. Ide, T. Sawa and S. K. Sul, 'Sensorless rotor position estimation of an interior permanent-magnet motor from initial states,' IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 761-767, May-June 2003. [6] Y. D. Yoon, S. K. Sul, S. Morimoto and K. Ide, 'High-Bandwidth Sensorless Algorithm for AC Machines Based on Square-Wave-Type Voltage Injection,' IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1361-1370, May-June 2011. [7] R. Masaki, S. Kaneko, M. Hombu, T. Sawada and S. Yoshihara, 'Development of a position sensorless control system on an electric vehicle driven by a permanent magnet synchronous motor,' Proceedings of the Power Conversion Conference Osaka, 2002, pp. 571-576 vol.2. [8] N. C. Park, S. H. King, ' Simple sensorless algorithm for interior permanent magnet synchronous motors based on high-frequency voltage injection method,' IET Electr. Power Appl., 2014, Vol. 8, Iss. 2, pp. 68–75. [9] R. Ni, D. Xu, F. Blaabjerg, K. Lu, G. Wang and G. Zhang, 'Square-Wave Voltage Injection Algorithm for PMSM Position Sensorless Control With High Robustness to Voltage Errors,' IEEE Trans. Power Electron., vol. 32, no. 7, pp. 5425-5437, July 2017. [10] Y. Hua, M. Sumner, G. Asher, Q. Gao, K. Saleh 'Improved sensorless control of a permanent magnet machine using fundamental pulse width modulation excitation,' IET Electr. Power Appl., 2011, Vol. 5, Iss. 4, pp. 359–370. [11] M. X. Bui, D. Guan, D. Xiao and M. F. Rahman, 'A Modified Sensorless Control Scheme for Interior Permanent Magnet Synchronous Motor Over Zero to Rated Speed Range Using Current Derivative Measurements,' IEEE Trans. Ind. Electron., vol. 66, no. 1, pp. 102-113, Jan. 2019. [12] J. Liu, G. Yang and P. Yan, 'Rotor Position Estimation for PMSM Based on Sliding Mode Observer,' International Conference on Mechatronics and Automation, 2007, pp. 3684-3689. [13] D. Liang, J. Li, R. Qu and W. Kong, 'Adaptive Second-Order Sliding-Mode Observer for PMSM Sensorless Control Considering VSI Nonlinearity,' IEEE Trans. Power Electron., vol. 33, no. 10, pp. 8994-9004, Oct. 2018. [14] Y. Zhao, W. Qiao and L. Wu, 'An Adaptive Quasi-Sliding-Mode Rotor Position Observer-Based Sensorless Control for Interior Permanent Magnet Synchronous Machines,' IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5618-5629, Dec. 2013. [15] D. Liang, J. Li and R. Qu, 'Sensorless Control of Permanent Magnet Synchronous Machine Based on Second-Order Sliding-Mode Observer With Online Resistance Estimation,' IEEE Trans. Ind. Appl., vol. 53, no. 4, pp. 3672-3682, July-Aug. 2017. [16] A. Qiu, Bin Wu and H. Kojori, 'Sensorless control of permanent magnet synchronous motor using extended Kalman filter,' Canadian Conference on Electrical and Computer Engineering, 2004, pp. 1557-1562 Vol.3. [17] F. Jiang et al., 'Robustness Improvement of Model-Based Sensorless SPMSM Drivers Based on an Adaptive Extended State Observer and an Enhanced Quadrature PLL,' IEEE Trans. Power Electron., vol. 36, no. 4, pp. 4802-4814, April 2021. [18] A. Apte, V. A. Joshi, H. Mehta and R. Walambe, 'Disturbance-Observer-Based Sensorless Control of PMSM Using Integral State Feedback Controller,' IEEE Trans. Power Electron., vol. 35, no. 6, pp. 6082-6090, June 2020. [19] Z. Chen, M. Tomita, S. Ichikawa, S. Doki and S. Okuma, 'Sensorless control of interior permanent magnet synchronous motor by estimation of an extended electromotive force,' Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy, 2000, pp. 1814-1819 vol.3. [20] H. Kim, M. C. Harke and R. D. Lorenz, 'Sensorless control of interior permanent magnet machine drives with zero-phase-lag position estimation,' Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting, 2002, pp. 1661-1667 vol.3. [21] S. C. Yang and Y. L. Hsu, 'Full Speed Region Sensorless Drive of Permanent-Magnet Machine Combining Saliency-Based and Back-EMF-Based Drive,' IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 1092-1101, Feb. 2017. [22] M. X. Bui, M. F. Rahman and D. Xiao, 'A Hybrid Sensorless Controller of an Interior Permanent Magnet Synchronous Machine Using Current Derivative Measurements and a Sliding Mode Observer,' IEEE Trans. Ind. Appl., vol. 56, no. 1, pp. 314-324, Jan.-Feb. 2020. [23] G. Qiao, M. Wang, F. Liu, Y. Liu and P. Zheng, 'Analysis of Novel Hybrid-PM Variable-Flux PMSMs With Series–Parallel Magnetic Circuits,' IEEE Trans. Magnet., vol. 57, no. 2, pp. 1-6, Feb. 2021. [24] M. M. Swamy, T. Kume, A. Maemura and S. Morimoto, 'Extended high-speed operation via electronic winding-change method for AC motors,' IEEE Trans. Ind. Appl., vol. 42, no. 3, pp. 742-752, May-June 2006. [25] S. H. Im and B. G. Gu, 'A Snubberless Solid-State Tap Changer for Permanent Magnet Synchronous Motors,' IEEE Trans. Power Electron., vol. 35, no. 11, pp. 12143-12152, Nov. 2020. [26] B. Tian, Z. Zhang, J. Wei and T. A. Lipo, 'Investigation of dual-inverter-fed drives for permanent magnet synchronous motor with winding switching,' IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, 2014, pp. 709-714. [27] W. Hu, C. Ruan, H. Nian and D. Sun, 'Zero-Sequence Current Suppression Strategy With Common-Mode Voltage Control for Open-End Winding PMSM Drives With Common DC Bus,' IEEE Trans. Ind. Electron., vol. 68, no. 6, pp. 4691-4702, June 2021. [28] Q. An, J. Liu, Z. Peng, L. Sun and L. Sun, 'Dual-Space Vector Control of Open-End Winding Permanent Magnet Synchronous Motor Drive Fed by Dual Inverter,' IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8329-8342, Dec. 2016. [29] P. Sandulescu, F. Meinguet, X. Kestelyn, E. Semail and A. Bruyère, 'Control Strategies for Open-End Winding Drives Operating in the Flux-Weakening Region,' IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4829-4842, Sept. 2014. [30] J. C. Tan, Permanent magnet brushless DC motor technology, China: China Machine Press, ch. 12, pp. 258, Mar. 2011. [31] S. Kim, Y. D. Yoon, S. K. Sul and K. Ide, 'Maximum Torque per Ampere (MTPA) Control of an IPM Machine Based on Signal Injection Considering Inductance Saturation,' IEEE Trans. Power Electron., vol. 28, no. 1, pp. 488-497, Jan. 2013. [32] C. Lai, G. Feng, K. Mukherjee, J. Tjong and N. C. Kar, 'Maximum Torque Per Ampere Control for IPMSM Using Gradient Descent Algorithm Based on Measured Speed Harmonics,' IEEE Trans. on Ind. Informat., vol. 14, no. 4, pp. 1424-1435, April 2018. [33] T. Sun, J. Wang and X. Chen, 'Maximum Torque Per Ampere (MTPA) Control for Interior Permanent Magnet Synchronous Machine Drives Based on Virtual Signal Injection,' IEEE Trans. Power Electron., vol. 30, no. 9, pp. 5036-5045, Sept. 2015. [34] K. Li and Y. Wang, 'Maximum Torque per Ampere (MTPA) Control for IPMSM Drives Using Signal Injection and an MTPA Control Law,' IEEE Trans. Ind. Informat., vol. 15, no. 10, pp. 5588-5598, Oct. 2019. [35] J. M. Kim and S. K. Sul, 'Speed control of interior permanent magnet synchronous motor drive for the flux weakening operation,' IEEE Trans. Ind. Appl., vol. 33, no. 1, pp. 43-48, Jan.-Feb. 1997. [36] J. Wang, J. Wu, C. Gan and Q. Sun, 'Comparative study of flux-weakening control methods for PMSM drive over wide speed range,' 19th International Conference on Electrical Machines and Systems, 2016, pp. 1-6. [37] W. Wang, J. Zhang and M. Cheng, 'Line-Modulation-Based Flux-Weakening Control for Permanent-Magnet Synchronous Machines,' IET Power Electron., vol. 11, Jan. 2018. [38] K. D. Hoang and H. K. A. Aorith, 'Online Control of IPMSM Drives for Traction Applications Considering Machine Parameter and Inverter Nonlinearities,' IEEE Trans. Transportation Electrification, vol. 1, no. 4, pp. 312-325, Dec. 2015. [39] L. Sepulchre, M. Fadel, M. Pietrzak-David and G. Porte, 'MTPV Flux-Weakening Strategy for PMSM High Speed Drive,' IEEE Trans. Ind. Appl., vol. 54, no. 6, pp. 6081-6089, Nov.-Dec. 2018. [40] S. A. Atashin, H. A. Zarchi and G. R. A. Markadeh, 'Maximum Torque of IPMSM in Wide Speed Range Based on Current Angle Approach,' 11th Power Electronics, Drive Systems, and Technologies Conference, 2020, pp. 1-5. [41] H. Liu, Z. Q. Zhu, E. Mohamed, Y. Fu and X. Qi, 'Flux-Weakening Control of Nonsalient Pole PMSM Having Large Winding Inductance, Accounting for Resistive Voltage Drop and Inverter Nonlinearities,' IEEE Trans. Power Electron., vol. 27, no. 2, pp. 942-952, Feb. 2012. [42] J. C. Hwang (2019). Electromechanical Systems. Taipei: Department of Electrical Engineering of National Taiwan University of Science and Technology. [43] E. Thomas and K. Electronics (Feb. 2017). Implementation of space vector modulation for electric motor systems. Retrieved from https://www.eettaiwan.com/20170220TA31-Implementation-of-space-vector-modulation-for-electric-motor-systems/ [44] D. Wilson (July, 2015). Teaching Your PI Controller to Behave. Retrieved from https://e2e.ti.com/blogs_/b/industrial_strength/posts/teaching-your-pi-controller-to-behave-part-i [45] Y. Wu, Y. Cui, R. Ni, S. Nie and X. Wu, 'Initial Position Detection of Permanent Magnet Synchronous Machines with Self-Tuning Extended State Observer,' 10th International Conference on Power Electronics and ECCE Asia, 2019, pp. 2523-2528. [46] K. W. Lee and J. I. Ha, “Evaluation of Back-EMF Estimators for Sensorless Control of Permanent Magnet Synchronous Motors,” Journal of Power Electronics, vol. 12, no. 4, pp. 604–614, Jul. 2012. [47] X. Wu et al., 'Initial Rotor Position Detection for Sensorless Interior PMSM With Square-Wave Voltage Injection,' IEEE Trans. Magnet., vol. 53, no. 11, pp. 1-4, Nov. 2017. [48] M. Berto, L. Alberti, V. Manzolini and S. Bolognani, 'Computation of Self-Sensing Capabilities of Synchronous Machines for Rotating High Frequency Voltage Injection Sensorless Control,' IEEE Trans. Ind. Electron., vol. 69, no. 4, pp. 3324-3333, April 2022. [49] Y. C. Kwon, J. Lee and S. K. Sul, 'Recent Advances in Sensorless Drive of Interior Permanent-Magnet Motor Based on Pulsating Signal Injection,' IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 6, pp. 6577-6588, Dec. 2021.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84332-
dc.description.abstract本論文提出適用於內藏式永磁同步馬達之新穎混合型全速無感測器控制系統與雙繞組電機闊速驅動系統。 混合型全速無感測器控制系統結合了高頻電壓注入與狀態觀測器。高頻電壓注入基於馬達凸極特性,從響應之特定頻率的電流訊號中得到轉子角度的資訊,而狀態觀測器基於馬達數學模型,於中、高轉速時觀測具有高訊噪比之反電動勢,進而估測轉子角度。為了使無感測器系統控制範圍延伸,於兩演算法估測範圍重疊之區域內,使用線性權重分配的方式達成了無縫的演算法轉移,本文中另也檢視影響無感測器系統估測角度之因素,如 軸電樞電抗與馬達模型參數偏差等,最後,於實驗中驗證所提之架構可有效於任意操作點下估測轉子角度與轉速。 於雙繞組電機闊速驅動系統方面,提出基於雙繞組內藏式永磁同步電機結合新穎控制策略之驅動系統,藉由可切換的繞組結構於高速時省略部份繞組,排除反電動勢造成的驅動電壓限制,控制策略方面設計最佳繞組切換條件,以同時達成最大轉矩與最佳效率輸出。本文使用了準確的實驗結果實踐每安培最大轉矩控制,並提出適用於繞組切換之新穎弱磁控制架構,快速響應切換暫態的電流命令,本文中另也提出基於 軸電壓之每伏特最大轉矩控制追蹤條件,以縮減電流命令達成近似的每伏特最大轉矩控制效果,綜合上述之控制策略,可實踐與電機參數較不敏感之控制,並有效擴展電機控速範圍。實驗中,證明了雙繞組電機驅動系統擁有闊速的驅動能力,相較於傳統單繞組電機提升7.36%的控速範圍,且於繞組切換過程中無任何不連續的現象,此外,可同時達到最大轉矩與最佳效率輸出。zh_TW
dc.description.abstractThis dissertation proposes a novel hybrid full-speed sensorless control architecture and wide-speed dual-winding drive system for use in interior permanent magnet synchronous machines. The hybrid full-speed sensorless control architecture combines high-frequency injection with a state observer. The injection of high-frequency voltage is based on the magnetic saliency of the motor in obtaining a current response at frequencies that provide information related to rotor position. The design of the state observer is based on a mathematical model used to estimate the external back-electromotive force by which to derive the rotor position using the high signal-to-noise ratio in medium- and high-speed regions. Note that two algorithms are used to extend the range of control, and linear weight distribution is used to model the transition from one algorithm to the other, wherein the overlap region undergoes a seamless process of conversion. This article also examines the factors affecting the accuracy of estimates derived using sensorless systems, such as the -axis armature reactance and parameter deviation. In experiments, the proposed scheme proves highly effective in observing the position and speed of the rotor, regardless of the operating points. From the wide-speed drive system perspective, the proposed system is based on a dual-winding interior permanent magnet synchronous machine with a novel control strategy. The switchable winding architecture bypasses partial windings to eliminate the voltage limit caused by back-electromotive forces at high speeds. The proposed control strategy designs the optimal switching condition to maximum output torque and motor efficiency simultaneously. We use accurate experimental results to maximize torque per ampere in conjunction with a novel flux-weakening control scheme suited for dual-winding machines. We also develop a novel architecture based on constant q-axis voltage to achieve the approximate purpose of maximum torque per voltage control by reducing the current magnitude. The proposed control strategy extends the control region to enable less-motor-parameter-sensitive control across the entire range of operating speeds. In experiments, the drive system demonstrates control performance over a wide range and without any discontinuities at the winding conversion interval. The proposed scheme maximizes the motor efficiency while expanding the controllable region by 7.36%, compared with conventional single winding machines.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:08:45Z (GMT). No. of bitstreams: 1
U0001-2905202220404000.pdf: 8011889 bytes, checksum: 4626130d3f9956662bb0b4e51d6fa40d (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsContents 中文摘要 i Abstract iii Contents v List of Figures ix List of Tables xvi Chapter 1 Introduction 1 1.1 Motivations 1 1.2 Literature Survey 3 1.3 Contributions 11 1.4 Dissertation organizations 14 Chapter 2 Summary of Permanent Magnet Synchronous Machine Drives 15 2.1 Introduction to permanent magnet synchronous machines 15 2.2 Coordinates transformation 17 2.2.1 Stationary coordinates 19 2.2.2 Synchronous coordinates 20 2.3 Modeling of permanent magnet synchronous machines 21 2.3.1 Mathematical modeling in three-phase frame 21 2.3.2 Mathematical modeling in synchronous rotate frame 24 2.4 Space vector pulse width modulation 27 2.5 Field-oriented control 34 Chapter 3 Hybrid Full-Speed Sensorless Control System 40 3.1 Modeling used for sensorless control 40 3.2 Hybrid full-speed sensorless control strategies 45 3.2.1 High-frequency square-wave voltage injection 46 3.2.2 State observer 48 3.2.3 Analysis of state observer 50 3.2.4 Linear weight distribution 54 3.3 Experiment results 57 3.3.1 Absolute position estimation and startup from standstill 59 3.3.2 High-frequency voltage injection at low-speed 63 3.3.3 Conversion and state observer operations at medium- and high-speeds 66 Chapter 4 Wide-Speed Dual-winding Drive System 70 4.1 Introduction of dual-winding PMSM 70 4.2 Conventional control strategies 77 4.3 Proposed control strategies 84 4.4 Experiment results 95 4.4.1 Effect of dual-winding drive system 97 4.4.2 Effect of wide-speed control strategies 103 4.4.3 Analysis of efficiency 113 Chapter 5 Conclusions and Future Works 118 5.1 Conclusions 118 5.2 Future works and studies 120 References 122 Personal Profile 131
dc.language.isozh-TW
dc.subject內藏式永磁同步馬達zh_TW
dc.subject每安培最大轉矩控制zh_TW
dc.subject高頻電壓注入zh_TW
dc.subject弱磁控制zh_TW
dc.subject雙繞組zh_TW
dc.subject每伏特最大轉矩控制zh_TW
dc.subject無感測器控制zh_TW
dc.subject狀態觀測器zh_TW
dc.subjectflux-weakening controlen
dc.subjectstate observeren
dc.subjectsensorless controlen
dc.subjectmaximum torque per voltage controlen
dc.subjectmaximum torque per ampere controlen
dc.subjectinterior permanent magnet synchronous machinesen
dc.subjecthigh-frequency injectionen
dc.subjectDual-windingen
dc.title內藏式永磁同步馬達之混合型全速無感測器控制系統設計與雙繞組電機闊速驅動系統開發zh_TW
dc.titleHybrid Full-Speed Sensorless Control System Design and Wide-speed Dual-winding Drive System Development for Interior Permanent Magnet Synchronous Machinesen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree博士
dc.contributor.oralexamcommittee林法正(Faa-Jeng Lin),賴炎生(Yen-Shin Lai),李坤彥(Kung-Yen Lee),江昭皚(Joe-Air Jiang),楊俊哲(Jun-Zhe Yang)
dc.subject.keyword雙繞組,弱磁控制,高頻電壓注入,內藏式永磁同步馬達,每安培最大轉矩控制,每伏特最大轉矩控制,無感測器控制,狀態觀測器,zh_TW
dc.subject.keywordDual-winding,flux-weakening control,high-frequency injection,interior permanent magnet synchronous machines,maximum torque per ampere control,maximum torque per voltage control,sensorless control,state observer,en
dc.relation.page132
dc.identifier.doi10.6342/NTU202200825
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-05-31
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
dc.date.embargo-lift2022-07-05-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
U0001-2905202220404000.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
7.82 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved