請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84282
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳小梨(Show-Li Chen) | |
dc.contributor.author | Rong-Wei Weng | en |
dc.contributor.author | 翁榮威 | zh_TW |
dc.date.accessioned | 2023-03-19T22:07:42Z | - |
dc.date.copyright | 2022-06-29 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-06-17 | |
dc.identifier.citation | Aweida, D., Rudesky, I., Volodin, A., Shimko, E., and Cohen, S. (2018). GSK3-β promotes calpain-1-mediated desmin filament depolymerization and myofibril loss in atrophy, J. Cell Biol. 217, 3698–3714. Bahler, M., and Rhoads, A. (2002). Calmodulin signaling via the IQ motif. FEBS Lett 513, 107-113. Bao, Z.Y., Cui, C., Chow, S.K.H., Qin, L., Wong, R.M.Y., and Cheung, W.H. (2020). AChRs Degeneration at NMJ in Aging-Associated Sarcopenia–A Systematic Review. Front. Aging Neurosci 12, 597811. Banerjee, R., He, J., Spaniel, C., Quintana, M.T., Wang, Z., Bain, J., Newgard, C.B., Muehlbauer, M.J., and Willis, M.S. (2015). Non-targeted metabolomics analysis of cardiac muscle ring finger-1 (MuRF1), MuRF2, and MuRF3 in vivo reveals novel and redundant metabolic changes, Metabolomics 11, 312–322. Barik, A., Lu, Y., Sathyamurthy, A., Bowman, A., Shen, C., Li, L., Xiong, W.C., and Lin, M. (2014). LRP4 is critical for neuromuscular junction maintenance. J. Neurosci 34, 13892–13905 Barnard, E.A., Coates, V., Dolly, J.O., and Mallick, B. (1977). Binding of alpha-bungarotoxin and cholinergic ligands to acetylcholine receptors in the membrane of skeletal muscle. Cell Biol Int Rep 1, 99-106. Baumgartner, R.N., Waters, D.L., Gallagher, D., Morley, J.E., and Garry, P.J. (1999). Predictors of skeletal muscle mass in elderly men and women. Mech Ageing Dev 107, 123–136. Burden, S.J., Huijbers, M.G., and Remedio, L. (2018). Fundamental Molecules and Mechanisms for Forming and Maintaining Neuromuscular Synapses. Int J Mol Sci 19,490. Carnio, S., LoVerso, F., Baraibar, M.A., Longa, E., Khan, M.M., Maffei, M., Reischl, M., Canepari, M., Loefler, S., Kern, H., Blaauw, B., et al. (2014). Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep 8, 1509–1521. Chai, R.J., Vukovic, J., Dunlop, S., Grounds, M.D., Shavlakadze, T. (2011). Striking denervation of neuromuscular junctions without lumbar motoneuron loss in geriatric mouse muscle. PLOS ONE 6, e28090. Chang, S.W., Tsao, Y.P., LIN, C.Y., and Chen, S.L. (2011). NRIP, a novel calmodulin binding protein, activates calcineurin to dephosphorylate human papillomavirus E2 protein. J Virol 85, 6750-6763. Chen, PH., Tsao, T.P., Wang, C.C., and Chen, S.L. (2008). Nuclear receptor interaction protein, a coactivator of androgen receptors (AR), is regulated by AR and Sp1 to feed forward and activate its own gene expression through AR protein stability. Neucleic Acids Res 36, 51-66. Chen, H.H., Chen, W.P., Yan, W.L., Huang, Y.C., Chang, S.W., Fu, W.M., Su, M.J., Yu, I.S., Tsai, T.C., Yan, Y.T., et al. (2015). NRIP is newly identified as a Z-disc protein, activating calmodulin signaling for skeletal muscle contraction and regeneration. J Cell Sci 128, 4196-4209. Chen, H.H., Fan, P., Chang S.W., Tsao, Y.P., Huang, H.P., and Chen, S.L. (2017). NRIP/DCAF6 stabilizes the androgen receptor protein by displacing DDB2 from the CUL4A-DDB1 E3 ligase complex in prostate cancer. Oncotarget 8, 21501-21515. Chen, H.H., Tsai, L.K., Liao, K.Y., Wu, T.C., Huang, Y.H., Huang, Y.C., Chang, S.W., Wang, P.Y., Tsao, Y.P., and Chen, S.L. (2018). Muscle-restricted nuclear receptor interaction protein knockout causes motor neuron degeneration through down-regulation of myogenin at the neuromuscular junction. J Cachexia Sarcopenia Muscle 9, 771-785. Cheng, A., Hou, Y., Mattson, M.P. (2010). Mitochondria and neuroplasticity. ASN neuro 2, e00045. Cheung, C.L., Chan, B.Y., Chan,V., Ikegawa, S., Kou, I., Ngai, H., Smith, D., Luk, K.D., Huang, Q.Y., Mori, S., et al. (2009). Pre-B-cell leukemia homeobox 1 (PBX1) shows functional and possible genetic association with bone mineral density variation. Hum Mol Genet 18, 679-687. Coleman, M. (2011). Molecular signaling how do axons die? Advances in genetics. 73, 185–217. Connolly, P., Garcia-Carpio, I., and Villunger, A. (2020). Cell-cycle cross talk with caspases and their substrates, Cold Spring Harb. Perspect. Biol. 12, a036475. Connor, N.P., Suzuki, T., Lee, K., Sewall, G.K., and Heisey, D.M. (2002). Neuromuscular junction changes in aged rat thyroarytenoid muscle. Ann Otol Rhinol Laryngol 111, 579-586. Dani, J. A. (2015). Neuronal Nicotinic Acetylcholine Receptor Structure and Function and Response to Nicotine. Int Rev Neurobiol 124, 3-19. Deschenes, M.R. (2011). Motor unit and neuromuscular junction remodeling with aging. Curr Aging Sci 4, 209–220. Dobbins, G. C., Luo, S., Yang, Z., Xiong, W. C., and Mei, L. (2008). Alpha-Actinin interacts with rapsyn in agrin-stimulated AChR clustering. Mol. Brain 1, 18. Duchateau, J., and Enoka, R.M. (2011). Human motor unit recordings: origins and insight into the integrated motor system. Brain Res 1409, 42–61. Ehret, G.B., O’Connor, A.A., Weder, A., Cooper, R.S., and Chakravarti, A. (2009) Follow-up of a major linkage peak on chromosome 1 reveals suggestive QTLs associated with essential hypertension: GenNet study. Eur J Hum Genet 17, 1650-1657. Feng, G, Mellor R.H., Bernstein, M., Keller-Peck, C., Nguyen, Q.T., Wallace, M., Nerbonne, J.M., Lichtman, J.W., and Sanes, J.R. (2000). Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51. Ferraro, E., Molinari, F., and Berghella, L. (2012). Molecular control of neuromuscular junction development. J Cachexia Sarcopenia Muscle 3, 13-23. Fielding, R.A., Vellas, B., Evans, W.J., Bhasin, S., Morley, J.E., Newman, A.B., Abellan van Kan, G., Andrieu, S., Bauer, J., Breuille, D., Cederholm, T., et al. (2011). Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 12, 249–256, Friedrich, O., Reid, M.B., Van den Berghe, G., Vanhorebeek, I., Hermans, G., Rich, M.M., and Larsson, L. (2015). The sick and the weak: neuropathies/myopathies in the critically Ill, Physiol. Rev. 95, 1025–1109. Fu, A.K., Ip, F.C., Fu, W.Y., Cheung, J., Wang, J.H., Yung, W.H., and Ip, N.Y. (2005). Aberrant motor axon projection, acetylcholine receptor clustering, and neurotransmission in cyclin-dependent kinase 5 null mice. Proc Natl Acad Sci U S A 102, 15224-15229. García, M.L., Fernández, A., and Solas, M.T. (2013). Mitochondria, motor neurons and aging. J Neurol Sci 330, 18-26. Goodpaster, B.H., Park, S.W., Harris, T.B., Kritchevsky, S.B., Nevitt, M., Schwartz, A.V., Simonsick, E.M., Tylavsky, F.A., Visser, M., and Newman, A.B. (2006). The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci 61, 1059-1064. Green, W.N., and Claudio, T. (1993). Acetylcholine receptor assembly: subunit folding and oligomerization occur sequentially. Cell 74, 57-69. Harper, S and Speicher, D.W. (2011). Purification of proteins fused to glutathione S-tranferase. Methods Mol Biol 681, 259-280. Han, C.P., Lee, M.Y., Tzeng, S.L., Yao, C.C., Wang, P.H., Cheng, Y.W., Chen, S.L., Wu, T.S., Tyan, Y.S., and Kok, L.F. (2008). Nuclear Receptor Interaction Protein (NRIP) expression assay using human tissue microarray and immunohistochemistry technology confirming nuclear localization. J Exp Clin Cancer Res 27, 25. Hepple, R.T. (2012). Muscle atrophy is not always sarcopenia. J Appl Physiol 113, 677–679. Hepple, R.T., and Rice, C.L. (2016). Innervation and neuromuscular control in ageing skeletal muscle. J Physiol 594, 1965–1978. Hettwer, S., Lin, S., Kucsera, S., Haubitz, M., Oliveri, F., Fariello, R.G., Ruegg, M.A., and Vrijbloed, J.W. (2014). Injection of a soluble fragment of neural agrin (NT-1654) considerably improves the muscle pathology caused by the disassembly of the neuromuscular junction. PLoS ONE 9, e88739. Hunter, S.K., Pereira, H.M., and Keenan, K.G. (2016). The aging neuromuscular system and motor performance. J Appl Physiol (1985) 121, 982-995. Ito, N., Ruegg, U.T., and Takeda, S. (2018). ATP-induced increase in intracellular calcium levels and subsequent activation of mTOR as regulators of skeletal muscle hypertrophy, Int. J. Mol. Sci. 19, 2804. Jang, Y.C., Rodriguez, K., Lustgarten, M.S., Muller, F.L., Bhattacharya, A., Pierce, A., Choi, J.J., Lee, N.H., Chaudhuri, A., Richardson, A.G., and Remmen, H.V. (2020). Superoxide-mediated oxidative stress accelerates skeletal muscle atrophy by synchronous activation of proteolytic systems, Geroscience 42, 1579–1591. Jin, J., Arias, E.E., Chen, J., Harper, J.W., and Walter, J.C. (2006). A family of diverse Cul4-Ddb1-Interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol Cell 23, 709-721. Kablar, B., and Belliveau, A.C. (2005). Presence of neurotrophic factors in skeletal muscle correlates with survival of spinal cord motor neurons. Dev Dyn 234, 659–669. Kim, N., Stiegler, A.L., Cameron, T.O., Hallock, P.T., Gomez, A.M., Huang, J.H., Hubbard, S.R., Dustin, M.L., and Burden, S.J. (2008). Lrp4 is a receptor for Agrin and forms a complex with MuSK. Cell 135, 334-342. Li, L., Xiong, W.C., and Mei, L. (2018). Neuromuscular Junction Formation, Aging, and Disorders. Annu Rev Physiol 80, 159-188. Lin, H.Q., Hu, H.J., Duan, W.S., Liu, Y.L., Tan, G.J., Li, Z.Y., Liu, Y.K., Deng, B.B., Song, X.Q., Wang, W., et al. (2018). Intramuscular Delivery of scAAV9-hIGF1 Prolongs Survival in the hSOD1 G93A ALS Mouse Model via Upregulation of D-Amino Acid Oxidase. Mol Neurobiol 55, 682-695. Lin, S., Landmann, L., Ruegg, M.A., and Brenner,.H.R. (2008). The role of nerve- versus muscle-derived factors in mammalian neuromuscular junction formation. J Neurosci 28, 3333–3340. Manini, T.M., Hong, S.L., and Clark, B.C. (2013). Aging and muscle: a neuron’s perspective. Curr Opin Clin Nutr Metab Care 16, 21-26. Masiero, E., Agatea, L., Mammucari, C., Blaauw, B., Loro, E., Komatsu, M., Metzger, D., Reggiani, C., Schiaffino, S., and Sandri, M. (2009). Autophagy is required to maintain muscle mass, Cell Metab. 10, 507–515. McGrath, M.J., Eramo, M.J., Gurung, R., Sriratana, A., Gehrig, S.M., Lynch, G.S., Lourdes, S.R., Koentgen, F., Feeney, S.J., Lazarou, M., McLean, C.A., and Mitchell, C.A. (2021). Defective lysosome reformation during autophagy causes skeletal muscle disease, J. Clin. Investig. 131, e135124. Misgeld, T., Kummer, T.T, Lichtman, J.W., and Sanes, J.R. (2005). Agrin promotes synaptic differentiation by counteracting an inhibitory effect of neurotransmitter. Proc Natl Acad Sci U S A 102, 11088-11093. Misgeld, T. (2011). Lost in elimination: mechanisms of axonal loss. e-Neuroforum 2, 21–34. Moransard, M., Borges, L. S., Willmann, R., Marangi, P. A., Brenner, H. R., Ferns, M. J., and Fuhrer, C. (2003). Agrin regulates rapsyn interaction with surface acetylcholine receptors, and this underlies cytoskeletal anchoring and clustering. J. Biol. Chem. 278, 7350-7359. Nakano, K., Miki, Y., Hata, S., Ebata, A., Takagi, K., McNamara, K.M., Sakurai, M., Masuda, M., Hirakawa, H., Ishida, T., et al. (2013). Identification of androgen-responsive microRNAs and androgen-related genes in breast cancer. Anticancer Res 33, 4811-4819. Ono, Y., Saido, T.C., and Sorimachi, H. (2016). Calpain research for drug discovery: challenges and potential, Nat. Rev. Drug Discov. 15, 854–876. Opalach, K., Rangaraju, S., Madorsky, I., Leeuwenburgh, C., and Notterpek, L. (2010). Lifelong calorie restriction alleviates age-related oxidative damage in peripheral nerves. Rejuvenation Res 13, 65–74. Park, K.H.J., Franciosi, S., and Leavitt, B.R. (2013). Postnatal muscle modification by myogenic factors modulates neuropathology and survival in an ALS mouse model. Nat Commun 4, 2906. Park, J., Cho, J., and Song, E.J. (2020) Ubiquitin-proteasome system (UPS) as a target for anticancer treatment, Arch. Pharm. Res. 43, 1144–1161. Peris-Moreno, D., Cussonneau, L., Combaret, L., Polge, C., and Taillandier, D. (2021). Ubiquitin ligases at the heart of skeletal muscle atrophy control, Molecules 26, 407. Powers, S.K. (2014). Can antioxidants protect against disuse muscle atrophy? Sports Med. 44, 155–165. Saini, J., Faroni, A., Reid, A., Mouly, V., Butler-Browne, G., Lightfoot,A.P., McPhee, J.S., Degens, H., and Al-Shanti,N. (2021). Cross‐talk between motor neurons and myotubes via endogenously secreted neural and muscular growth factors. Physiol Rep 9, e14791. Samuel, M.A., Valdez, G., Tapia, J.C., Lichtman, J.W., and Sanes, J.R. (2012). Agrin and synaptic laminin are required to maintain adult neuromuscular junctions. PLOS ONE 7, e46663. Selman, C., Blount, J.D., Nussey, D.H., and Speakman, J.R. (2012). Oxidative damage, ageing, and life-history evolution: where now? Trends in ecology & evolution 27, 570-577. Shi, Y., Li, Z., Xu, Q., Wang, T., Li, T., Shen, J., Zhang, F., Chen, J., Zhou, G., Ji, W., et al. (2011). Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nat Genet 43, 1224-1227. Silva, K.A., Dong, J., Dong, Y., Dong, Y., Schor, N., Tweardy, D.J., Zhang, L., and Mitch, W.E. (2015). Inhibition of Stat3 activation suppresses caspase-3 and the ubiquitin-proteasome system, leading to preservation of muscle mass in cancer cachexia, J. Biol. Chem. 290, 11177–11187. Sorimachi, H., Hata, S., and Ono, Y. (2011). Calpain chronicle–an enzyme family under multidisciplinary characterization, Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 87, 287–327. Taniguchi, M., Kurahashi, H., Noguchi, S., Fukudome, T., Okinaga, T., Tsukahara, T., Tajima, Y., Ozono, K., Nishino, I., Nonaka, I., and Toda, T. (2006). Aberrant neuromuscular junctions and delayed terminal muscle fiber maturation in alpha-dystroglycanopathies. Hum Mol Genet 15, 1279–1289. Tintignac, L.A., Brenner, H.R., and Ruegg, M.A. (2015). Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting. Physiol Rev 95, 809-852. Tsai, T.C., Lee, Y.L., Hsiao, W.C., Tsao, Y.P. and Chen, S.L. (2005). NRIP, a Novel Nuclear Receptor Interaction Protein, Enhances the Transcriptional Activity of Nuclear Receptors. J Biol Chem 280, 20000-20009. Tsai, L.K., Chen, I.H., Chao, C.C., Hsueh, H.W., Chen, H.H., Huang, Y.H., Weng, R.W., Lai, T.Y., Tsai, Y.C., Tsao, Y.P., and Chen, S.L. (2021). Autoantibody of NRIP, a novel AChR‐interacting protein, plays a detrimental role in myasthenia gravis. J Cachexia Sarcopenia Muscle 12, 665-676. Tse, N., Morsch, M., Ghazanfari, N., Cole, L., Visvanathan, A., Leamey, C., and Phillips, W.D. (2014). The neuromuscular junction: measuring synapse size, fragmentation and changes in synaptic protein density using confocal fluorescence microscopy. J Vis Exp. Ueta, R., Sugita, S., Minegishi, Y., Shimotoyodome, A., Ota, N., Ogiso, N., Eguchi, T., and Yamanashi, Y. (2020). DOK7 gene therapy enhances neuromuscular junction innervation and motor function in aged mice. iScience 23, 101385. Valdez, G., Tapia, J.C., Kang, H., Clemenson, G.D. Jr., Gage, F.H., Lichtman, J.W., and Sanes, J.R. (2010). Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. PNAS 107,14863–14868. Wang, X.H., and Mitch, W.E. (2014). Mechanisms of muscle wasting in chronic kidney disease, Nat. Rev. Nephrol. 10, 504–516. Webster, J.M., Kempen, L., Hardy, R.S., and Langen, R.C.J. (2020). Inflammation and skeletal muscle wasting during cachexia. Front Physiol 11, 597675. Wu, H., Xiong, W.C., and Mei, L. (2010). To build a synapse: signaling pathways in neuromuscular junction assembly. Development 137, 1017-1033. Yin, L., Li, N., Jia, W., Wang, N., Liang, M., Yang, X., and Du, G. (2021). Skeletal muscle atrophy: From mechanisms to treatments. Pharmacol Res. 172, 105807. Zhang, B., Luo, S., Wang, Q., Suzuki, T., Xiong, W.C., and Mei, L. (2008). LRP4 serves as a coreceptor of agrin. Neuron 60, 285-297. Zhao, K., Shen, C., Li, L., Wu, H., Xing, G., Dong, Z., Jing, H., Chen, W., Zhang, H., Tan, Z., et al. (2018). Sarcoglycan alpha mitigates neuromuscular junction decline in aged mice by stabilizing LRP4. J. Neurosci. 38, 8860–8873. Zhou, J., Liu, B., Liang, C., Li, Y., and Song, Y.H. (2016). Cytokine signaling in skeletal muscle wasting. Trends Endocrinol Metab 27, 335-347. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84282 | - |
dc.description.abstract | 核受體交互作用蛋白(Nuclear receptor interaction protein, NRIP)是一種依賴鈣離子的攜鈣素(Calmodulin)結合蛋白,可調節骨骼肌的收縮及再生。在先前的研究中,我們發現全身性NRIP基因剔除的老鼠表現出運動功能的缺失和遲緩的肌肉再生。此外,在16周大的肌肉NRIP基因剔除的老鼠中,呈現出受損的神經肌肉接合處(Neuromuscular junction, NMJ),進而導致運動神經元的缺失。這些實驗結果表示NRIP可能在神經肌肉接合處的結構中扮演重要的角色。在神經突觸後的神經肌肉接合處是一種由乙醯膽鹼受體(Acetylcholine receptor, AChR)、受體相連突觸蛋白(Rapsyn)和輔機動蛋白異構體(α-actinin 2, ACTN2)所組成的複合體蛋白。而在神經肌肉接合處複合體當中,乙醯膽鹼受體是由α、β、γ和δ子單位而形成的α2βγδ五聚體,並負責接收來自運動神經元的神經傳導物質,進而使得肌肉產生收縮。在我們先前實驗的結果中,發現NRIP在骨骼肌裡與神經肌肉接合處複合體是共定位在一起,並且與AChR-rapsyn-ACTN2的神經肌肉接合處複合體有相關聯性。此外,我們先前更進一步地發現在共轉染的HEK-293T細胞中,NRIP與乙醯膽鹼受體 α子單位(AChRα)有交互作用的關係。因此,在本篇研究中,為了確定NRIP是否與乙醯膽鹼受體有直接結合的關係,我們藉由體外的pull-down assay來進一步地研究NRIP和AChRα蛋白是否有交互作用。實驗結果顯示NRIP與AChRα 蛋白在體外皆有相互作用的關係。整體而言,NRIP是一種新型的乙醯膽鹼受體結合蛋白,並且作為神經肌肉接合處複合體的架構蛋白以穩定神經肌肉接合處的結構。 另一方面,在隨著年紀增長的老鼠中,發現肌肉裡的NRIP表現量有減少的現象。此外,我們先前也發現在年老的老鼠中有運動功能缺失、異常的神經肌肉接合處以及運動神經元的損失。由於這些表現型與我們先前研究所發現的肌肉NRIP基因剔除的老鼠有相似的現象,因此,我們假設在老化的過程中,異常的神經肌肉接合處是來自於NRIP量的減少。為了驗證假說,我們研究NRIP基因治療藉由肌肉注射的方式,是否能拯救年老老鼠的神經肌肉接合處。由於先前的論文中所使用的帶有NRIP基因的AAV-DJ/8血清型的病毒在年老的老鼠中沒有表現出理想的結果,我們認為這可能是在肌肉裡NRIP表現量不足而導致的結果。因此在本研究中,我們將使用另一種適合感染肌肉的AAV9血清型病毒作為媒介,以強化先前所使用的老年老鼠中NRIP的表現量。實驗結果顯示,AAV9-NRIP 可以拯救老年老鼠的握力和神經肌肉接合處的面積,但是無法改善神經肌肉接合處的去神經化以及運動神經元的存活。整體而言,NRIP基因治療可以改善老化過程中的神經肌肉接合處的大小以及肌肉的強度。 總而言之,NRIP作為神經肌肉接合處的結構成分而成為當中新型的乙醯膽鹼受體結合蛋白,並且穩定在老化中神經肌肉接合處的結構。 | zh_TW |
dc.description.abstract | Nuclear receptor interaction protein (NRIP), which is a Ca2+-dependent calmodulin binding protein, regulates the skeletal muscle contraction and regeneration. In previous study, we found that NRIP global knockout mice showed motor function deficits and delayed muscular regeneration. In addition, muscle-specific NRIP conditional knockout mice at 16 weeks of age displays impaired neuromuscular junction (NMJ), and it further leads to loss of motor neuron. These results imply that NRIP may play an important role in NMJ structure. The postsynaptic NMJ is a complex protein which is composed of acetylcholine receptor (AChR), rapsyn, and α-actinin 2 (ACTN2). In the NMJ complex, AChR consists of α, β, γ, and δ subunits to form a α2βγδ pentamer, which is responsible for receiving neurotransmitter from motor neuron to further lead to muscular contraction. In our previous results, NRIP colocalized with the NMJ complex and was associated with “AChR-rapsyn-ACTN2” NMJ complex in skeletal muscle. Moreover, it was further found that NRIP interacts with AChR α subunit (AChRα) in co-transfection of HEK 293T cells. Therefore, in this study, to determine whether NRIP directly binds to AChR, I further investigated the interaction between NRIP and AChRα proteins by an in vitro pull-down assay. The results showed that NRIP reciprocally interacted with AChRα protein in vitro. Collectively, NRIP is a novel AChR binding protein and acts as a scaffold protein in the NMJ complex to stabilize the NMJ structure. On the other hand, the decreased NRIP level in muscle was observed when age of mice advanced. In addition, there were impaired motor function, abnormal NMJ and loss of motor neuron that we previously observed in aged mice. Because these phenotypes were similar with muscle-restricted NRIP conditional knockout mice that we found in previous study. Thus, we hypothesized that abnormal NMJ is because of decreased NRIP during aging. To verify the hypothesis, we investigated whether NRIP gene therapy by intramuscular injection could rescue NMJ in aged mice. Owing to the unfavorable results in aged mice by using AAV-DJ/8 serotype virus with NRIP gene in previous thesis, we thought it might be not enough NRIP level in muscle to lead to the results. Therefore, in this study, we would use the AAV9 serotype virus, which was another suitable serotype for muscular infection, as a vehicle to boost NRIP level in previous aged mice. The results showed that AAV9-NRIP could rescue grip force and NMJ area, but it cannot improve NMJ denervation and motor neuron survival in aged mice. Collectively, NRIP gene therapy can improve the NMJ size and muscular strength during aging. In conclusion, NRIP acts as a structural component to be a novel AChR binding protein in NMJ and stabilizes NMJ structure during aging. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:07:42Z (GMT). No. of bitstreams: 1 U0001-1706202212242800.pdf: 1688625 bytes, checksum: d0c17a65566c0b239b98814515ae89bc (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 口試委員會審定書 I 致謝 II 中文摘要 III Abstract V Chapter 1 Introduction 1 1.1 Characteristics of nuclear receptor interaction protein (NRIP) 1 1.2 The role of NRIP in skeletal muscle function 2 1.3 The characteristics of neuromuscular junction (NMJ) and acetylcholine receptor (AChR) 3 1.4 The role of NRIP for NMJ and AChR 5 1.5 The problems of aging in skeletal muscle function, NMJ, motor neuron, motor function and NRIP expression 6 1.6 Aims of this study 8 Chapter 2 Materials and methods 11 2.1 Plasmid construction 11 2.2 Plasmid transformation and protein production 12 2.3 Protein pull-down assay 13 2.4 Coomassie blue staining and western blot analysis 13 2.5 Cell culture 14 2.6 AAV production 14 2.7 AAV Dot blot assay 15 2.8 Aged mouse model 16 2.9 In vivo AAV injection 16 2.10 Motor function analysis 17 2.11 Tissue isolation and frozen section preparation 17 2.12 Immunofluorescence of spinal motor neuron 18 2.13 Immunofluorescence of neuromuscular junction 19 2.14 Statistical analysis 20 Chapter 3 Results 21 3.1 NRIP directly binds to AChRα protein in vitro. 21 3.2 Generation of adeno-associated virus serotype 9 (AAV9)-NRIP 23 3.3 Intramuscular NRIP gene therapy is benefit effect on muscular strength in aged mice. 24 3.4 Intramuscular NRIP gene therapy rescues NMJ size in aged mice. 27 3.5 Intramuscular NRIP gene therapy can not improve motor neuron degeneration in aged mice. 29 Chapter 4 Discussion 31 Chapter 5 Figures 40 Chapter 6 Supplementary 49 Chapter 7 Appendix 51 Chapter 8 References 53 | |
dc.language.iso | en | |
dc.title | NRIP對於神經肌肉接合處的角色以及NRIP在老化中穩定神經肌肉接合處的結構 | zh_TW |
dc.title | The role of NRIP for neuromuscular junction and NRIP stabilizes NMJ structure in aging | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡力凱(Li-Kai Tsai),曾紀綱(Chi-Kang Tseng) | |
dc.subject.keyword | 核受體交互作用蛋白,神經肌肉接合處,乙醯膽鹼受體,老化,基因治療, | zh_TW |
dc.subject.keyword | NRIP,Neuromuscular junction,Acetylcholine receptor,Aging,Gene therapy, | en |
dc.relation.page | 61 | |
dc.identifier.doi | 10.6342/NTU202200985 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-06-20 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
dc.date.embargo-lift | 2024-12-31 | - |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1706202212242800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.65 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。