請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8425完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧子彬(Tzu-Pin Lu) | |
| dc.contributor.author | Fang-Yu Lin | en |
| dc.contributor.author | 林芳宇 | zh_TW |
| dc.date.accessioned | 2021-05-20T00:54:10Z | - |
| dc.date.available | 2020-08-26 | |
| dc.date.available | 2021-05-20T00:54:10Z | - |
| dc.date.copyright | 2020-08-26 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-20 | |
| dc.identifier.citation | American College of Rheumatology. (2019). Rheumatoid Arthritis Fact Sheet. Retrieved from https://www.rheumatology.org/Portals/0/Files/Rheumatoid-Arthritis-Fact-Sheet.pdf?ver=2019-06-20-145158-000 Aslibekyan, S., Goodarzi, M. O., Frazier-Wood, A. C., Yan, X., Irvin, M. R., Kim, E., . . . Arnett, D. K. (2012). Variants identified in a GWAS meta-analysis for blood lipids are associated with the lipid response to fenofibrate. PLoS ONE, 7(10), e48663. doi:10.1371/journal.pone.0048663 Ball, R. D. (2013). Designing a GWAS: power, sample size, and data structure. Methods Mol Biol, 1019, 37-98. doi:10.1007/978-1-62703-447-0_3 Baranzini, S. E., Wang, J., Gibson, R. A., Galwey, N., Naegelin, Y., Barkhof, F., Oksenberg, J. R. (2009). Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis. Hum Mol Genet, 18(4), 767-778. doi:10.1093/hmg/ddn388 Buniello, A., MacArthur, J. A. L., Cerezo, M., Harris, L. W., Hayhurst, J., Malangone, C., Parkinson, H. (2019). The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res, 47(D1), D1005-d1012. doi:10.1093/nar/gky1120 Deshmukh, H. A., Colhoun, H. M., Johnson, T., McKeigue, P. M., Betteridge, D. J., Durrington, P. N., Hitman, G. A. (2012). Genome-wide association study of genetic determinants of LDL-c response to atorvastatin therapy: importance of Lp(a). J Lipid Res, 53(5), 1000-1011. doi:10.1194/jlr.P021113 Doherty, A., Smith-Byrne, K., Ferreira, T., Holmes, M. V., Holmes, C., Pulit, S. L., Lindgren, C. M. (2018). GWAS identifies 14 loci for device-measured physical activity and sleep duration. Nat Commun, 9(1), 5257. doi:10.1038/s41467-018-07743-4 Emilsson, V., Ilkov, M., Lamb, J. R., Finkel, N., Gudmundsson, E. F., Pitts, R., Gudnason, V. (2018). Co-regulatory networks of human serum proteins link genetics to disease. Science, 361(6404), 769-773. doi:10.1126/science.aaq1327 Enkhmaa, B., Anuurad, E., Berglund, L. (2016). Lipoprotein (a): impact by ethnicity and environmental and medical conditions. J Lipid Res, 57(7), 1111-1125. doi:10.1194/jlr.R051904 Enkhmaa, B., Anuurad, E., Zhang, W., Tran, T., Berglund, L. (2011). Lipoprotein(a): genotype-phenotype relationship and impact on atherogenic risk. Metab Syndr Relat Disord, 9(6), 411-418. doi:10.1089/met.2011.0026 European Bioinformatics Institute. (2019). What is the GWAS Catalog? Retrieved from https://www.ebi.ac.uk/training/online/course/gwas-catalog-exploring-snp-trait-associations-2019/what-gwas-catalog Fadista, J., Manning, A. K., Florez, J. C., Groop, L. (2016). The (in)famous GWAS P-value threshold revisited and updated for low-frequency variants. Eur J Hum Genet, 24(8), 1202-1205. doi:10.1038/ejhg.2015.269 Freudenberg, J., Lee, H. S., Han, B. G., Shin, H. D., Kang, Y. M., Sung, Y. K., Bae, S. C. (2011). Genome-wide association study of rheumatoid arthritis in Koreans: population-specific loci as well as overlap with European susceptibility loci. Arthritis Rheum, 63(4), 884-893. doi:10.1002/art.30235 Greenberg, J. D., Spruill, T. M., Shan, Y., Reed, G., Kremer, J. M., Potter, J., Harrold, L. R. (2013). Racial and ethnic disparities in disease activity in patients with rheumatoid arthritis. Am J Med, 126(12), 1089-1098. doi:10.1016/j.amjmed.2013.09.002 Han, X., Ong, J. S., An, J., Hewitt, A. W., Gharahkhani, P., MacGregor, S. (2020). Using Mendelian randomization to evaluate the causal relationship between serum C-reactive protein levels and age-related macular degeneration. Eur J Epidemiol, 35(2), 139-146. doi:10.1007/s10654-019-00598-z Hannah Meyer. (2019). Genotype quality control with plinkQC. Retrieved from https://cran.r-project.org/web/packages/plinkQC/vignettes/plinkQC.pdf Jalil, S. F., Arshad, M., Bhatti, A., Ahmad, J., Akbar, F., Ali, S., John, P. (2016). Rheumatoid arthritis: What have we learned about the causing factors? Pak J Pharm Sci, 29(2), 629-645. Jia, P., Wang, L., Meltzer, H. Y., Zhao, Z. (2011). Pathway-based analysis of GWAS datasets: effective but caution required. Int J Neuropsychopharmacol, 14(4), 567-572. doi:10.1017/s1461145710001446 Jin, S., Li, M., Fang, Y., Li, Q., Liu, J., Duan, X., Zeng, X. (2017). Chinese Registry of rheumatoid arthritis (CREDIT): II. prevalence and risk factors of major comorbidities in Chinese patients with rheumatoid arthritis. Arthritis Res Ther, 19(1), 251. doi:10.1186/s13075-017-1457-z Julià, A., Ballina, J., Cañete, J. D., Balsa, A., Tornero-Molina, J., Naranjo, A., Marsal, S. (2008). Genome-wide association study of rheumatoid arthritis in the Spanish population: KLF12 as a risk locus for rheumatoid arthritis susceptibility. Arthritis Rheum, 58(8), 2275-2286. doi:10.1002/art.23623 Jutley, G., Raza, K., Buckley, C. D. (2015). New pathogenic insights into rheumatoid arthritis. Curr Opin Rheumatol, 27(3), 249-255. doi:10.1097/bor.0000000000000174 Kaler, A. S., Purcell, L. C. (2019). Estimation of a significance threshold for genome-wide association studies. BMC Genomics, 20(1), 618. doi:10.1186/s12864-019-5992-7 Karami, J., Aslani, S., Jamshidi, A., Garshasbi, M., Mahmoudi, M. (2019). Genetic implications in the pathogenesis of rheumatoid arthritis; an updated review. Gene, 702, 8-16. doi:10.1016/j.gene.2019.03.033 Kichaev, G., Bhatia, G., Loh, P. R., Gazal, S., Burch, K., Freund, M. K., Price, A. L. (2019). Leveraging Polygenic Functional Enrichment to Improve GWAS Power. Am J Hum Genet, 104(1), 65-75. doi:10.1016/j.ajhg.2018.11.008 Kochi, Y., Suzuki, A., Yamamoto, K. (2014). Genetic basis of rheumatoid arthritis: a current review. Biochem Biophys Res Commun, 452(2), 254-262. doi:10.1016/j.bbrc.2014.07.085 Kuo, C. F., Grainge, M. J., Valdes, A. M., See, L. C., Yu, K. H., Shaw, S. W. S., Doherty, M. (2017). Familial aggregation of rheumatoid arthritis and co-aggregation of autoimmune diseases in affected families: a nationwide population-based study. Rheumatology (Oxford), 56(6), 928-933. doi:10.1093/rheumatology/kew500 Kuo, C. F., Luo, S. F., See, L. C., Chou, I. J., Chang, H. C., Yu, K. H. (2013). Rheumatoid arthritis prevalence, incidence, and mortality rates: a nationwide population study in Taiwan. Rheumatol Int, 33(2), 355-360. doi:10.1007/s00296-012-2411-7 Laufer, V. A., Tiwari, H. K., Reynolds, R. J., Danila, M. I., Wang, J., Edberg, J. C., Bridges, S. L., Jr. (2019). Genetic influences on susceptibility to rheumatoid arthritis in African-Americans. Hum Mol Genet, 28(5), 858-874. doi:10.1093/hmg/ddy395 Liu, D. J., Peloso, G. M., Yu, H., Butterworth, A. S., Wang, X., Mahajan, A., Kathiresan, S. (2017). Exome-wide association study of plasma lipids in >300,000 individuals. Nat Genet, 49(12), 1758-1766. doi:10.1038/ng.3977 Mack, S., Coassin, S., Rueedi, R., Yousri, N. A., Seppälä, I., Gieger, C., Kronenberg, F. (2017). A genome-wide association meta-analysis on lipoprotein (a) concentrations adjusted for apolipoprotein (a) isoforms. J Lipid Res, 58(9), 1834-1844. doi:10.1194/jlr.M076232 McBurney, C. A., Vina, E. R. (2012). Racial and ethnic disparities in rheumatoid arthritis. Curr Rheumatol Rep, 14(5), 463-471. doi:10.1007/s11926-012-0276-0 McInnes, I. B., Schett, G. (2011). The pathogenesis of rheumatoid arthritis. N Engl J Med, 365(23), 2205-2219. doi:10.1056/NEJMra1004965 Minichiello, E., Semerano, L., Boissier, M. C. (2016). Time trends in the incidence, prevalence, and severity of rheumatoid arthritis: A systematic literature review. Joint Bone Spine, 83(6), 625-630. doi:10.1016/j.jbspin.2016.07.007 Moore, A., Enquobahrie, D. A., Sanchez, S. E., Ananth, C. V., Pacora, P. N., Williams, M. A. (2012). A genome-wide association study of variations in maternal cardiometabolic genes and risk of placental abruption. Int J Mol Epidemiol Genet, 3(4), 305-313. Morales, J., Welter, D., Bowler, E. H., Cerezo, M., Harris, L. W., McMahon, A. C., MacArthur, J. A. L. (2018). A standardized framework for representation of ancestry data in genomics studies, with application to the NHGRI-EBI GWAS Catalog. Genome Biol, 19(1), 21. doi:10.1186/s13059-018-1396-2 Ndosi, M., Vinall, K., Hale, C., Bird, H., Hill, J. (2011). The effectiveness of nurse-led care in people with rheumatoid arthritis: a systematic review. Int J Nurs Stud, 48(5), 642-654. doi:10.1016/j.ijnurstu.2011.02.007 Panagiotou, O. A., Ioannidis, J. P. (2012). What should the genome-wide significance threshold be? Empirical replication of borderline genetic associations. Int J Epidemiol, 41(1), 273-286. doi:10.1093/ije/dyr178 Qi, G., Chatterjee, N. (2018). Heritability informed power optimization (HIPO) leads to enhanced detection of genetic associations across multiple traits. PLoS Genet, 14(10), e1007549. doi:10.1371/journal.pgen.1007549 Qi, Q., Workalemahu, T., Zhang, C., Hu, F. B., Qi, L. (2012). Genetic variants, plasma lipoprotein(a) levels, and risk of cardiovascular morbidity and mortality among two prospective cohorts of type 2 diabetes. Eur Heart J, 33(3), 325-334. doi:10.1093/eurheartj/ehr350 Rheumatoid arthritis. (2018). Nat Rev Dis Primers, 4, 18002. doi:10.1038/nrdp.2018.2 Riancho, J. A. (2012). Genome-wide association studies (GWAS) in complex diseases: advantages and limitations. Reumatol Clin, 8(2), 56-57. doi:10.1016/j.reuma.2011.07.005 Ronald, J., Rajagopalan, R., Cerrato, F., Nord, A. S., Hatsukami, T., Kohler, T., Jarvik, G. P. J. S. (2011). Genetic variation in LPAL2, LPA, and PLG predicts plasma lipoprotein (a) level and carotid artery disease risk. 42(1), 2-9. Sasayama, D., Hiraishi, A., Tatsumi, M., Kamijima, K., Ikeda, M., Umene-Nakano, W., . . . Kunugi, H. (2013). Possible association of CUX1 gene polymorphisms with antidepressant response in major depressive disorder. Pharmacogenomics J, 13(4), 354-358. doi:10.1038/tpj.2012.18 Scott, D. L., Wolfe, F., Huizinga, T. W. (2010). Rheumatoid arthritis. Lancet, 376(9746), 1094-1108. doi:10.1016/s0140-6736(10)60826-4 Stahl, E. A., Raychaudhuri, S., Remmers, E. F., Xie, G., Eyre, S., Thomson, B. P., Plenge, R. M. (2010). Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat Genet, 42(6), 508-514. doi:10.1038/ng.582 Suzuki, A., Yamada, R., Kochi, Y., Sawada, T., Okada, Y., Matsuda, K., Yamamoto, K. (2008). Functional SNPs in CD244 increase the risk of rheumatoid arthritis in a Japanese population. Nat Genet, 40(10), 1224-1229. doi:10.1038/ng.205 Tam, V., Patel, N., Turcotte, M., Bossé, Y., Paré, G., Meyre, D. (2019). Benefits and limitations of genome-wide association studies. Nat Rev Genet, 20(8), 467-484. doi:10.1038/s41576-019-0127-1 Tang, C. H. (2019). Research of Pathogenesis and Novel Therapeutics in Arthritis. Int J Mol Sci, 20(7). doi:10.3390/ijms20071646 Uh, H. W., Deelen, J., Beekman, M., Helmer, Q., Rivadeneira, F., Hottenga, J. J., Houwing-Duistermaat, J. J. (2012). How to deal with the early GWAS data when imputing and combining different arrays is necessary. Eur J Hum Genet, 20(5), 572-576. doi:10.1038/ejhg.2011.231 Viatte, S., Barton, A. (2017). Genetics of rheumatoid arthritis susceptibility, severity, and treatment response. Semin Immunopathol, 39(4), 395-408. doi:10.1007/s00281-017-0630-4 Wagan, A. A., Mahmud, T. E., Rasheed, A., Zafar, Z. A., Rehman, A. U., Ali, A. (2016). Cardiovascular risk score in Rheumatoid Arthritis. Pak J Med Sci, 32(3), 534-538. doi:10.12669/pjms.323.9779 Wasserman, A. (2018). Rheumatoid Arthritis: Common Questions About Diagnosis and Management. Am Fam Physician, 97(7), 455-462. Wasserman, A. M. (2011). Diagnosis and management of rheumatoid arthritis. Am Fam Physician, 84(11), 1245-1252. Willems, J. M., Trompet, S., Blauw, G. J., Westendorp, R. G., de Craen, A. J. (2010). White blood cell count and C-reactive protein are independent predictors of mortality in the oldest old. J Gerontol A Biol Sci Med Sci, 65(7), 764-768. doi:10.1093/gerona/glq004 Wu, X., Yang, H. J., Jung Kim, M., Zhang, T., Qiu, J. Y., Park, S. (2019). Association between PTPN22-1123G/C and susceptibility to rheumatoid arthritis: A systematic review and meta-analysis. Int J Rheum Dis, 22(5), 769-780. doi:10.1111/1756-185x.13535 Yamamoto, K., Okada, Y., Suzuki, A., Kochi, Y. (2015). Genetics of rheumatoid arthritis in Asia--present and future. Nat Rev Rheumatol, 11(6), 375-379. doi:10.1038/nrrheum.2015.7 Yamanaka, H., Sugiyama, N., Inoue, E., Taniguchi, A., Momohara, S. (2014). Estimates of the prevalence of and current treatment practices for rheumatoid arthritis in Japan using reimbursement data from health insurance societies and the IORRA cohort (I). Mod Rheumatol, 24(1), 33-40. doi:10.3109/14397595.2013.854059 Yarwood, A., Huizinga, T. W., Worthington, J. (2016). The genetics of rheumatoid arthritis: risk and protection in different stages of the evolution of RA. Rheumatology (Oxford), 55(2), 199-209. doi:10.1093/rheumatology/keu323 Zhang, K., Liu, S., Li, W., Liu, S., Li, X., Fang, Y., Ning, H. (2018). Identification of QTNs Controlling Seed Protein Content in Soybean Using Multi-Locus Genome-Wide Association Studies. 9(1690). doi:10.3389/fpls.2018.01690 Zhang, Y. M., Jia, Z., Dunwell, J. M. (2019). Editorial: The Applications of New Multi-Locus GWAS Methodologies in the Genetic Dissection of Complex Traits. Front Plant Sci, 10, 100. doi:10.3389/fpls.2019.00100 Zhu, H., Xia, W., Mo, X. B., Lin, X., Qiu, Y. H., Yi, N. J., Lei, S. F. (2016). Gene-Based Genome-Wide Association Analysis in European and Asian Populations Identified Novel Genes for Rheumatoid Arthritis. PLoS ONE, 11(11), e0167212. doi:10.1371/journal.pone.0167212 臺灣人體生物資料庫. (2020). 資料庫進展. Retrieved from https://www.twbiobank.org.tw/new_web/about-deveplopment.php | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8425 | - |
| dc.description.abstract | 背景:類風濕性關節炎是一種自體免疫疾病,主要特徵是慢性發炎性滑膜炎,而導致關節疼痛、僵硬、腫脹或扭曲,嚴重者可至失能,患者預期生存期比一般人口少了17年。類風濕性關節炎與遺傳基因有關,過去研究已經確定了超過100個風險位點;然而,雖然該風險位點存在著明顯的族群差異,過去多數相關研究僅以歐洲族群為分析對象。本研究目的為1)找出臺灣族群的類風濕性關節炎風險位點;2)將找出的臺灣族群類風濕性關節炎風險位點,以既有資料庫中的東亞族群與歐洲族群,比較兩者之間的風險位點差異。 方法:本研究樣本取自臺灣人體生物資料庫,共137位患者病例組,及對照組15,785人,控制類風濕性關節炎的危險因子(年齡、性別、有無類風濕性關節炎家族病史)影響後,使用羅吉斯迴歸模型估計與類風濕性關節炎有關的風險位點。將找出的臺灣族群類風濕性關節炎風險位點,以既有資料庫中的東亞族群與歐洲族群,進行信賴區間估計來找出兩者之間的風險位點差異。 結果:本研究共有604,202個單核苷酸多型性位點納入分析,共36個單核苷酸多型性位點與類風濕性關節炎顯著相關(p<0.0001)。比對東亞族群與歐洲族群的風險位點資訊後,多數風險位點顯示在兩個族群中有明顯差異,除了其中5個風險位點。 結論:本研究結果在臺灣族群中發現特定的類風濕性關節炎風險位點,且這些位點多數有明顯的東亞與歐洲族群的差異。我們的結果顯示針對本土樣本探討特有的類風濕性關節炎風險位點是有必要性的,該研究發現將能夠有效應用於當地公共衛生與臨床醫療的發展及治療。 | zh_TW |
| dc.description.abstract | Introduction: Rheumatoid arthritis is an autoimmune disease, with the immune system losing its normal function and attacking normal tissues or organ in the body. The main feature of the disease is chronic inflammatory synovitis, which causes joint pain, stiffness, swelling or even disability. The patients’ expected survival time is 17 years shorter than the general population. It is known that most of rheumatoid arthritis is related to genetics and more than 100 risk sites have been identified. However, most of the known risk single nucleotide polymorphisms (SNPs) were identified in the European populations even the difference in risk SNPs between different ethnic groups were emphasized. The purposes of the study were i) to identify the risk SNPs of rheumatoid arthritis in the Taiwanese population; ii) to compare the differences of these risk SNPs between East Asian and European populations. Methods: A total of 137 rheumatoid arthritis cases and a control group of 15,785 were extracted from the Taiwan Biobank. A logistic regression model was used to evaluate the effect of risk SNPs after controlling for the covariates of rheumatoid arthritis including age, sex, and family history of rheumatoid arthritis. Besides, interval estimates were used to evaluate the difference in risk SNPs between the East Asian and the European populations using the GWAS Catalog database. Results: A total of 604,202 SNPs were included in the analysis, and 36 SNPs were significantly associated with rheumatoid arthritis (p <0.0001). After comparing the estimates of Asian and the European populations, there were marked differences between the two populations in most of the risk SNPs, with the exception of five out of them. Conclusions: Our findings identified some specific risk SNPs of rheumatoid arthritis in the Taiwanese population and supported it is essential to identify the risk SNPs of rheumatoid arthritis using local samples. Our findings could provide new insights into the development of rheumatoid arthritis in public health and clinical medicine. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T00:54:10Z (GMT). No. of bitstreams: 1 U0001-2007202020113000.pdf: 2439806 bytes, checksum: 5ace9fe1c20f814de8101ae58c93a474 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 II 中文摘要 III 英文摘要 IV 第一章 前言 10 第一節 研究背景 10 第二節 研究動機及重要性 10 第三節 研究目的 11 第二章 文獻回顧 12 第一節 類風濕性關節炎 12 第二節 類風濕性關節炎族群間差異 12 第三節 類風濕性關節炎全基因體關聯性研究 13 第三章 方法及材料 15 第一節 研究資料 15 第二節 品質控管 16 第三節 統計分析 17 第四章 結果 18 第一節 人口學變項分布 18 第二節 品質控管 18 第三節 全基因體關聯性分析 18 第四節 東亞與歐洲族群的風險位點比較 19 第五節 驗證過去研究 19 第五章 討論 21 第一節 主要發現 21 第二節 研究限制 22 第三節 公共衛生與臨床意義 22 參考文獻 33 附錄一、2010年ACR/EULAR聯合發表類風濕性關節炎診斷分類標準 39 | |
| dc.language.iso | zh-TW | |
| dc.title | 臺灣類風濕性關節炎全基因體關聯性研究 | zh_TW |
| dc.title | Genome-Wide Association Study of Rheumatoid Arthritis in the Taiwanese population | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蕭朱杏(Chu-Hsiang Hsiao),蕭自宏(Tzu-Hung Hsiao) | |
| dc.subject.keyword | 類風濕性關節炎,全基因體關聯性研究,臺灣, | zh_TW |
| dc.subject.keyword | rheumatoid arthritis,GWAS,Taiwan, | en |
| dc.relation.page | 39 | |
| dc.identifier.doi | 10.6342/NTU202001662 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2020-07-21 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2007202020113000.pdf | 2.38 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
