Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 基因體暨蛋白體醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84242
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳沛隆zh_TW
dc.contributor.advisorPei-Lung Chenen
dc.contributor.author甘嘉敏zh_TW
dc.contributor.authorKa-Man Kamen
dc.date.accessioned2023-03-19T22:06:55Z-
dc.date.available2025-01-18-
dc.date.copyright2022-10-17-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation1. 衛生福利部. 我有葛瑞夫茲氏病,我該選擇何種治療方式?. 醫病共享決策輔助工具 2022.
2. Kotwal, A. and M. Stan, Thyrotropin Receptor Antibodies-An Overview. Ophthalmic Plast Reconstr Surg, 2018. 34(4S Suppl 1): p. S20-S27.
3. DeGroot, L.J., Graves' Disease and the Manifestations of Thyrotoxicosis, in Endotext, K.R. Feingold, et al., Editors. 2000: South Dartmouth (MA).
4. Kim, H., J. Lee, and J. Ha, A case of antithyroid drug-induced agranulocytosis from a second antithyroid drugs (ATD) administration in a relapsed Graves' disease patient who was tolerant to the first ATD treatment. Clin Case Rep, 2018. 6(9): p. 1701-1703.
5. Park, M.H., et al., Association of HLA-DR and -DQ genes with Graves disease in Koreans. Hum Immunol, 2005. 66(6): p. 741-7.
6. Jacobson, E.M., A. Huber, and Y. Tomer, The HLA gene complex in thyroid autoimmunity: from epidemiology to etiology. J Autoimmun, 2008. 30(1-2): p. 58-62.
7. Liao, W.L., et al., Analysis of HLA Variants and Graves' Disease and Its Comorbidities Using a High Resolution Imputation System to Examine Electronic Medical Health Records. Front Endocrinol (Lausanne), 2022. 13: p. 842673.
8. Rosenstein, Y., et al., Direct evidence for binding of CD8 to HLA class I antigens. J Exp Med, 1989. 169(1): p. 149-60.
9. Piatier-Tonneau, D., et al., Interaction of CD4 with HLA class II antigens and HIV gp120. Immunogenetics, 1991. 34(2): p. 121-8.
10. Grifoni, A., et al., Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell, 2020. 181(7): p. 1489-1501 e15.
11. Taneja, V. and C.S. David, HLA Transgenic mice as humanized mouse models of disease and immunity. Journal of Clinical Investigation, 1998. 101(5): p. 921-926.
12. Liu, C., Strategies for designing transgenic DNA constructs. Methods Mol Biol, 2013. 1027: p. 183-201.
13. Goodwin, L.O., et al., Large-scale discovery of mouse transgenic integration sites reveals frequent structural variation and insertional mutagenesis. Genome Res, 2019. 29(3): p. 494-505.
14. Schluter, A., et al., Graves' orbitopathy occurs sex-independently in an autoimmune hyperthyroid mouse model. Sci Rep, 2018. 8(1): p. 13096.
15. Jinek, M., et al., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012. 337(6096): p. 816-21.
16. Lee, H.J., H.J. Kim, and S.J. Lee, CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs. Genome Res, 2020. 30(5): p. 768-775.
17. Yoshimi, K., et al., Combi-CRISPR: combination of NHEJ and HDR provides efficient and precise plasmid-based knock-ins in mice and rats. Human Genetics, 2021. 140(2): p. 277-287.
18. Angelo, L., R. Niederer, and R. Hart, The epidemiology of thyroid eye disease in New Zealand. Clinical and Experimental Ophthalmology, 2019. 47: p. 52-52.
19. Ji, D.Y., et al., Comparative assessment of Graves' disease and main extrathyroidal manifestation, Graves' ophthalmopathy, by non-targeted metabolite profiling of blood and orbital tissue. Scientific Reports, 2018. 8.
20. Sengupta, J., et al., An observational study of incidence of metabolic syndrome among patients with controlled Grave's disease. Clinical Epidemiology and Global Health, 2022. 15.
21. Xiong, H., et al., Genetic associations of the thyroid stimulating hormone receptor gene with Graves diseases and Graves ophthalmopathy: A meta-analysis. Sci Rep, 2016. 6: p. 30356.
22. Segundo, C., et al., Thyroid-infiltrating B lymphocytes in Graves' disease are related to marginal zone and memory B cell compartments. Thyroid, 2001. 11(6): p. 525-30.
23. Wu, Z., et al., Perforin expression by thyroid-infiltrating T cells in autoimmune thyroid disease. Clin Exp Immunol, 1994. 98(3): p. 470-7.
24. Weider, T., et al., HLA Class I Upregulation and Antiviral Immune Responses in Graves Disease. J Clin Endocrinol Metab, 2021. 106(4): p. e1763-e1774.
25. Sospedra, M., et al., Hyperinducibility of HLA class II expression of thyroid follicular cells from Graves' disease. A primary defect? J Immunol, 1995. 154(8): p. 4213-22.
26. Chen, P.L., et al., Comprehensive genotyping in two homogeneous Graves' disease samples reveals major and novel HLA association alleles. PLoS One, 2011. 6(1): p. e16635.
27. Vicente, N., et al., Antithyroid Drug-Induced Agranulocytosis: State of the Art on Diagnosis and Management. Drugs R D, 2017. 17(1): p. 91-96.
28. Bahn, R.S., News and views: at long last, an animal model of Graves' orbitopathy. Endocrinology, 2013. 154(9): p. 2989-91.
29. Li, D., et al., Polymorphism in the major histocompatibility complex (MHC class II B) genes of the Rufous-backed Bunting (Emberiza jankowskii). PeerJ, 2017. 5: p. e2917.
30. Teh, H.S., et al., Thymic major histocompatibility complex antigens and the alpha beta T-cell receptor determine the CD4/CD8 phenotype of T cells. Nature, 1988. 335(6187): p. 229-33.
31. Nakamura, T., et al., The Role of Major Histocompatibility Complex in Organ Transplantation- Donor Specific Anti-Major Histocompatibility Complex Antibodies Analysis Goes to the Next Stage. Int J Mol Sci, 2019. 20(18).
32. Shiina, T., et al., Comparative genomics of the human, macaque and mouse major histocompatibility complex. Immunology, 2017. 150(2): p. 127-138.
33. Ohtsuka, M., et al., Major histocompatibility complex (Mhc) class Ib gene duplications, organization and expression patterns in mouse strain C57BL/6. BMC Genomics, 2008. 9: p. 178.
34. Anaya, J.-M., et al., Autoimmunity : from bench to bedside first edition.
35. Strauss, J.H., E.G. Strauss, and ProQuest, Viruses and human disease. 2nd ed. 2008, Amsterdam ; Boston: Elsevier / Academic Press.
36. Reche, P.A. and E.L. Reinherz, Sequence variability analysis of human class I and class II MHC molecules: functional and structural correlates of amino acid polymorphisms. J Mol Biol, 2003. 331(3): p. 623-41.
37. Fisette, O., G.F. Schroder, and L.V. Schafer, Atomistic structure and dynamics of the human MHC-I peptide-loading complex. Proc Natl Acad Sci U S A, 2020. 117(34): p. 20597-20606.
38. Voelkl, S., et al., Characterization of MHC class-I restricted TCRalphabeta+ CD4- CD8- double negative T cells recognizing the gp100 antigen from a melanoma patient after gp100 vaccination. Cancer Immunol Immunother, 2009. 58(5): p. 709-18.
39. Kiepiela, P., et al., Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature, 2004. 432(7018): p. 769-75.
40. Chen, P.L., et al., Genetic determinants of antithyroid drug-induced agranulocytosis by human leukocyte antigen genotyping and genome-wide association study. Nat Commun, 2015. 6: p. 7633.
41. de Jong, J.M., et al., Dendritic cells, but not macrophages or B cells, activate major histocompatibility complex class II-restricted CD4+ T cells upon immune-complex uptake in vivo. Immunology, 2006. 119(4): p. 499-506.
42. Rezaei, N., et al., Encyclopedia of infection and immunity. 2022, Amsterdam, Netherlands London: Elsevier B.V ScienceDirect.
43. Zhang, L., et al., A Newly Recognized Pairing Mechanism of the alpha- and beta-Chains of the Chicken Peptide-MHC Class II Complex. J Immunol, 2020. 204(6): p. 1630-1640.
44. Vignali, D.A., et al., Species-specific binding of CD4 to the beta 2 domain of major histocompatibility complex class II molecules. J Exp Med, 1992. 175(4): p. 925-32.
45. Couture, A., et al., HLA-Class II Artificial Antigen Presenting Cells in CD4(+) T Cell-Based Immunotherapy. Front Immunol, 2019. 10: p. 1081.
46. Duarte, R., et al., HLA class II alleles as markers of tuberculosis susceptibility and resistance. Rev Port Pneumol, 2011. 17(1): p. 15-9.
47. Kimmel, P.L., M.E. Rosenberg, and ScienceDirect, Chronic renal disease. 2015, San Diego, California ; London, England: Academic Press.
48. Brooks, E.G., et al., Human T-cell receptor (TCR) alpha/beta + CD4-CD8- T cells express oligoclonal TCRs, share junctional motifs across TCR V beta-gene families, and phenotypically resemble memory T cells. Proc Natl Acad Sci U S A, 1993. 90(24): p. 11787-91.
49. Mak, T.W., et al., The immune response : basic and clinical principles. 2006, Elsevier/Academic: Amsterdam ; Boston.
50. Kabelitz, D., J. Bhat, and ScienceDirect, Epigenetics of the immune system. Translational epigenetics series volume 16. 2020, London, United Kingdom: Academic Press.
51. Kappes, D.J., X. He, and X. He, CD4-CD8 lineage commitment: an inside view. Nat Immunol, 2005. 6(8): p. 761-6.
52. Singer, A., S. Adoro, and J.H. Park, Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice. Nat Rev Immunol, 2008. 8(10): p. 788-801.
53. Hsieh, C.S., H.M. Lee, and C.W. Lio, Selection of regulatory T cells in the thymus. Nat Rev Immunol, 2012. 12(3): p. 157-67.
54. Ellmeier, W., L. Haust, and R. Tschismarov, Transcriptional control of CD4 and CD8 coreceptor expression during T cell development. Cell Mol Life Sci, 2013. 70(23): p. 4537-53.
55. Naeim, F., et al., Hematopathology : morphology, immunophenotype, cytogenetics, and molecular approaches. 1st ed. Medicine and Dentistry 2009 : Subject Collection. 2008, Amsterdam ; Boston: Elsevier/Academic Press.
56. Landau, N.R., M. Warton, and D.R. Littman, The envelope glycoprotein of the human immunodeficiency virus binds to the immunoglobulin-like domain of CD4. Nature, 1988. 334(6178): p. 159-62.
57. Laing, K.J., et al., Evolution of the CD4 family: teleost fish possess two divergent forms of CD4 in addition to lymphocyte activation gene-3. J Immunol, 2006. 177(6): p. 3939-51.
58. Wang, J.H., et al., Crystal structure of the human CD4 N-terminal two-domain fragment complexed to a class II MHC molecule. Proc Natl Acad Sci U S A, 2001. 98(19): p. 10799-804.
59. Vignali, D.A., et al., Interactions of CD4 with MHC class II molecules, T cell receptors and p56lck. Philos Trans R Soc Lond B Biol Sci, 1993. 342(1299): p. 13-24.
60. Christie, D. and J. Zhu, Transcriptional regulatory networks for CD4 T cell differentiation. Curr Top Microbiol Immunol, 2014. 381: p. 125-72.
61. Huang, H., et al., CD4+ Th1 cells promote CD8+ Tc1 cell survival, memory response, tumor localization and therapy by targeted delivery of interleukin 2 via acquired pMHC I complexes. Immunology, 2007. 120(2): p. 148-59.
62. Wan, Y.Y. and R.A. Flavell, 'Yin-Yang' functions of transforming growth factor-beta and T regulatory cells in immune regulation. Immunol Rev, 2007. 220: p. 199-213.
63. Okoye, A.A. and L.J. Picker, CD4(+) T-cell depletion in HIV infection: mechanisms of immunological failure. Immunol Rev, 2013. 254(1): p. 54-64.
64. Victor Garcia, J., Humanized mice for HIV and AIDS research. Curr Opin Virol, 2016. 19: p. 56-64.
65. Browning, J., et al., Mice transgenic for human CD4 and CCR5 are susceptible to HIV infection. Proc Natl Acad Sci U S A, 1997. 94(26): p. 14637-41.
66. Seay, K., et al., Mice transgenic for CD4-specific human CD4, CCR5 and cyclin T1 expression: a new model for investigating HIV-1 transmission and treatment efficacy. PLoS One, 2013. 8(5): p. e63537.
67. Rahemtulla, A., et al., Normal development and function of CD8+ cells but markedly decreased helper cell activity in mice lacking CD4. Nature, 1991. 353(6340): p. 180-4.
68. Seagal, J., et al., Use of human CD4 transgenic mice for studying immunogenicity of HIV-1 envelope protein gp120. Transgenic Res, 2001. 10(2): p. 113-20.
69. Laugel, B., et al., The multiple roles of the CD8 coreceptor in T cell biology: opportunities for the selective modulation of self-reactive cytotoxic T cells. J Leukoc Biol, 2011. 90(6): p. 1089-99.
70. Reference Module in Biomedical Sciences. Elsevier.
71. Delves, P.J., et al., Encyclopedia of immunology. 2nd ed. 1998, San Diego: Academic Press.
72. Nagarajan, U.M., C. O'Connell, and R.G. Rank, Molecular characterization of guinea - pig (Cavia porcellus) CD8alpha and CD8beta cDNA. Tissue Antigens, 2004. 63(2): p. 184-9.
73. Kern, P.S., et al., Structural basis of CD8 coreceptor function revealed by crystallographic analysis of a murine CD8alphaalpha ectodomain fragment in complex with H-2Kb. Immunity, 1998. 9(4): p. 519-30.
74. Wang, R., K. Natarajan, and D.H. Margulies, Structural basis of the CD8 alpha beta/MHC class I interaction: focused recognition orients CD8 beta to a T cell proximal position. J Immunol, 2009. 183(4): p. 2554-64.
75. Kelso, A., et al., The genes for perforin, granzymes A-C and IFN-gamma are differentially expressed in single CD8(+) T cells during primary activation. Int Immunol, 2002. 14(6): p. 605-13.
76. Meiraz, A., et al., Switch from perforin-expressing to perforin-deficient CD8(+) T cells accounts for two distinct types of effector cytotoxic T lymphocytes in vivo. Immunology, 2009. 128(1): p. 69-82.
77. Goulding, J., et al., CD8 T cells use IFN-gamma to protect against the lethal effects of a respiratory poxvirus infection. J Immunol, 2014. 192(11): p. 5415-25.
78. Sanders, S.K., R.O. Fox, and P. Kavathas, Mutations in Cd8 That Affect Interactions with Hla Class-I and Monoclonal Anti-Cd8 Antibodies. Journal of Experimental Medicine, 1991. 174(2): p. 371-379.
79. LaFace, D.M., et al., Human CD8 transgene regulation of HLA recognition by murine T cells. J Exp Med, 1995. 182(5): p. 1315-25.
80. Tishon, A., et al., Transgenic mice expressing human HLA and CD8 molecules generate HLA-restricted measles virus cytotoxic T lymphocytes of the same specificity as humans with natural measles virus infection. Virology, 2000. 275(2): p. 286-93.
81. Hollander, G.A., et al., Functional expression of human CD8 in fully reconstituted mice after retroviral-mediated gene transfer of hemopoietic stem cells. J Immunol, 1992. 149(2): p. 438-44.
82. 賴昱璁, 建立擬人化主要組織相容性複合體免疫模式小鼠, in 基因體暨蛋白體醫學研究所. 2021, 國立臺灣大學. p. 1-53.
83. Quiniou, S.M., et al., Channel catfish CD8alpha and CD8beta co-receptors: characterization, expression and polymorphism. Fish Shellfish Immunol, 2011. 30(3): p. 894-901.
84. 林郁鈞, 開發研究人類疾病的新免疫基因組學平台, in 基因體暨蛋白體醫學研究所. 2020, 國立臺灣大學.
85. Law, Y.M., et al., Human CD4 restores normal T cell development and function in mice deficient in murine CD4. J Exp Med, 1994. 179(4): p. 1233-42.
86. Kim, D.K., et al., A human mutant CD4 molecule resistant to HIV-1 binding restores helper T-lymphocyte functions in murine CD4-deficient mice. Exp Mol Med, 2007. 39(1): p. 1-7.
87. Vignali, D.A., et al., The two membrane proximal domains of CD4 interact with the T cell receptor. J Exp Med, 1996. 183(5): p. 2097-107.
88. Wang, H., et al., A point mutation in the extracellular domain of CD4 completely abolishes CD4 T cell development in C57BL/6 mouse. Mol Immunol, 2017. 92: p. 12-20.
89. Xie, J., et al., The influences of age on T lymphocyte subsets in C57BL/6 mice. Saudi J Biol Sci, 2017. 24(1): p. 108-113.
90. Ohsugi, T. and T. Kumasaka, Low CD4/CD8 T-cell ratio associated with inflammatory arthropathy in human T-cell leukemia virus type I Tax transgenic mice. PLoS One, 2011. 6(4): p. e18518.
91. Fang, S.J., et al., Mechanisms That Underly T Cell Immunity in Graves' Orbitopathy. Frontiers in Endocrinology, 2021. 12.
92. McBride, J.A. and R. Striker, Imbalance in the game of T cells: What can the CD4/CD8 T-cell ratio tell us about HIV and health? Plos Pathogens, 2017. 13(11).
93. Hema, M.N., et al., Low CD4/CD8 Ratio Is Associated with Non AIDS-Defining Cancers in Patients on Antiretroviral Therapy: ANRS C08 (Aproco/Copilote) Prospective Cohort Study. Plos One, 2016. 11(8).
94. Owen, J.A., et al., Kuby immunology. 7th ed. 2013, New York: W.H. Freeman. xxvii, 692, [109] pages : illustrations (some color).
95. Laface, D.M., et al., Human Cd8 Transgene Regulation of Hla Recognition by Murine T-Cells. Journal of Experimental Medicine, 1995. 182(5): p. 1315-1325.
96. Irwin, M.J., W.R. Heath, and L.A. Sherman, Species-Restricted Interactions between Cd8 and the Alpha-3 Domain of Class-I Influence the Magnitude of the Xenogeneic Response. Journal of Experimental Medicine, 1989. 170(4): p. 1091-1101.
97. Orr, H.T., et al., Comparison of amino acid sequences of two human histocompatibility antigens, HLA-A2 and HLA-B7: location of putative alloantigenic sites. Proc Natl Acad Sci U S A, 1979. 76(9): p. 4395-9.
98. Ober, B.T., et al., Affinity of thymic self-peptides for the TCR determines the selection of CD8(+) T lymphocytes in the thymus. International Immunology, 2000. 12(9): p. 1353-1363.
99. Pallotto, C., et al., Increased CD4/CD8 ratio as a risk factor for critical illness in coronavirus disease 2019 (COVID-19): a retrospective multicentre study. Infectious Diseases, 2020. 52(9): p. 675-677.
100. Hernandez, O., T. Oweity, and S. Ibrahim, Is an increase in CD4/CD8 T-cell ratio in lymph node fine needle aspiration helpful for diagnosing Hodgkin lymphoma? A study of 85 lymph node FNAs with increased CD4/CD8 ratio. Cytojournal, 2005. 2: p. 14.
101. Yates, A.J., Theories and quantification of thymic selection. Frontiers in Immunology, 2014. 5.
102. Sinclair, C., et al., Asymmetric thymocyte death underlies the CD4:CD8 T-cell ratio in the adaptive immune system. Proc Natl Acad Sci U S A, 2013. 110(31): p. E2905-14.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84242-
dc.description.abstract葛瑞夫茲氏病(Graves' disease, GD)為甲狀腺機能亢進之疾病之一,其亦為常見之自體免疫甲狀腺疾病,而人類白血球抗原(human leukocyte antigen, HLA)基因之多態性(polymorphism)與GD之引發相關,兩者之關聯仍待釐清。前人研究 HLA之動物模式較常以轉基因小鼠為主,但其以隨機性基因插入方式,具非特異性位點插入之問題,影響致病機制之表現,而本研究則利用CRISPR-Cas9技術及其特性,精確且特異性敲入目標基因,建立擬人化CD4(humanized CD4 knock in mice, hCD4 KI mice)及CD8(humanized CD8 knock in mice, hCD8 KI mice)兩種協助HLA抗原呈獻基因之小鼠模式,以利探討GD以及HLA相關之疾病。本實驗室前人已成功建立hCD4 KI mice及hCD8 KI mice模式,但其DNA、蛋白質及功能性仍未探討,故本研究旨在鑑定與分析兩小鼠模式之DNA,以及其T細胞之蛋白質表現、活化與增殖能力。依結果顯示,在DNA及蛋白質表現上,hCD4 KI mice及hCD8 KI mice分別成功攜帶human CD4(hCD4)與human CD8(hCD8)序列,淋巴細胞表面則亦分別表達hCD4和hCD8之標誌物,然從純合子hCD4 KI mice及純合子hCD8 KI mice中發現,前者胸腺中hCD4單陽性T細胞數量顯著減少,而mouse CD8(mCD8)單陽性T細胞增多,導致周邊以及脾臟成熟之hCD4+ T細胞減少、mCD8+ T細胞增多,引起CD4/CD8比值降低;後者胸腺中mouse CD4(mCD4)單陽性T細胞無顯著變化,但hCD8單陽性T細胞數量顯著減少,而使周邊成熟之hCD8+ T細胞及mouse CD3+ T細胞數量亦隨之下降,造成CD4/CD8之比值上升。不過在體重、T細胞活化與增殖、組織染色及全血液分析結果中,皆顯示兩小鼠模式與野生型小鼠無顯著差異,且實際觀察中,亦無異常死亡或重大免疫缺陷。綜合上述結果,本研究推測hCD4或hCD8之敲入對小鼠並無重大之影響,hCD4 KI mice及hCD8 KI mice可應用於未來免疫相關之研究。zh_TW
dc.description.abstractGraves’ disease (GD) is one of the hyperthyroidism diseases which commonly occur as autoimmune thyroid disease, and have been shown that the cause of GD is related to the polymorphism of the human leukocyte antigen (HLA) gene. To understand the pathogenic mechanism between GD and HLA gene, the HLA transgenic mice has been established through the random insertion of transgenes in previous studies. However, this animal transgenic method is limited by the occurrence of non-specific loci insertion that may affect the pathogenic mechanism. In this study, CRISPR-Cas9 technology was applied to specifically knock in the target gene to establish the mice models. CD4 and CD8 assist in HLA antigen presentation are applied to establish the humanized CD4 knock-in mice (hCD4 KI mice) and humanized CD8 knock-in mice (hCD8 KI mice), so as to facilitate the investigation of GD and HLA related diseases. hCD4 KI mice and hCD8 KI mice are successfully established by predecessors in our laboratory, but the DNA, protein, and functionality of these two mice have not yet been explored. Therefore, this study aims to identify the DNA, and further investigate the protein expression and functionality of T cell of these two mice models. According to our results, hCD4 KI mice and hCD8 KI mice successfully carried human CD4 (hCD4) and human CD8 (hCD8) DNA sequences respectively. And, the lymphocyte surface also expressed markers of hCD4 and hCD8, respectively. In homozygous hCD4 KI mice, the number of hCD4 single positive T cells in the thymus was significantly decreased, but the number of mice CD8 (mCD8) single positive T cells in the thymus was significantly increased, which led to the decrease of hCD4+ T cells and the increase of mCD8+ T cells in peripheral blood and spleen, resulting in the decrease of CD4/CD8 ratio. In homozygous hCD8 KI mice, there was no significant change in mice CD4 (mCD4) single positive T cells in the thymus, but the number of hCD8 single positive T cells was significantly decreased in the thymus. In peripheral, the number of hCD8+ T cells and mice CD3+ T cells was decreased and resulting in an increase in the ratio of CD4/CD8. Finally, the body weight, activation and proliferation of T cell, tissue staining and whole blood analysis were no significantly difference between two mice model and wild type mice. In addition, there was no abnormal death or major immune deficiency in actual observation.
Above all, this study suggests that the knock in of hCD4 or hCD8 had no significant effect on mice, and that hCD4 KI mice and hCD8 KI mice could be used in future immune related studies.
en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:06:55Z (GMT). No. of bitstreams: 1
U0001-2509202218443700.pdf: 4960928 bytes, checksum: dadef1fb3bf87533976272f9ee003c6a (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
ABSTRACT iv
目次 vi
圖次 ix
表次 xii
第一章 緒論 1
第二章 文獻探討 3
2.1 葛瑞夫茲氏病 3
2.2 主要組織相容性複合體 3
2.2. 1 MHC class I 4
2.2.2 MHC class II 4
2.3 T細胞及其表面分子CD4、CD8 5
2.3.1 T細胞(T cell) 5
2.3.2 表面抗原分化簇4受體(Cluster of Differentiation 4 receptors) 6
2.3.3 CD4相關小鼠模式 6
2.3.4 表面抗原分化簇8受體(Cluster of Differentiation 8 receptors) 7
2.3.5 CD8相關小鼠模式 8
2.4 研究目的 8
第三章 試驗方法 9
3.1 動物來源及建構 9
3.2 聚合酶連鎖反應鑑定小鼠基因型 10
3.3 脾細胞及胸腺細胞分離 10
3.4 全血分離淋巴細胞 10
3.5 T細胞活化及增殖試驗 11
3.6 流式細胞儀分析 11
3.6.1 脾細胞及淋巴細胞之免疫表型分析 11
3.6.2 T細胞活化及增殖之情況 11
3.6.3 胸腺細胞之發育情況 12
3.7 酵素結合免疫吸附分析法檢測IFN-γ 12
3.8 石臘切片及蘇木精-伊紅染色 12
3.9 全血細胞計數分析 12
3.10 統計方法 13
第四章 試驗結果 14
4.1 hCD4 KI mice 14
4.1.1 hCD4 KI mice之流式細胞儀免疫表型分析結果 14
4.1.2 hCD4 KI mice之胸腺細胞發育分析 15
4.1.3 hCD4 KI mice之T細胞活化與增殖能力分析 15
4.1.4 hCD4 KI mice之生理學分析 15
4.2 hCD8 KI mice 16
4.2.1 hCD8 KI mice之流式細胞儀免疫表型分析結果 16
4.2.2 hCD8 KI mice之胸腺細胞發育分析 16
4.2.3 hCD8 KI mice之T細胞活化與增殖能力分析 17
4.2.4 hCD8 KI mice之生理學分析 17
第五章 討論 18
5.1 hCD4 KI mice 18
5.2 hCD8 KI mice 20
5.3 綜合討論 21
第六章 結論 23
參考文獻 57
附錄 68
-
dc.language.isozh_TW-
dc.subjectCD8zh_TW
dc.subject人類白血球抗原zh_TW
dc.subject葛瑞夫茲氏病zh_TW
dc.subjectCD4zh_TW
dc.subjectCRISPR-Cas9zh_TW
dc.subjectHuman Leukocyte Antigenen
dc.subjectCD8en
dc.subjectGraves' diseaseen
dc.subjectCD4en
dc.subjectCRISPR-Cas9en
dc.title擬人化CD8小鼠以及擬人化CD4小鼠之表徵分析zh_TW
dc.titleCharacterization of humanized CD4 mouse and humanized CD8 mouseen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee莊雅惠;游益興;陳佑宗zh_TW
dc.contributor.oralexamcommitteeYa-Hui Chuang;I-Shing Yu;You-Tzung Chenen
dc.subject.keywordCD4,CD8,CRISPR-Cas9,葛瑞夫茲氏病,人類白血球抗原,zh_TW
dc.subject.keywordCD4,CD8,CRISPR-Cas9,Graves' disease,Human Leukocyte Antigen,en
dc.relation.page73-
dc.identifier.doi10.6342/NTU202204013-
dc.rights.note未授權-
dc.date.accepted2022-09-27-
dc.contributor.author-college醫學院-
dc.contributor.author-dept基因體暨蛋白體醫學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:基因體暨蛋白體醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  未授權公開取用
4.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved