請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84283
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭生興(Sang-Heng Kok) | |
dc.contributor.author | Ying-Hong Chen | en |
dc.contributor.author | 陳盈宏 | zh_TW |
dc.date.accessioned | 2023-03-19T22:07:44Z | - |
dc.date.copyright | 2022-06-23 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-06-17 | |
dc.identifier.citation | 1.Chen MX, Zhong YJ, Dong QQ, Wong HM, Wen YF. Global, regional, and national burden of severe periodontitis, 1990-2019: An analysis of the Global Burden of Disease Study 2019. J Clin Periodontol 2021;48(9):1165-1188. 2.Yu HC, Su NY, Huang JY, Lee SS, Chang YC. Trends in the prevalence of periodontitis in Taiwan from 1997 to 2013: A nationwide population-based retrospective study. Medicine (Baltimore) 2017;96(45):e8585. 3.Wang TF, Fang CH, Hsiao KJ, Chou C. Effect of a comprehensive plan for periodontal disease care on oral health-related quality of life in patients with periodontal disease in Taiwan. Medicine (Baltimore) 2018;97(5):e9749. 4.Chu KY. Access to denture restoration services under removable dentures subsidy program for adults aged 65 years and older in Taiwan-an interpretive approach. BMC Health Serv Res 2022;22(1):90. 5.Listl S, Galloway J, Mossey PA, Marcenes W. Global Economic Impact of Dental Diseases. J Dent Res 2015;94(10):1355-1361. 6.Dahiya P, Kamal R, Gupta R. Obesity, periodontal and general health: Relationship and management. Indian J Endocrinol Metab 2012;16(1):88-93. 7.Chauncey HH, Muench ME, Kapur KK, Wayler AH. The effect of the loss of teeth on diet and nutrition. Int Dent J 1984;34(2):98-104. 8.Sundararajan S, Muthukumar S, Rao SR. Relationship between depression and chronic periodontitis. J Indian Soc Periodontol 2015;19(3):294-296. 9.Chen CK, Wu YT, Chang YC. Association between chronic periodontitis and the risk of Alzheimer's disease: a retrospective, population-based, matched-cohort study. Alzheimers Res Ther 2017;9(1):56. 10.Teles R, Wang CY. Mechanisms involved in the association between periodontal diseases and cardiovascular disease. Oral Dis 2011;17(5):450-461. 11.Lakschevitz F, Aboodi G, Tenenbaum H, Glogauer M. Diabetes and periodontal diseases: interplay and links. Curr Diabetes Rev 2011;7(6):433-439. 12.Hill K. The demography of menopause. Maturitas 1996;23(2):113-127. 13.Lin YY, Huang CS.Aging in Taiwan: Building a Society for Active Aging and Aging in Place. Gerontologist 2016;56(2):176-183. 14.Stanczyk FZ, Clarke NJ. Measurement of estradiol--challenges ahead. J Clin Endocrinol Metab 2014;99(1):56-58. 15.Gold EB, Colvin A, Avis N, Bromberger J, Greendale GA, Powell L, et al. Longitudinal analysis of the association between vasomotor symptoms and race/ethnicity across the menopausal transition: study of women's health across the nation. Am J Public Health 2006;96(7):1226-1235. 16.WoodsNF, Mitchell ES. Symptoms during the perimenopause: prevalence, severity, trajectory, and significance in women's lives. Am J Med 2005;118 Suppl 12B:14-24. 17.National Institutes of H. National Institutes of Health State-of-the-Science Conference statement: management of menopause-related symptoms. Ann Intern Med 2005;142(12 Pt 1):1003-1013. 18.Dennerstein L, Dudley EC, Hopper JL, Guthrie JR, Burger HG. A prospective population-based study of menopausal symptoms. Obstet Gynecol 2000;96(3):351-358. 19.Randolph JF, Jr., Sowers M, Bondarenko I, Gold EB, Greendale GA, Bromberger JT, et al. The relationship of longitudinal change in reproductive hormones and vasomotor symptoms during the menopausal transition. J Clin Endocrinol Metab 2005;90(11):6106-6112. 20.Soules MR, Sherman S, Parrott E, Rebar R, Santoro N, Utian W, et al. Executive summary: Stages of Reproductive Aging Workshop (STRAW). Fertil Steril 2001;76(5):874-878. 21.Kronenberg F. Hot flashes: epidemiology and physiology. Ann N Y Acad Sci 1990;592:52-86; discussion 123-133. 22.Roman-Blas JA, Castaneda S, Largo R, Herrero-Beaumont G. Osteoarthritis associated with estrogen deficiency. Arthritis Res Ther 2009;11(5):241. 23.Ma HL, Blanchet TJ, Peluso D, Hopkins B, Morris EA, Glasson SS. Osteoarthritis severity is sex dependent in a surgical mouse model. Osteoarthritis Cartilage 2007;15(6):695-700. 24.Hoegh-Andersen P, Tanko LB, Andersen TL, Lundberg CV, Mo JA, Heegaard AM, et al. Ovariectomized rats as a model of postmenopausal osteoarthritis: validation and application. Arthritis Res Ther 2004;6(2):R169-180. 25.Islander U, Jochems C, Lagerquist MK, Forsblad-d'Elia H, Carlsten H. Estrogens in rheumatoid arthritis; the immune system and bone. Mol Cell Endocrinol 2011;335(1):14-29. 26.Camilleri G, Borg M, Brincat S, Schembri-Wismayer P, Brincat M, Calleja-Agius J. The role of cytokines in cardiovascular disease in menopause. Climacteric 2012;15(6):524-530. 27.Leimola-Virtanen R, Salo T, Toikkanen S, Pulkkinen J, Syrjanen S. Expression of estrogen receptor (ER) in oral mucosa and salivary glands. Maturitas 2000;36(2):131-137. 28.Wardrop RW, Hailes J, Burger H, Reade PC. Oral discomfort at menopause. Oral Surg Oral Med Oral Pathol 1989;67(5):535-540. 29.Friedlander AH. The physiology, medical management and oral implications of menopause. J Am Dent Assoc 2002;133(1):73-81. 30.Shah B, Tombeau Cost K, Fuller A, Birken CS, Anderson LN. Sex and gender differences in childhood obesity: contributing to the research agenda. BMJ Nutr Prev Health 2020;3(2):387-390. 31.Ndumele CE, Matsushita K, Lazo M, Bello N, Blumenthal RS, Gerstenblith G, et al. Obesity and Subtypes of Incident Cardiovascular Disease. J Am Heart Assoc 2016;5(8). 32.Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW, Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003;112(12):1796-1808. 33.Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003;112(12):1821-1830. 34.Iyengar NM, Kochhar A, Morris PG, Morris LG, Zhou XK, Ghossein RA, et al. Impact of obesity on the survival of patients with early-stage squamous cell carcinoma of the oral tongue. Cancer 2014;120(7):983-991. 35.Iyengar NM, Ghossein RA, Morris LG, Zhou XK, Kochhar A, Morris PG, et al. White adipose tissue inflammation and cancer-specific survival in patients with squamous cell carcinoma of the oral tongue. Cancer 2016;122(24):3794-3802. 36.Karnell LH, Sperry SM, Anderson CM, Pagedar NA. Influence of body composition on survival in patients with head and neck cancer. Head Neck 2016;38 Suppl 1:E261-267. 37.Zou L, Liu TR, Yang AK. Metabolic syndrome is associated with better prognosis in patients withtongue squamous cell carcinoma. Chin J Cancer 2015;34(4):184-188. 38.Arthur AE, Peterson KE, Rozek LS, Taylor JM, Light E, Chepeha DB, et al. Pretreatment dietary patterns, weight status, and head and neck squamous cell carcinoma prognosis. Am J Clin Nutr 2013;97(2):360-368. 39.Park SM, Lim MK, Shin SA, Yun YH. Impact of prediagnosis smoking, alcohol, obesity, and insulin resistance on survival in male cancer patients: National Health Insurance Corporation Study. J Clin Oncol 2006;24(31):5017-5024. 40.Modeer T, Blomberg C, Wondimu B, Lindberg TY, Marcus C. Association between obesity and periodontal risk indicators in adolescents. Int J Pediatr Obes 2011;6(2-2):e264-270. 41.Modeer T, Blomberg CC, Wondimu B, Julihn A, Marcus C. Association between obesity, flow rate of whole saliva, and dental caries in adolescents. Obesity (Silver Spring) 2010;18(12):2367-2373. 42.Lundin M, Yucel-Lindberg T, Dahllof G, Marcus C, Modeer T. Correlation between TNFalpha in gingival crevicular fluid and body mass index in obese subjects. Acta Odontol Scand 2004;62(5):273-277. 43.Mast N, Lin JB, Pikuleva IA. Marketed Drugs Can Inhibit Cytochrome P450 27A1, a Potential New Target for Breast Cancer Adjuvant Therapy. Mol Pharmacol 2015;88(3):428-436. 44.Nelson ER. The significance of cholesterol and its metabolite, 27-hydroxycholesterol in breast cancer. Mol Cell Endocrinol 2018;466:73-80. 45.Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S, Howe MK, et al. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 2013;342(6162):1094-1098. 46.Baek AE, Yu YA, He S, Wardell SE, Chang CY, Kwon S, et al. The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells. Nat Commun 2017;8(1):864. 47.Wu Q, Ishikawa T, Sirianni R, Tang H, McDonald JG, Yuhanna IS, et al. 27-Hydroxycholesterol promotes cell-autonomous, ER-positive breast cancer growth. Cell Rep 2013;5(3):637-645. 48.Ma L, Wang L, Nelson AT, Han C, He S, Henn MA, et al. 27-Hydroxycholesterol acts on myeloid immune cells to induce T cell dysfunction, promoting breast cancer progression. Cancer Lett 2020;493:266-283. 49.Umetani M, Ghosh P, Ishikawa T, Umetani J, Ahmed M, Mineo C, et al. The cholesterol metabolite 27-hydroxycholesterol promotes atherosclerosis via proinflammatory processes mediated by estrogen receptor alpha. Cell Metab 2014;20(1):172-182. 50.Gupta RA, DuBois RN, Wallace MC. New avenues for the prevention of colorectal cancer: targeting cyclo-oxygenase-2 activity. Best Pract Res Clin Gastroenterol 2002;16(6):945-956. 51.Williams CS, DuBois RN. Prostaglandin endoperoxide synthase: why two isoforms? Am J Physiol 1996;270(3 Pt 1):G393-400. 52.Konturek PC, Kania J, Burnat G, Hahn EG, Konturek SJ. Prostaglandins asmediators of COX-2 derived carcinogenesis in gastrointestinal tract. J Physiol Pharmacol 2005;56 Suppl 5:57-73. 53.Morton RS, Dongari-Bagtzoglou AI. Cyclooxygenase-2 is upregulated in inflamed gingival tissues. J Periodontol 2001;72(4):461-469. 54.Gu L,Tseng SC, Rollins BJ. Monocyte chemoattractant protein-1. Chem Immunol 1999;72:7-29. 55.Cushing SD, Berliner JA, Valente AJ, Territo MC, Navab M, Parhami F, et al. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in humanendothelial cells and smooth muscle cells. Proc Natl Acad Sci U S A 1990;87(13):5134-5138. 56.Standiford TJ, Kunkel SL, Phan SH, Rollins BJ, Strieter RM. Alveolar macrophage-derived cytokines induce monocyte chemoattractant protein-1 expression from human pulmonary type II-like epithelial cells. J Biol Chem 1991;266(15):9912-9918. 57.Brown Z, Strieter RM, Neild GH, Thompson RC, Kunkel SL, Westwick J. IL-1 receptor antagonist inhibits monocyte chemotactic peptide 1 generation by human mesangial cells. Kidney Int 1992;42(1):95-101. 58.Barna BP, Pettay J, Barnett GH, Zhou P, Iwasaki K, Estes ML. Regulation of monocyte chemoattractant protein-1 expression in adult human non-neoplastic astrocytes is sensitive to tumor necrosis factor (TNF) or antibody to the 55-kDa TNF receptor. J Neuroimmunol 1994;50(1):101-107. 59.Loberg RD, Day LL, Harwood J, Ying C, St John LN, Giles R, et al. CCL2 is a potent regulator of prostate cancer cell migration and proliferation. Neoplasia 2006;8(7):578-586. 60.Owen JL, Torroella-Kouri M, Handel-Fernandez ME, Iragavarapu-Charyulu V. GM-CSF up-regulates the expression of CCL2 by T lymphocytes in mammary tumor-bearing mice. Int J Mol Med 2007;20(1):129-136. 61.Gschwandtner M, Derler R, Midwood KS. More Than Just Attractive: How CCL2 Influences Myeloid Cell Behavior Beyond Chemotaxis. Front Immunol 2019;10:2759. 62.Lubowicka E, Przylipiak A, Zajkowska M, Piskor BM, Malinowski P, Fiedorowicz W, et al. Plasma Chemokine CCL2 and Its Receptor CCR2 Concentrations as Diagnostic Biomarkers for Breast Cancer Patients. Biomed Res Int 2018;2018:2124390. 63.Tsaur I, Noack A, Makarevic J, Oppermann E, Waaga-Gasser AM, Gasser M, et al. CCL2 Chemokine as a Potential Biomarker for Prostate Cancer: A Pilot Study. Cancer Res Treat 2015;47(2):306-312. 64.Pradeep AR, Daisy H, Hadge P. Gingival crevicular fluid levels of monocyte chemoattractant protein-1 in periodontal health and disease. Arch Oral Biol 2009;54(5):503-509. 65.Graves DT, Cochran D. The contribution of interleukin-1 and tumor necrosisfactor to periodontal tissue destruction. J Periodontol 2003;74(3):391-401. 66.Teles RP, Likhari V, Socransky SS, Haffajee AD. Salivary cytokine levels in subjects with chronic periodontitis and in periodontally healthy individuals: a cross-sectional study. J Periodontal Res 2009;44(3):411-417. 67.Monaco C, Nanchahal J, Taylor P, Feldmann M. Anti-TNF therapy: past, present and future. Int Immunol 2015;27(1):55-62. 68.Lee RA, Eisen DB. Treatment of hidradenitis suppurativa with biologic medications. J AmAcad Dermatol 2015;73(5 Suppl 1):S82-88. 69.Pfeffer K, Matsuyama T, Kundig TM, Wakeham A, Kishihara K, Shahinian A, et al. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 1993;73(3):457-467. 70.Flynn JL, Goldstein MM, Chan J, Triebold KJ, Pfeffer K, Lowenstein CJ, et al. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 1995;2(6):561-572. 71.Takada Y, Sung B, Sethi G, Chaturvedi MM, Aggarwal BB. Evidence that genetic deletion of the TNF receptor p60 or p80 inhibits Fas mediated apoptosis in macrophages. Biochem Pharmacol 2007;74(7):1057-1064. 72.Anderson GL, Limacher M, Assaf AR, Bassford T, Beresford SA, Black H, et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women's Health Initiative randomized controlled trial. JAMA 2004;291(14):1701-1712. 73.Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA 2002;288(3):321-333. 74.Maximov PY, Lee TM, JordanVC. The discovery and development of selective estrogen receptor modulators (SERMs) for clinical practice. Curr Clin Pharmacol 2013;8(2):135-155. 75.Muchmore DB. Raloxifene: A selective estrogen receptor modulator (SERM) with multiple target system effects. Oncologist 2000;5(5):388-392. 76.Marchesini G, Bugianesi E, Forlani G, Cerrelli F, Lenzi M, Manini R, et al. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 2003;37(4):917-923. 77.Neuschwander-Tetri BA. Fatty liver and the metabolic syndrome. Curr Opin Gastroenterol 2007;23(2):193-198. 78.DiStefano JK. NAFLD and NASH in Postmenopausal Women: Implications for Diagnosis and Treatment. Endocrinology 2020;161(10). 79.Matsumura M, Tashiro K, Miura A, Tajima T, Kinoshita I, Kojima E, et al. [A case of non-alcoholic fatty liver disease (NAFLD) aggravated after treatment with raloxifene]. Nihon Shokakibyo Gakkai Zasshi 2011;108(12):2036-2041. 80.Genco RJ, Borgnakke WS. Risk factors for periodontal disease. Periodontol 2000 2013;62(1):59-94. 81.Chang HC, Yang HC, Chang HY, Yeh CJ, Chen HH, Huang KC, et al. Morbid obesity in Taiwan: Prevalence, trends, associated social demographics, and lifestyle factors. PLoS One 2017;12(2):e0169577. 82.Gostynski M, Gutzwiller F, KuulasmaaK, Doring A, Ferrario M, Grafnetter D, et al. Analysis of the relationship between total cholesterol, age, body mass index among males and females in the WHO MONICA Project. Int J Obes Relat Metab Disord 2004;28(8):1082-1090. 83.Hienz SA, Paliwal S, Ivanovski S. Mechanisms of Bone Resorption in Periodontitis. J Immunol Res 2015;2015:615486. 84.Shen TY, Strong C, Yu T. Age at menopause and mortality in Taiwan: A cohort analysis. Maturitas 2020;136:42-48. 85.Hsu CC, Chang HY, Wu IC, Chen CC, Tsai HJ, ChiuYF, et al. Cohort Profile: The Healthy Aging Longitudinal Study in Taiwan (HALST). Int J Epidemiol 2017;46(4):1106-1106j. 86.Krall EA, Garcia RI, Dawson-Hughes B. Increased risk of tooth loss is related to bone loss at the whole body, hip, and spine. Calcif Tissue Int 1996;59(6):433-437. 87.Canpolat S, Tug N, Seyran AD, Kumru S, Yilmaz B. Effects of raloxifene and estradiol on bone turnover parameters in intact and ovariectomized rats. J Physiol Biochem 2010;66(1):23-28. 88.Ettinger B, Black DM, Mitlak BH, Knickerbocker RK, Nickelsen T, Genant HK, et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA 1999;282(7):637-645. 89.Yang NN, Venugopalan M, Hardikar S, Glasebrook A. Identification of an estrogen response element activated by metabolites of 17beta-estradiol and raloxifene. Science 1996;273(5279):1222-1225. 90.Gianni W, RicciA, Gazzaniga P, Brama M, Pietropaolo M, Votano S, et al. Raloxifene modulates interleukin-6 and tumor necrosis factor-alpha synthesis in vivo: results from a pilot clinical study. J Clin Endocrinol Metab 2004;89(12):6097-6099. 91.Han X, Kawai T, Taubman MA. Interference with immune-cell-mediated bone resorption in periodontal disease. Periodontol 2000 2007;45:76-94. 92.Taubman MA, Kawai T. Involvement of T-lymphocytes in periodontal disease and in direct and indirect induction of bone resorption. Crit Rev Oral Biol Med 2001;12(2):125-135. 93.Miyazawa H, Nakajima T, Horimizu M, Okuda K, Sugita N, Yamazaki K, et al. Impact of Local Drug Delivery of Minocycline on the Subgingival Microbiota during Supportive Periodontal Therapy: A Randomized Controlled Pilot Study. Dent J (Basel) 2020;8(4). 94.Thompson DD, Simmons HA, Pirie CM, Ke HZ. FDA Guidelines and animal models for osteoporosis. Bone 1995;17(4 Suppl):125S-133S. 95.Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005;41(6):1313-1321. 96.Hansson M, Ellis E, Hunt MC, Schmitz G, Babiker A. Marked induction of sterol 27-hydroxylase activity and mRNA levels during differentiation of human cultured monocytes into macrophages. Biochim Biophys Acta 2003;1593(2-3):283-289. 97.Schou S, Holmstrup P, Kornman KS. Non-human primates used in studies of periodontal disease pathogenesis: a review of the literature. J Periodontol 1993;64(6):497-508. 98.Duarte PM, Tezolin KR, Figueiredo LC, Feres M, Bastos MF. Microbial profile of ligature-induced periodontitis in rats. Arch Oral Biol 2010;55(2):142-147. 99.Li D, Feng Y, Tang H, Huang L, Tong Z, Hu C, et al. A Simplified and Effective Method for Generation of Experimental Murine Periodontitis Model. Front Bioeng Biotechnol 2020;8:444. 100.Dimitriu T, Bolfa P, Daradics Z, Suciu S, Armencea G, Catoi C, et al. Ligature induced periodontitis causes atherosclerosis in rat descending aorta: an experimental study. Med Pharm Rep 2021;94(1):106-111. 101.Dimitriu T, Bolfa P, Suciu S, Cimpean A, Daradics Z, Catoi C, et al. Grape Seed Extract Reduces the Degree of Atherosclerosis in Ligature-Induced Periodontitis in Rats -An Experimental Study. J Med Life 2020;13(4):580-586. 102.Marques C, Meireles M, Norberto S, Leite J, Freitas J, Pestana D, et al. High-fat diet-induced obesity Rat model: a comparison between Wistar and Sprague-Dawley Rat. Adipocyte 2016;5(1):11-21. 103.Weyant RJ, Newman AB, Kritchevsky SB, Bretz WA, Corby PM, Ren D, et al. Periodontal disease and weight loss in older adults. J Am Geriatr Soc 2004;52(4):547-553. 104.Curtis KS, McCracken K, Espinosa E, Ong J, Buck DJ, Davis RL. Temporal and Site-Specific Changes in Central Neuroimmune Factors During Rapid Weight Gain After Ovariectomy in Rats. Neurochem Res 2018;43(9):1802-1813. 105.Jensen J, Nilas L, Christiansen C. Influence of menopause on serum lipids and lipoproteins. Maturitas 1990;12(4):321-331. 106. Aguirre JI, Akhter MP, Neuville KG, Trcalek CR, Leeper AM, Williams AA, et al. Age-related periodontitis and alveolar bone loss in rice rats. Arch Oral Biol 2017;73:193-205. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84283 | - |
dc.description.abstract | 研究背景 牙周疾病是世界口腔疾病中發生率僅次於蛀牙的疾病,在台灣有高達99.2%的成人有程度不一的牙周病。肥胖讓身體呈現慢性低度的發炎,導致巨噬細胞浸潤,如同牙周病一般。停經會增加骨質疏鬆的發生率,和牙周病都是骨頭代謝疾病。肥胖與停經都已經證實會增加牙周病發病率,但相關的機制卻尚未清楚了解,因此本論文主要研究膽固醇代謝產物27-hydroxycholesterol (27HC)對於停經與肥胖狀態下牙周病的致病機轉,以及骨質疏鬆症藥物Raloxifene對於牙周病治療之潛能。 研究方法 利用J774細胞實驗與大鼠牙周誘導實驗搭配肥胖與停經模擬,探討27HC和Raloxifene對於牙周疾病之影響。 結果 細胞實驗結果顯示膽固醇能夠透過27HC刺激J774細胞內CCL2及COX-2發炎因子的表現,而牙周發炎區域的促發炎因子TNF-α具有加強27HC的生成。給予Raloxifene後,J774細胞內的CCL2及COX-2則會顯著下降。動物實驗方面,高脂飼料或卵巢摘除手術的大鼠,其血清膽固醇會顯著上升,但對血清27HC沒有影響。當兩個因子合併時,肝臟27HC與牙齦27HC的表現有上升的趨勢,並對齒槽骨破壞達顯著上的差異。而給予Raloxifene的大鼠組別,非酒精性脂肪肝病活性指數(NAFLD activity score, NAS)有下降趨勢,對於齒槽骨破壞也會有顯著的降低。 總結 本研究嘗試以27HC來闡述肥胖與停經對牙周病的影響,雖然有相關的趨勢存在,但詳細的機制還需要進一步的研究。而實驗的結果顯示Raloxifene未來具有發展成牙周病治療輔助藥物之潛能。 | zh_TW |
dc.description.abstract | Background Periodontal disease is the second most common oral disease in the world after tooth decay. In Taiwan, up to 99.2% of adults have periodontal disease of varying degrees, and the treatment and subsequent rehabilitation cost occupy a great deal of National Health Insurance and social resources. Obesity presents chronic low-grade inflammation in the body, leading to infiltration of macrophages, as in periodontal disease. Menopause increases the incidence of osteoporosis and is a metabolic disease of the bonelike periodontal disease. Both obesity and menopause have been proven to promote the periodontal disease, but the relevant mechanisms are not yet clearly understood. Therefore, this research mainly focuses on the effect of cholesterol metabolite 27-hydroxycholesterol (27HC) on the progression of periodontal disease in postmenopausal and obese status and the mechanism and therapeutic potential of Raloxifene, a drug for the prevention and treatment of osteoporosis, for periodontal disease. Method Using J774 cell line and periodontitis induction experiment in vivo with obesity and menopause simulation to explore the effect of 27HC and Raloxifene on periodontal disease. Result The results showed that the level of proinflammatory cytokine CCL2 and COX-2can be stimulated by 27HCin J774cell and TNF-α which is common in inflamed periodontal tissue enhanced more 27HC production. Oppositely, Raloxifene dropped CCL2 and COX-2 significantly. In animal model, high fat diet and ovariectomy caused the obvious elevation of serum cholesterol but no change in serum 27HC. Combination of obesity and menopause leaded to the trend of increasing 27HC in liver and gingiva and promoted the alveolar bone destruction. While the group given Raloxifene showed a downward trend for non-alcoholic fatty liver disease activity score(NAS) and alleviated the alveolar bone destruction statically. Conclusion This study attempts to elucidate the effect of obesity and menopause on periodontal disease through 27HC. Although it may be relevant, the mechanism needs more research to uncover. The results show that Raloxifene has the potential to be an adjuvant drug for periodontal disease treatment in the future. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:07:44Z (GMT). No. of bitstreams: 1 U0001-1706202218320900.pdf: 2396296 bytes, checksum: 6b2f16221714bdff6a18f7cd4499962e (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 誌謝 I 中文摘要 II Abstract III 圖目錄 VIII 表目錄 IX 第一章 導論 1 1.1 牙周病 1 1.2 停經與疾病 1 1.3 肥胖與疾病 2 1.4 27-烴基膽固醇(27-hydroxycholesterol, 27 HC) 3 1.5 Cyclooxygenase-2 (COX-2) 3 1.6 Chemokine (C-C motif) ligand 2 (CCL2) 4 1.7 Tumor necrosis factor-alpha (TNF-α) 4 1.8 Raloxifene 5 1.9 非酒精性脂肪肝病(NAFLD) 5 第二章 研究動機與目的 7 2.1 研究動機 7 2.2 研究目的 9 第三章 材料與方法 10 3.1 實驗細胞株 10 3.1.1 J774細胞株 10 3.1.2 膽固醇 10 3.1.3 27-烴基膽固醇(27-hydroxycholesterol, 27HC) 10 3.1.4 TNF-α 10 3.2 蛋白質萃取及定量 11 3.2.1 Total cell lysis 11 3.2.2 Tissue cell lysis 11 3.2.3 蛋白質定量 11 3.3 西方點墨法(Western blot) 12 3.4 酵素結合免疫吸附分析法(ELISA) 13 3.4.1 27-烴基膽固醇(27-hydroxycholesterol, 27HC)濃度檢測 13 3.4.2 CCL2 (Chemokine (C-C motif) ligand 2)濃度檢測 14 3.5 膽固醇濃度檢測 14 3.6 大鼠牙周病誘導實驗 14 3.6.1 Sprague Dawley大鼠 14 3.6.2 動物停經因子模擬 15 3.6.3 動物肥胖因子模擬 15 3.6.4 牙周疾病誘導手術 15 3.6.5 Raloxifene藥物投予 16 3.6.6 組織檢體採集 16 3.7 免疫組織化學染色(Immunohistochemistry) 17 3.8 蘇木精-伊紅染色(Hematoxylin and eosin stain ) 18 3.9 微型電腦斷層掃描(Micro computed tomography) 18 3.10 非酒精性脂肪肝病活性指數(NAFLD activity score, NAS) 18 3.11 牙周發炎得分系統(Inflammation scoring system for periodontal status) 19 第四章 實驗結果 20 4.1膽固醇具有刺激J774細胞內27HC的生成 20 4.2 27HC能刺激J774細胞發炎反應 20 4.3 Raloxifene具有降低27HC引起之發炎反應 20 4.4停經會導致體重上升 21 4.5 卵巢摘除手術對血清膽固醇及27HC濃度的影響 21 4.6 肥胖合併停經對肝臟27HC有增加趨勢且影響肝臟組織發炎程度 22 4.7 肥胖與停經影響局部牙齦發炎部位27HC濃度之表現 22 4.8 在動物模式中肥胖與停經對牙周疾病之影響 23 第五章 討論 25 參考文獻 31 圖目錄 圖 1、大鼠於上顎第一大臼齒及第二大臼齒間進行牙周病誘導 39 圖 2、膽固醇促進J774細胞內27HC生成 40 圖 3、27HC在24小時後能刺激J774細胞產生CCL2 41 圖 4、27HC活化J774細胞內COX-2的表現 42 圖 5、Raloxifene (Ralo)能夠降低27HC對J774細胞促進CCL2生成的效果 43 圖 6、Raloxifene能夠抑制27HC對J774細胞產生COX-2的效果 44 圖 7、大鼠體重與飼養週數之趨勢圖 45 圖 8、各組大鼠在飼養第8週的平均體重 46 圖 9、高脂飼料及卵巢摘除手術有增加血清膽固醇(CHL)的趨勢 47 圖 10、各組大鼠血清中平均27HC 48 圖 11、肝臟27HC濃度在高脂肪飼料合併卵巢摘除手術中有上升趨勢 49 圖 12、肝臟組織切片於200倍放大下NAFLD activity score之組織學特徵 50 圖 13、各組大鼠肝臟組織切片NAFLD activity score (NAS) 51 圖 14、各組發炎區域牙齦27HC平均含量 52 圖 15、上顎第一大臼齒及第二大臼齒電腦斷層矢狀切面 53 圖 16、牙周炎齒槽骨喪失計算方法 54 圖 17、各組動物齒槽骨喪失比率 55 圖 18、各組第一大臼齒及第二大臼齒之間牙周組織染色圖 56 圖 19、牙周組織發炎程度periodontitis score統計 58 表目錄 表 1、各組大鼠最高和最低體重個體列表及差距 59 | |
dc.language.iso | zh-TW | |
dc.title | Raloxifene減緩肥胖與停經狀態下牙周疾病進展:作用機轉與治療潛能 | zh_TW |
dc.title | Raloxifene alleviates progression of periodontal disease in menopause and obesity status: mechanism and therapeutic potential | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 林思洸(Sze-Kwan Lin) | |
dc.contributor.oralexamcommittee | 洪志遠(Chi-Yuan Hong) | |
dc.subject.keyword | 牙周病,肥胖,停經,27HC,Raloxifene, | zh_TW |
dc.subject.keyword | periodontitis,obesity,menopause,27HC,raloxifene, | en |
dc.relation.page | 59 | |
dc.identifier.doi | 10.6342/NTU202200991 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-06-20 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
dc.date.embargo-lift | 2027-06-17 | - |
顯示於系所單位: | 臨床牙醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1706202218320900.pdf 目前未授權公開取用 | 2.34 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。