Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84310
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡豐羽(Feng-Yu Tsai)
dc.contributor.authorChen-Luo Chengen
dc.contributor.author鄭承珞zh_TW
dc.date.accessioned2023-03-19T22:08:17Z-
dc.date.copyright2022-07-05
dc.date.issued2022
dc.date.submitted2022-06-08
dc.identifier.citation(1) Huang, S. H.; Guan, C. K.; Lee, P. H.; Huang, H. C.; Li, C. F.; Huang, Y. C.; Su, W. F. Toward All Slot‐Die Fabricated High Efficiency Large Area Perovskite Solar Cell Using Rapid Near Infrared Heating in Ambient Air. Advanced Energy Materials 2020, 10 (37), 2001567. (2) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051. (3) Jeong, J.; Kim, M.; Seo, J.; Lu, H.; Ahlawat, P.; Mishra, A.; Yang, Y.; Hope, M. A.; Eickemeyer, F. T.; Kim, M. Pseudo-halide anion engineering for α-FAPbI 3 perovskite solar cells. Nature 2021, 592 (7854), 381-385. (4) Eames, C.; Frost, J. M.; Barnes, P. R.; O'Regan, B. C.; Walsh, A.; Islam, M. S. Ionic transport in hybrid lead iodide perovskite solar cells. Nat Commun 2015, 6 (1), 7497, DOI: 10.1038/ncomms8497. (5) Zhou, D.; Zhou, T.; Tian, Y.; Zhu, X.; Tu, Y. Perovskite-based solar cells: materials, methods, and future perspectives. Journal of Nanomaterials 2018, 2018. (6) Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy & Environmental Science 2013, 6 (6), 1739-1743, DOI: 10.1039/c3ee40810h. (7) Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J. Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials 2014, 24 (1), 151-157, DOI: 10.1002/adfm.201302090. (8) Kim, H.-S.; Im, S. H.; Park, N.-G. Organolead halide perovskite: new horizons in solar cell research. The Journal of Physical Chemistry C 2014, 118 (11), 5615-5625. (9) Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H. Hysteresis-less inverted CH 3 NH 3 PbI 3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy & Environmental Science 2015, 8 (5), 1602-1608. (10) Liu, Z.; Krückemeier, L.; Krogmeier, B.; Klingebiel, B.; Márquez, J. A.; Levcenko, S.; Öz, S.; Mathur, S.; Rau, U.; Unold, T. Open-circuit voltages exceeding 1.26 V in planar methylammonium lead iodide perovskite solar cells. ACS energy letters 2018, 4 (1), 110-117. (11) Chu, Q. Q.; Ding, B.; Peng, J.; Shen, H.; Li, X.; Liu, Y.; Li, C. X.; Li, C. J.; Yang, G. J.; White, T. P.; Catchpole, K. R. Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via hole transport engineering. Journal of Materials Science & Technology 2019, 35 (6), 987-993, DOI: 10.1016/j.jmst.2018.12.025. (12) Xie, F. X.; Chen, C. C.; Wu, Y. Z.; Li, X.; Cai, M. L.; Liu, X.; Yang, X. D.; Han, L. Y. Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells. Energy & Environmental Science 2017, 10 (9), 1942-1949, DOI: 10.1039/c7ee01675a. (13) Rao, H. X.; Ye, S. Y.; Sun, W. H.; Yan, W. B.; Li, Y. L.; Peng, H. T.; Liu, Z. W.; Bian, Z. Q.; Li, Y. F.; Huang, C. H. A 19.0% efficiency achieved in CuOx-based inverted CH3NH3PbI3-xClx solar cells by an effective Cl doping method. Nano Energy 2016, 27, 51-57, DOI: 10.1016/j.nanoen.2016.06.044. (14) Urieta-Mora, J.; Garcia-Benito, I.; Molina-Ontoria, A.; Martin, N. Hole transporting materials for perovskite solar cells: a chemical approach. Chem Soc Rev 2018, 47 (23), 8541-8571, DOI: 10.1039/c8cs00262b. (15) Zhou, P.; Bu, T. L.; Shi, S. W.; Li, L. F.; Zhang, Y. L.; Ku, Z. L.; Peng, Y.; Zhong, J.; Cheng, Y. B.; Huang, F. Z. Efficient and stable mixed perovskite solar cells using P3HT as a hole transporting layer. Journal of Materials Chemistry C 2018, 6 (21), 5733-5737, DOI: 10.1039/c8tc01345d. (16) Zheng, X.; Hou, Y.; Bao, C.; Yin, J.; Yuan, F.; Huang, Z.; Song, K.; Liu, J.; Troughton, J.; Gasparini, N. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nature Energy 2020, 5 (2), 131-140. (17) Rombach, F. M.; Haque, S. A.; Macdonald, T. J. Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy & Environmental Science 2021, 14 (10), 5161-5190, DOI: 10.1039/d1ee02095a. (18) Hu, L.; Peng, J.; Wang, W.; Xia, Z.; Yuan, J.; Lu, J.; Huang, X.; Ma, W.; Song, H.; Chen, W. Sequential deposition of CH3NH3PbI3 on planar NiO film for efficient planar perovskite solar cells. Acs Photonics 2014, 1 (7), 547-553. (19) Zhu, Z.; Bai, Y.; Zhang, T.; Liu, Z.; Long, X.; Wei, Z.; Wang, Z.; Zhang, L.; Wang, J.; Yan, F. High‐performance hole‐extraction layer of sol–gel‐processed NiO nanocrystals for inverted planar perovskite solar cells. Angewandte Chemie 2014, 126 (46), 12779-12783. (20) Han, W.; Ren, G.; Liu, J.; Li, Z.; Bao, H.; Liu, C.; Guo, W. Recent progress of inverted perovskite solar cells with a modified PEDOT: PSS hole transport layer. ACS Applied Materials & Interfaces 2020, 12 (44), 49297-49322. (21) Skotheim, T. A.; Reynolds, J. Conjugated polymers: processing and applications, CRC press: 2006. (22) Fan, X.; Nie, W.; Tsai, H.; Wang, N.; Huang, H.; Cheng, Y.; Wen, R.; Ma, L.; Yan, F.; Xia, Y. PEDOT:PSS for Flexible and Stretchable Electronics: Modifications, Strategies, and Applications. Adv Sci (Weinh) 2019, 6 (19), 1900813, DOI: 10.1002/advs.201900813. (23) Cruz-Cruz, I.; Reyes-Reyes, M.; Aguilar-Frutis, M. A.; Rodriguez, A.; López-Sandoval, R. Study of the effect of DMSO concentration on the thickness of the PSS insulating barrier in PEDOT: PSS thin films. Synthetic Metals 2010, 160 (13-14), 1501-1506. (24) Wei, Q.; Mukaida, M.; Naitoh, Y.; Ishida, T. Morphological change and mobility enhancement in PEDOT:PSS by adding co-solvents. Adv Mater 2013, 25 (20), 2831-6, DOI: 10.1002/adma.201205158. (25) Thomas, J. P.; Zhao, L. Y.; McGillivray, D.; Leung, K. T. High-efficiency hybrid solar cells by nanostructural modification in PEDOT:PSS with co-solvent addition. Journal of Materials Chemistry A 2014, 2 (7), 2383-2389, DOI: 10.1039/c3ta14590e. (26) Wang, Q.; Chueh, C. C.; Eslamian, M.; Jen, A. K. Modulation of PEDOT:PSS pH for Efficient Inverted Perovskite Solar Cells with Reduced Potential Loss and Enhanced Stability. ACS Appl Mater Interfaces 2016, 8 (46), 32068-32076, DOI: 10.1021/acsami.6b11757. (27) Sun, K.; Zhang, S. P.; Li, P. C.; Xia, Y. J.; Zhang, X.; Du, D. H.; Isikgor, F. H.; Ouyang, J. Y. Review on application of PEDOTs and PEDOT: PSS in energy conversion and storage devices. J Mater Sci-Mater El 2015, 26 (7), 4438-4462, DOI: 10.1007/s10854-015-2895-5. (28) Cameron, J.; Skabara, P. J. The damaging effects of the acidity in PEDOT:PSS on semiconductor device performance and solutions based on non-acidic alternatives. Materials Horizons 2020, 7 (7), 1759-1772, DOI: 10.1039/c9mh01978b. (29) Stolterfoht, M.; Caprioglio, P.; Wolff, C. M.; Marquez, J. A.; Nordmann, J.; Zhang, S. S.; Rothhardt, D.; Hormann, U.; Amir, Y.; Redinger, A.; Kegelmann, L.; Zu, F. S.; Albrecht, S.; Koch, N.; Kirchartz, T.; Saliba, M.; Unold, T.; Neher, D. The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy & Environmental Science 2019, 12 (9), 2778-2788, DOI: 10.1039/c9ee02020a. (30) Alemu, D.; Wei, H. Y.; Ho, K. C.; Chu, C. W. Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy & Environmental Science 2012, 5 (11), 9662-9671, DOI: 10.1039/c2ee22595f. (31) Xia, Y. J.; Sun, K.; Chang, J. J.; Ouyang, J. Y. Effects of organic inorganic hybrid perovskite materials on the electronic properties and morphology of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and the photovoltaic performance of planar perovskite solar cells. Journal of Materials Chemistry A 2015, 3 (31), 15897-15904, DOI: 10.1039/c5ta03456f. (32) Liu, H. M.; Li, X. Y.; Zhang, L. P.; Hong, Q. M.; Tang, J. X.; Zhang, A. P.; Ma, C. Q. Influence of the surface treatment of PEDOT:PSS layer with high boiling point solvent on the performance of inverted planar perovskite solar cells. Organic Electronics 2017, 47, 220-227, DOI: 10.1016/j.orgel.2017.05.025. (33) Reza, K. M.; Gurung, A.; Bahrami, B.; Mabrouk, S.; Elbohy, H.; Pathak, R.; Chen, K.; Chowdhury, A. H.; Rahman, M. T.; Letourneau, S. Tailored PEDOT: PSS hole transport layer for higher performance in perovskite solar cells: Enhancement of electrical and optical properties with improved morphology. Journal of Energy Chemistry 2020, 44, 41-50. (34) Hu, L.; Li, M.; Yang, K.; Xiong, Z.; Yang, B.; Wang, M.; Tang, X.; Zang, Z.; Liu, X.; Li, B. PEDOT: PSS monolayers to enhance the hole extraction and stability of perovskite solar cells. Journal of Materials Chemistry A 2018, 6 (34), 16583-16589. (35) Niu, Z.; Zheng, E.; Dong, H.; Tosado, G. A.; Yu, Q. Manipulation of PEDOT: PSS with Polar and Nonpolar Solvent Post-treatment for Efficient Inverted Perovskite Solar Cells. ACS Applied Energy Materials 2020, 3 (10), 9656-9666. (36) Im, S. G.; Gleason, K. K.; Olivetti, E. A. Doping level and work function control in oxidative chemical vapor deposited poly (3,4-ethylenedioxythiophene). Applied Physics Letters 2007, 90 (15), 152112, DOI: Artn 152112 10.1063/1.2721376. (37) Gharahcheshmeh, M. H.; Tavakoli, M. M.; Gleason, E. F.; Robinson, M. T.; Kong, J.; Gleason, K. K. Tuning, optimization, and perovskite solar cell device integration of ultrathin poly(3,4-ethylene dioxythiophene) films via a single-step all-dry process. Science Advances 2019, 5 (11), eaay0414, DOI: ARTN eaay0414 10.1126/sciadv.aay0414. (38) Howden, R. M.; McVay, E. D.; Gleason, K. K. oCVD poly (3, 4-ethylenedioxythiophene) conductivity and lifetime enhancement via acid rinse dopant exchange. Journal of Materials Chemistry A 2013, 1 (4), 1334-1340. (39) Raiford, J. A.; Oyakhire, S. T.; Bent, S. F. Applications of atomic layer deposition and chemical vapor deposition for perovskite solar cells. Energy & Environmental Science 2020, 13 (7), 1997-2023, DOI: 10.1039/d0ee00385a. (40) Johnson, R. W.; Hultqvist, A.; Bent, S. F. A brief review of atomic layer deposition: from fundamentals to applications. Materials Today 2014, 17 (5), 236-246, DOI: 10.1016/j.mattod.2014.04.026. (41) Shih, B.-W. Thermoelectricity and gas permeability of metal oxide and metal oxide/polymer superlattice composites by atomic layer deposition. Ph.D. National Taiwan University, 2019. (42) Zhao, Y.; Sun, X. Molecular layer deposition for energy conversion and storage. ACS Energy Letters 2018, 3 (4), 899-914. (43) Shao, H.-I.; Umemoto, S.; Kikutani, T.; Okui, N. Layer-by-layer polycondensation of nylon 66 by alternating vapour deposition polymerization. Polymer 1997, 38 (2), 459-462. (44) Atanasov, S. E.; Losego, M. D.; Gong, B.; Sachet, E.; Maria, J. P.; Williams, P. S.; Parsons, G. N. Highly Conductive and Conformal Poly(3,4-ethylenedioxythiophene) (PEDOT) Thin Films via Oxidative Molecular Layer Deposition. Chemistry of Materials 2014, 26 (11), 3471-3478, DOI: 10.1021/cm500825b. (45) Volk, A. A.; Kim, J.-S.; Jamir, J.; Dickey, E. C.; Parsons, G. N. Oxidative molecular layer deposition of PEDOT using volatile antimony (V) chloride oxidant. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2021, 39 (3), 032413. (46) Kaviani, S.; Mohammadi Ghaleni, M.; Tavakoli, E.; Nejati, S. Electroactive and conformal coatings of oxidative chemical vapor deposition polymers for oxygen electroreduction. ACS Applied Polymer Materials 2019, 1 (3), 552-560. (47) Kim, D. H.; Atanasov, S. E.; Lemaire, P.; Lee, K.; Parsons, G. N. Platinum-Free Cathode for Dye-Sensitized Solar Cells Using Poly(3,4-ethylenedioxythiophene) (PEDOT) Formed via Oxidative Molecular Layer Deposition. Acs Applied Materials & Interfaces 2015, 7 (7), 3866-3870, DOI: 10.1021/am5084418. (48) Niang, K. M.; Bai, G.; Robertson, J. Influence of precursor dose and residence time on the growth rate and uniformity of vanadium dioxide thin films by atomic layer deposition. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2020, 38 (4), 042401. (49) Muneshwar, T.; Cadien, K. AxBAxB… pulsed atomic layer deposition: Numerical growth model and experiments. Journal of Applied Physics 2016, 119 (8), 085306. (50) Wei, Y.-Y. Molecular layer deposition of poly(3,4-ethylenedioxythiophene) with SbCl5 as an oxidant. Master National Taiwan University, 2019. (51) Kim, D.; Zozoulenko, I. Why Is Pristine PEDOT Oxidized to 33%? A Density Functional Theory Study of Oxidative Polymerization Mechanism. The Journal of Physical Chemistry B 2019, 123 (24), 5160-5167. (52) Yemata, T. A.; Zheng, Y.; Kyaw, A. K. K.; Wang, X. Z.; Song, J.; Chin, W. S.; Xu, J. W. Modulation of the doping level of PEDOT:PSS film by treatment with hydrazine to improve the Seebeck coefficient. Rsc Advances 2020, 10 (3), 1786-1792, DOI: 10.1039/c9ra07648d. (53) Zozoulenko, I.; Singh, A.; Singh, S. K.; Gueskine, V.; Crispin, X.; Berggren, M. Polarons, bipolarons, and absorption spectroscopy of PEDOT. ACS Applied Polymer Materials 2018, 1 (1), 83-94. (54) Lee, H.; Kim, Y.; Cho, H.; Lee, J. G.; Kim, J. H. Improvement of PEDOT:PSS linearity via controlled addition process. Rsc Advances 2019, 9 (30), 17318-17324, DOI: 10.1039/c9ra03040a. (55) Park, T. J.; Kim, J. H.; Jang, J. H.; Kim, U. K.; Lee, S. Y.; Lee, J.; Jung, H. S.; Hwang, C. S. Improved growth and electrical properties of atomic-layer-deposited metal-oxide film by discrete feeding method of metal precursor. Chemistry of Materials 2011, 23 (7), 1654-1658. (56) Werner, F. Hall measurements on low-mobility thin films. Journal of Applied Physics 2017, 122 (13), 135306, DOI: Artn 135306 10.1063/1.4990470. (57) Li, C.; Duan, L.; Li, H.; Qiu, Y. Universal trap effect in carrier transport of disordered organic semiconductors: transition from shallow trapping to deep trapping. The Journal of Physical Chemistry C 2014, 118 (20), 10651-10660. (58) Evangelos, V.; Sotirios, S.; Nikolaos, P.; Konstantinos, E.; Stelios A, C. Conductivity degradation study of PEDOT: PSS films under heat treatment in helium and atmospheric air. Open Journal of Organic Polymer Materials 2012, 2012. (59) Greenwood, N. N. E., Alan. Chemistry of Elements. 1984; p 571. (60) Vaagensmith, B.; Reza, K. M.; Hasan, M. D. N.; Elbohy, H.; Adhikari, N.; Dubey, A.; Kantack, N.; Gaml, E.; Qiao, Q. Q. Environmentally Friendly Plasma-Treated PEDOT:PSS as Electrodes for ITO-Free Perovskite Solar Cells. Acs Applied Materials & Interfaces 2017, 9 (41), 35861-35870, DOI: 10.1021/acsami.7b10987. (61) Kim, H.; Hong, J.; Kim, C.; Shin, E. Y.; Lee, M.; Noh, Y. Y.; Park, B.; Hwang, I. Impact of Hydroxyl Groups Boosting Heterogeneous Nucleation on Perovskite Grains and Photovoltaic Performances. J Phys Chem C 2018, 122 (29), 16630-16638, DOI: 10.1021/acs.jpcc.8b05374.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84310-
dc.description.abstract本研究探討了使用(3,4-乙烯基二氧噻吩)和五氯化銻作為前驅物,藉由分子層沉積技術生長聚(3,4-乙烯基二氧噻吩)薄膜,在不同製程條件下和後處理過後的成長特徵、性質和製造出來的鈣鈦礦太陽能元件效率,在前驅物通入後加入一段暴露時間可以大大加速聚(3,4-乙烯基二氧噻吩)成核以及提升反應物濃度,使得每週期成長速率達6倍,但同時過量吸附的反應物也會阻礙新進聚(3,4-乙烯基二氧噻吩)分子的規整排列,並導致低結晶度和低導電度,另一方面,使用分段通入(3,4-乙烯基二氧噻吩)的方法可以同時增加成核速率、結晶度和導電度,這是因為此製程在增加反應物濃度的同時也能更徹底的移除殘餘物,也降低了聚(3,4-乙烯基二氧噻吩)薄膜內的摻雜程度,和標準製程相比,聚(3,4-乙烯基二氧噻吩)藉由分段通入(3,4-乙烯基二氧噻吩)的方式生長可以增加導電度和降低載子濃度,顯示出該製程的使用能夠使載子遷移率增加。在作為電洞傳輸層的效率表現上,而且使用分段通入(3,4-乙烯基二氧噻吩)製程生長的聚 (3,4-乙烯基二氧噻吩)做成的太陽能元件具有比起其他製程還要優異的光電轉換效率,然而,分子層沉積反應所殘留下來的含氯物質使得元件效率表現不佳。溶液及逆滲透水清洗、大氣下退火、真空下退火及真空下退火加上氧電漿等後處理被用來移除殘留的含氯物質,最後發現室溫下的真空退火加上氧電漿處理能夠得到最佳的平均光電效率11.0% (冠軍12.0%),後處理之後效率的改善可以歸功於溫和的室溫真空退火條件能夠在去除含氯物質的同時較好地保留薄膜的載子傳輸性質,隨後的氧電漿處理則改善了表面沾濕並增進鈣鈦礦層的結晶度。zh_TW
dc.description.abstractThis study investigated the growth characteristics, properties, and hole-transporting performance in photovoltaic devices of poly(3,4-ethylenedioxythiophene) (PEDOT) thin films fabricated by molecular layer deposition (MLD)—using ethylenedioxythiophene (EDOT) and antimony pentachloride (SbCl5) as precursors—with varying processing and post-treatment conditions. Addition of precursor exposure steps to the MLD cycle significantly sped up nucleation of the PEDOT film and increased the growth per cycle (GPC) by ~6 folds owing to its increased reactant concentrations at the substrate surface, but the excessively adsorbed reactants also hindered ordering of the nascent PEDOT molecules, resulting in lower crystallinity and electrical conductivity. Use of discreet feeding in the MLD cycle, on the other hand, enhanced nucleation and GPC while also improved crystallinity and electrical conductivity of the PEDOT film, thanks to its combination of increased reactant concentrations and more thorough removal of excessive reactants, the latter of which led to reduced doping levels in the PEDOT film. The increased electrical conductivity and reduced doping levels observed with the discreet-feeding-deposited PEDOT film indicated increased hole mobility of the film. In terms of performance as a hole-transporting layer (HTL) in perovskite solar cell (PSC) devices, the discreet-feeding-deposited PEDOT film was superior to those deposited with the other processing conditions, but its resultant device performance was still dismal due to its residual chlorine content left by the MLD chemistry. Several post-treatment methods for reducing the residual chlorine content including rinsing with aqueous acid solutions or water, annealing in atmospheric pressure, annealing in vacuum with or without oxygen plasma, were tested, of which room-temperature annealing in vacuum coupled with a brief finish with oxygen plasma yielded the best PSC device performance: average power conversion efficiency of 11.0% (12.0% champion). The improvement in PSC device performance was attributed to better-preserved film quality from the mild room-temperature vacuum annealing condition, and to increased affinity of the PEDOT surface to the perovskite active layer upon the oxygen plasma treatment, which enhanced the crystallinity of the resultant perovskite layer.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:08:17Z (GMT). No. of bitstreams: 1
U0001-0706202216572000.pdf: 7882238 bytes, checksum: 8d5615fcd871f1160945a8afe4ed9b6f (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 ii 摘要 iii Abstract iv Table of Contents VI List of Figures X List of Tables XIII Chapter 1 Introduction 1 1.1 Overview of perovskite solar cell 1 1.2 Hole transporting layer (HTL) for PSCs 4 1.2.1 Organic HTL 5 1.2.2 Inorganic HTL 6 1.3 PEDOT-based hole transporting layer 7 1.3.1 Solution-cast PEDOT:PSS 8 1.3.2 Post-treatments of PEDOT:PSS 9 1.3.3 Vapor phase deposited PEDOT 11 1.3.4 Post-treatments of oCVD PEDOT 13 1.4 Molecular layer deposition of PEDOT 14 1.4.1 Introduction to molecular layer deposition (MLD) 14 1.4.2 Molecular layer deposition (MLD) of polymer films 18 1.4.3 Post-treatment of MLD PEDOT 21 1.5 Objective statement 22 Chapter 2 Experimental method 23 2.1 Equipment and experimental details 23 2.1.1 MLD deposition system 23 2.1.2 Fabrication of MLD PEDOT thin film 23 2.1.3 Fabrication of Perovskite solar cell 27 2.1.4 DI water and acid rinse for post treatment 29 2.1.5 Annealing and oxygen plasma for post-treatment 30 2.2 Photovoltaic properties and characteristics analysis 31 2.2.1 Measurements of electrical conductivity 31 2.2.2 Measurement of thickness (Alpha-step) 31 2.2.3 Quartz crystal microbalance (QCM) 32 2.2.4 Perovskite device characterization 32 2.2.5 X-ray photoelectron spectroscopy (XPS) 33 2.2.6 UV-Visible absorption spectrum 33 2.2.7 Ultraviolet Photoemission spectroscopy (UPS) 34 Chapter 3 Results and discussion 35 3.1 Effects of MLD processing conditions on the growth characteristics and properties of PEDOT films 35 3.1.1 Growth characteristics 35 3.1.2 Electrical Conductivity 41 3.1.3 Doping level 43 3.1.4 Elemental analysis 45 3.1.5 Morphology 48 3.1.6 Discussion 50 3.2 MLD PEDOT as HTL for PSCs 51 3.2.1 Effects of precursor feeding method 51 3.2.2 Effects of oxidant dose 54 3.3 Effects of post-treatments on MLD PEDOT films 56 3.3.1 Rinsing 56 3.3.2 Annealing in atmospheric pressure 58 3.3.3 Annealing in vacuum 60 3.3.4 Oxygen plasma 65 3.3.5 Annealing in vacuum with an oxygen plasma finish 68 Chapter 4 Conclusion 74 References 76 Appendix 89
dc.language.isoen
dc.subject4-乙烯基二氧噻吩)zh_TW
dc.subject分子層沉積技術zh_TW
dc.subject鈣鈦礦太陽能元件zh_TW
dc.subject電洞傳輸層zh_TW
dc.subject五氯化銻zh_TW
dc.subject聚(3zh_TW
dc.subjectantimony pentachloride (SbCl5)en
dc.subjectperovskite solar cell (PSC)en
dc.subjectmolecular layer deposition (MLD)en
dc.subjecthole transporting layer (HTL)en
dc.subject4-ethylenedioxythiophene) (PEDOT)en
dc.subjectpoly(3en
dc.title"以分子層沉積之聚(3,4-乙烯基二氧噻吩)作為鈣鈦礦電池內電洞傳輸層研究"zh_TW
dc.titleMolecular layer deposition of poly(3,4-ethylenedioxythiophene) thin films for use as hole transporting layer of perovskite solar cellsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee羅世強(Shyh-Chyang Luo),佳莉亞(Yulia Galagan)
dc.subject.keyword聚(3,4-乙烯基二氧噻吩),五氯化銻,分子層沉積技術,鈣鈦礦太陽能元件,電洞傳輸層,zh_TW
dc.subject.keywordpoly(3,4-ethylenedioxythiophene) (PEDOT),antimony pentachloride (SbCl5),molecular layer deposition (MLD),perovskite solar cell (PSC),hole transporting layer (HTL),en
dc.relation.page94
dc.identifier.doi10.6342/NTU202200886
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-06-09
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
dc.date.embargo-lift2022-07-05-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
U0001-0706202216572000.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
7.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved