請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84290完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張瑞峰 | zh_TW |
| dc.contributor.advisor | Ruey-Feng Chang | en |
| dc.contributor.author | 戴勤 | zh_TW |
| dc.contributor.author | Chin Dai | en |
| dc.date.accessioned | 2023-03-19T22:07:52Z | - |
| dc.date.available | 2024-07-25 | - |
| dc.date.copyright | 2022-07-27 | - |
| dc.date.issued | 2021 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Sung, H., et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 2021. 71(3): p. 209-249.
2. Wilczek, B., et al., Adding 3D automated breast ultrasound to mammography screening in women with heterogeneously and extremely dense breasts: report from a hospital-based, high-volume, single-center breast cancer screening program. European journal of radiology, 2016. 85(9): p. 1554-1563. 3. Lee, C.-Y. et al., Fully automated lesion segmentation and visualization in automated whole breast ultrasound (ABUS) images. Quantitative imaging in medicine and surgery, 2020. 10(3): p. 568. 4. Ontario, H.Q., Ultrasound as an adjunct to mammography for breast cancer screening: a health technology assessment. Ontario health technology assessment series, 2016. 16(15): p. 1. 5. Klimonda, Z., et al., Breast-lesions characterization using quantitative ultrasound features of peritumoral tissue. Scientific reports, 2019. 9(1): p. 1-9. 6. Gómez-Flores, W. and J. Hernández-López, Assessment of the invariance and discriminant power of morphological features under geometric transformations for breast tumor classification. Computer methods and programs in biomedicine, 2020. 185: p. 105173. 7. Huang, Q., F. Zhang, and X. Li, Machine learning in ultrasound computer-aided diagnostic systems: a survey. BioMed research international, 2018. 2018. 8. Anwar, S.M., et al., Medical image analysis using convolutional neural networks: a review. Journal of medical systems, 2018. 42(11): p. 1-13. 9. Cheng, J.-Z., et al., Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Scientific reports, 2016. 6(1): p. 1-13. 10. Tsochatzidis, L., et al., Integrating segmentation information into CNN for breast cancer diagnosis of mammographic masses. Computer Methods and Programs in Biomedicine, 2021. 200: p. 105913. 11. Byra, M., et al., Breast mass segmentation in ultrasound with selective kernel U-Net convolutional neural network. Biomedical Signal Processing and Control, 2020. 61: p. 102027. 12. Zhou, Z., et al., Unet++: A nested u-net architecture for medical image segmentation, in Deep learning in medical image analysis and multimodal learning for clinical decision support. 2018, Springer. p. 3-11. 13. He, K., et al. Deep residual learning for image recognition. In the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. 14. Zhang, H., et al., Resnest: Split-attention networks. arXiv preprint arXiv:2004.08955, 2020. 15. Zuo, W., et al., Automatic classification of lung nodule candidates based on a novel 3D convolution network and knowledge transferred from a 2D network. Medical physics, 2019. 46(12): p. 5499-5513. 16. Huang, Z., et al., DC-SPP-YOLO: Dense connection and spatial pyramid pooling based YOLO for object detection. Information Sciences, 2020. 522: p. 241-258. 17. Chiang, T.-C., et al., Tumor detection in automated breast ultrasound using 3-D CNN and prioritized candidate aggregation. IEEE transactions on medical imaging, 2018. 38(1): p. 240-249. 18. He, L., et al., The connected-component labeling problem: A review of state-of-the-art algorithms. Pattern Recognition, 2017. 70: p. 25-43. 19. Hearn, D. and M.P. Baker, Computer graphics. Vol. 2. 1994: Prentice-Hall Englewood Cliffs, NJ. 20. Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Ijcai. 1995. Montreal, Canada. 21. McNemar, Q., Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika, 1947. 12(2): p. 153-157. 22. Strickland, R.N., Image-processing techniques for tumor detection. 2002: CRC Press. 23. Hu, J., L. Shen, and G. Sun. Squeeze-and-excitation networks. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2018. 24. Li, X., et al. Selective kernel networks. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019. 25. Szegedy, C., et al. Rethinking the inception architecture for computer vision. In the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. 26. Xie, S., et al. Aggregated residual transformations for deep neural networks. In the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. 27. Msonda, P., S.A. Uymaz, and S.S. Karaağaç, Spatial Pyramid Pooling in Deep Convolutional Networks for Automatic Tuberculosis Diagnosis. Traitement du Signal, 2020. 37(6). 28. Xiang, H., et al., 3-D Res-CapsNet convolutional neural network on automated breast ultrasound tumor diagnosis. European Journal of Radiology, 2021. 138: p. 109608. 29. Sabour, S., N. Frosst, and G.E. Hinton, Dynamic routing between capsules. arXiv preprint arXiv:1710.09829, 2017. 30. Tezcan, S., et al., The role of combined diffusion-weighted imaging and dynamic contrast-enhanced MRI for differentiating malignant from benign breast lesions presenting washout curve. Canadian Association of Radiologists Journal, 2021. 72(3): p. 460-469. 31. Li, X., X. Hu, and J. Yang, Spatial group-wise enhance: Improving semantic feature learning in convolutional networks. arXiv preprint arXiv:1905.09646, 2019. 32. Woo, S., et al. Cbam: Convolutional block attention module. In Proceedings of the European conference on computer vision (ECCV). 2018. 33. Zhang, Y., et al., Brain Tumors Classification for MR images based on Attention Guided Deep Learning Model. arXiv preprint arXiv:2104.02331, 2021. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84290 | - |
| dc.description.abstract | 乳癌是女性最常見的疾病之一,透過早期的檢查與治療,可以有效降低死亡率。而全自動乳房超音波系統(Automated Breast Ultrasound System, ABUS)是目前應用最廣泛的乳癌檢查方法之一。然而,當醫生透過超音波影像進行診斷時,容易受到腫瘤的形狀和紋理影響,導致影像判讀有極大的差異。為了解決這個問題,電腦輔助診斷系統(Computer-Aided Diagnosis system)被開發出來以輔助醫生做診斷。近年來,基於卷積神經網路(Convolutional Neural Network, CNN)的電腦輔助診斷系統成為趨勢,並成功地應用於醫學影像。因此,本研究提出一個基於神經網路的電腦輔助診斷系統協助乳癌診斷。
我們的電腦輔助診斷系統包含影像前處理、三維腫瘤切割網路和三維腫瘤分類網路。在影像前處理中,首先會先由經驗豐富的醫生提取腫瘤區域,而後會將腫瘤區域影像固定至相同大小,並利用直方圖均衡化處理影像。然後將調整後的影像送到分割模型中得到相對應的腫瘤遮罩。最後將調整大小後的原始影像、均衡化處理的影像以及腫瘤遮罩輸入到我們的分類模型中,以判斷腫瘤為良性或惡性。實驗結果顯示,我們所提出的電腦輔助診斷系統準確率為89.9%、靈敏性為88.9%、特異性為90.4%。結果表明,此系統有良好的性能且可做為臨床醫生決策參考。 | zh_TW |
| dc.description.abstract | Breast cancer is one of the most common diseases in women. Through the early examination and treatment, the mortality could be effectively reduced. The automated breast ultrasound (ABUS) was one of the most widely-used examinations for breast cancer. However, physicians were susceptible to the shape and texture of tumors and led to large variations in image interpretation. The computer-aided diagnosis (CADx) system was developed to offer a second opinion to deal with this problem. In recent years, applying convolution neural network (CNN) on CADx system became a tendency and achieved great success on medical images. Hence, a CNN-based CADx system was proposed for breast tumor diagnosis in this study.
Our CADx system was a 3-D model and consisted of data preprocessing, 3-D tumor segmentation, and 3-D tumor classification. In the data preprocessing, the volume of interest (VOI) was firstly extracted by the experienced physicians, and the tumor VOI would be resized and conducted histogram equalization. After that, the resized VOI would be sent into the segmentation model to obtain the corresponding tumor mask. Lastly, the resized VOI, the equalized VOI, and the tumor mask were fed into our classification model, 3-D MASP-ResNeSt, to determine the tumor was benign or malignant. In our experiment, the proposed CADx system achieved 89.6% accuracy, 88.9% sensitivity, and 90.4% specificity. The results indicated the proposed CADx system had a good performance and might be a second opinion for physicians to make the decision. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:07:52Z (GMT). No. of bitstreams: 1 U0001-1406202211254600.pdf: 1276504 bytes, checksum: b2615545539e27bc59ee06dcdf00ea21 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員審定書 I
致謝 II 摘要 III Abstract IV Table of Contents VI List of Figures VIII List of Tables X Chapter 1. Introduction 1 Chapter 2. Materials 5 Chapter 3. Methods 7 3.1. Data Preprocessing 8 3.2. Tumor Segmentation 9 3.2.1. 3-D U-Net++ 10 3.2.2. Post-processing 12 3.3. Tumor Classification 13 3.3.1. 3-D MASP-ResNeSt 14 3.3.2. 3-D ResNeSt 16 3.3.3. 3-D Multi-group Aggregation (MA) ResNeSt Block 19 3.3.4. 3-D Spatial Pyramid Pooling (SPP) Block 23 Chapter 4. Experiment Results & Discussion 24 4.1. Experiment Environment 24 4.2. Experiment Results 24 4.2.1. Model Comparison 25 4.2.2. Ablation Study 33 4.3. Discussion 35 Chapter 5. Conclusion 40 Reference 42 | - |
| dc.language.iso | en | - |
| dc.subject | 卷積神經網路 | zh_TW |
| dc.subject | 自動乳房超音波 | zh_TW |
| dc.subject | 電腦輔助診斷系統 | zh_TW |
| dc.subject | 乳癌 | zh_TW |
| dc.subject | Convolution neural network (CNN) | en |
| dc.subject | Breast cancer | en |
| dc.subject | Automated breast ultrasound (ABUS) | en |
| dc.subject | Computer-aided diagnosis (CADx) | en |
| dc.title | 應用多群聚合及空間金字塔池化之3-D ResNeSt於自動乳房超音波電腦輔助腫瘤診斷系統 | zh_TW |
| dc.title | Computer-aided Tumor Diagnosis Using 3-D ResNeSt with Multi-group Aggregation and Spatial Pyramid Pooling for Automated Breast Ultrasound | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 羅崇銘;陳啟禎 | zh_TW |
| dc.contributor.oralexamcommittee | Chung-Ming Lo;Chii-Jen Chen | en |
| dc.subject.keyword | 乳癌,自動乳房超音波,電腦輔助診斷系統,卷積神經網路, | zh_TW |
| dc.subject.keyword | Breast cancer,Automated breast ultrasound (ABUS),Computer-aided diagnosis (CADx),Convolution neural network (CNN), | en |
| dc.relation.page | 44 | - |
| dc.identifier.doi | 10.6342/NTU202200941 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2022-06-20 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
| dc.date.embargo-lift | 2024-06-16 | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
