請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84234完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐治平(Jyh-Ping Hsu) | |
| dc.contributor.author | Yung-Chi Yang | en |
| dc.contributor.author | 楊詠琪 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:06:47Z | - |
| dc.date.copyright | 2022-07-08 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-06-24 | |
| dc.identifier.citation | 1. Zhang, H.; Hou, X.; Zeng, L.; Yang, F.; Li, L.; Yan, D.; Tian, Y.; Jiang, L., Bioinspired Artificial Single Ion Pump. Journal of the American Chemical Society 2013, 135, 16102-16110. 2. Wu, X.; Ramiah Rajasekaran, P.; Martin, C. R., An Alternating Current Electroosmotic Pump Based on Conical Nanopore Membranes. ACS Nano 2016, 10, 4637-4643. 3. Zhang, Y.; Schatz, G. C., Conical Nanopores for Efficient Ion Pumping and Desalination. The Journal of Physical Chemistry Letters 2017, 8, 2842-2848. 4. Zhang, Y.; Schatz, G. C., Advantages of Conical Pores for Ion Pumps. The Journal of Physical Chemistry C 2017, 121, 161-168. 5. Buchsbaum, S. F.; Nguyen, G.; Howorka, S.; Siwy, Z. S., DNA-Modified Polymer Pores Allow Ph- and Voltage-Gated Control of Channel Flux. Journal of the American Chemical Society 2014, 136, 9902-9905. 6. Gao, P.; Ma, Q.; Ding, D.; Wang, D.; Lou, X.; Zhai, T.; Xia, F., Distinct Functional Elements for Outer-Surface Anti-Interference and Inner-Wall Ion Gating of Nanochannels. Nature Communications 2018, 9, 4557. 7. Zhang, Z.; Kong, X.-Y.; Xiao, K.; Xie, G.; Liu, Q.; Tian, Y.; Zhang, H.; Ma, J.; Wen, L.; Jiang, L., A Bioinspired Multifunctional Heterogeneous Membrane with Ultrahigh Ionic Rectification and Highly Efficient Selective Ionic Gating. Adv. Mater. 2016, 28, 144-150. 8. Zhang, Z.; Sui, X.; Li, P.; Xie, G.; Kong, X.-Y.; Xiao, K.; Gao, L.; Wen, L.; Jiang, L., Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion. Journal of the American Chemical Society 2017, 139, 8905-8914. 9. Hsu, J.-P.; Lin, S.-C.; Lin, C.-Y.; Tseng, S., Power Generation by a Ph-Regulated Conical Nanopore through Reverse Electrodialysis. Journal of Power Sources 2017, 366, 169-177. 10. Yeh, L.-H.; Chen, F.; Chiou, Y.-T.; Su, Y.-S., Anomalous Ph-Dependent Nanofluidic Salinity Gradient Power. Small 2017, 13, 1702691. 11. Tseng, S.; Li, Y.-M.; Lin, C.-Y.; Hsu, J.-P., Salinity Gradient Power: Influences of Temperature and Nanopore Size. Nanoscale 2016, 8, 2350-2357. 12. Davidson, C.; Xuan, X., Electrokinetic Energy Conversion in Slip Nanochannels. Journal of Power Sources 2008, 179, 297-300. 13. Xuan, X., Ion Separation in Nanofluidics. 2008, 29, 3737-3743. 14. Xuan, X.; Li, D., Solute Separation in Nanofluidic Channels: Pressure-Driven or Electric Field-Driven? 2007, 28, 627-634. 15. Liu, X.; Liu, C.; Yang, J.; Zhang, R.; Zeng, Q.; Wang, L., Detection and Fem Studies of Dichromate (Cr2o72−) by Allyltriethoxysilane Modified Nanochannel. J. Electroanal. Chem. 2020, 858, 113818. 16. Roozbahani, G. M.; Chen, X.; Zhang, Y.; Juarez, O.; Li, D.; Guan, X., Computation-Assisted Nanopore Detection of Thorium Ions. Analytical Chemistry 2018, 90, 5938-5944. 17. Ali, M.; Nasir, S.; Ramirez, P.; Cervera, J.; Mafe, S.; Ensinger, W., Calcium Binding and Ionic Conduction in Single Conical Nanopores with Polyacid Chains: Model and Experiments. ACS Nano 2012, 6, 9247-9257. 18. Zhan, K.; Li, Z.; Chen, J.; Hou, Y.; Zhang, J.; Sun, R.; Bu, Z.; Wang, L.; Wang, M.; Chen, X., et al., Tannic Acid Modified Single Nanopore with Multivalent Metal Ions Recognition and Ultra-Trace Level Detection. Nano Today 2020, 33, 100868. 19. Niu, B.; Xiao, K.; Huang, X.; Zhang, Z.; Kong, X.-Y.; Wang, Z.; Wen, L.; Jiang, L., High-Sensitivity Detection of Iron(Iii) by Dopamine-Modified Funnel-Shaped Nanochannels. ACS Applied Materials & Interfaces 2018, 10, 22632-22639. 20. Liu, L.; Fang, Z.; Zheng, X.; Xi, D., Nanopore-Based Strategy for Sensing of Copper(Ii) Ion and Real-Time Monitoring of a Click Reaction. ACS Sensors 2019, 4, 1323-1328. 21. Liu, G.; Zhang, L.; Dong, D.; Liu, Y.; Li, J., A Label-Free Dnazyme-Based Nanopore Biosensor for Highly Sensitive and Selective Lead Ion Detection. Analytical Methods 2016, 8, 7040-7046. 22. Heerema, S. J.; Vicarelli, L.; Pud, S.; Schouten, R. N.; Zandbergen, H. W.; Dekker, C., Probing DNA Translocations with Inplane Current Signals in a Graphene Nanoribbon with a Nanopore. ACS Nano 2018, 12, 2623-2633. 23. Cao, C.; Ying, Y. L.; Hu, Z. L.; Liao, D. F.; Tian, H.; Long, Y. T., Discrimination of Oligonucleotides of Different Lengths with a Wild-Type Aerolysin Nanopore. Nat Nanotechnol 2016, 11, 713-8. 24. Vlassiouk, I.; Smirnov, S.; Siwy, Z., Ionic Selectivity of Single Nanochannels. Nano Lett. 2008, 8, 1978-1985. 25. Jia, M.; Kim, T., Multiphysics Simulation of Ion Concentration Polarization Induced by Nanoporous Membranes in Dual Channel Devices. Analytical Chemistry 2014, 86, 7360-7367. 26. Yeh, L.-H.; Zhang, M.; Qian, S.; Hsu, J.-P.; Tseng, S., Ion Concentration Polarization in Polyelectrolyte-Modified Nanopores. The Journal of Physical Chemistry C 2012, 116, 8672-8677. 27. Siwy, Z. S.; Howorka, S., Engineered Voltage-Responsive Nanopores. Chemical Society Reviews 2010, 39, 1115-1132. 28. Ai, Y.; Zhang, M.; Joo, S. W.; Cheney, M. A.; Qian, S., Effects of Electroosmotic Flow on Ionic Current Rectification in Conical Nanopores. The Journal of Physical Chemistry C 2010, 114, 3883-3890. 29. Hsu, J.-P.; Lin, T.-W.; Lin, C.-Y.; Tseng, S., Salt-Dependent Ion Current Rectification in Conical Nanopores: Impact of Salt Concentration and Cone Angle. The Journal of Physical Chemistry C 2017, 121, 28139-28147. 30. White, H. S.; Bund, A., Ion Current Rectification at Nanopores in Glass Membranes. Langmuir 2008, 24, 2212-2218. 31. Daiguji, H.; Oka, Y.; Shirono, K., Nanofluidic Diode and Bipolar Transistor. Nano Lett. 2005, 5, 2274-2280. 32. Cao, L.; Guo, W.; Wang, Y.; Jiang, L., Concentration-Gradient-Dependent Ion Current Rectification in Charged Conical Nanopores. Langmuir 2012, 28, 2194-2199. 33. Lin, T.-W.; Hsu, J.-P.; Lin, C.-Y.; Tseng, S., Dual Ph Gradient and Voltage Modulation of Ion Transport and Current Rectification in Biomimetic Nanopores Functionalized with a Ph-Tunable Polyelectrolyte. The Journal of Physical Chemistry C 2019, 123, 12437-12443. 34. Ding, D.; Gao, P.; Ma, Q.; Wang, D.; Xia, F., Biomolecule-Functionalized Solid-State Ion Nanochannels/Nanopores: Features and Techniques. Small 2019, 15, 1804878. 35. Lin, C.-Y.; Ma, T.; Siwy, Z. S.; Balme, S.; Hsu, J.-P., Tunable Current Rectification and Selectivity Demonstrated in Nanofluidic Diodes through Kinetic Functionalization. The Journal of Physical Chemistry Letters 2020, 11, 60-66. 36. Lepoitevin, M.; Jamilloux, B.; Bechelany, M.; Balanzat, E.; Janot, J.-M.; Balme, S., Fast and Reversible Functionalization of a Single Nanopore Based on Layer-by-Layer Polyelectrolyte Self-Assembly for Tuning Current Rectification and Designing Sensors. RSC Advances 2016, 6, 32228-32233. 37. Khalid, W.; Abbasi, M. A.; Ali, M.; Ali, Z.; Atif, M.; Trautmann, C.; Ensinger, W., Zinc Ion Driven Ionic Conduction through Single Asymmetric Nanochannels Functionalized with Nanocomposites. Electrochimica Acta 2020, 337, 135810. 38. Wu, X.; Experton, J.; Xu, W.; Martin, C. R., Chemoresponsive Nanofluidic Pump That Turns Off in the Presence of Lead Ion. Analytical Chemistry 2018, 90, 7715-7720. 39. Zhao, X.-P.; Wang, S.-S.; Younis, M. R.; Xia, X.-H.; Wang, C., Asymmetric Nanochannel–Ionchannel Hybrid for Ultrasensitive and Label-Free Detection of Copper Ions in Blood. Analytical Chemistry 2018, 90, 896-902. 40. Ali, M.; Ahmed, I.; Ramirez, P.; Nasir, S.; Cervera, J.; Mafe, S.; Niemeyer, C. M.; Ensinger, W., Cesium-Induced Ionic Conduction through a Single Nanofluidic Pore Modified with Calixcrown Moieties. Langmuir 2017, 33, 9170-9177. 41. Dozol, J. F.; Casas i Garcia, J.; Sastre, A. M., Application of Crown-Ethers to Caesium and Strontium Removal from Marcoule Reprocessing Concentrate. In New Separation Chemistry Techniques for Radioactive Waste and Other Specific Applications, Cecille, M. L.; Casarci, M.; Pietrelli, L., Eds. Springer Netherlands: Dordrecht, 1991; pp 173-185. 42. Dozol, M., Possible Applications of Crown-Ethers to Metal Extraction Using Liquid Membrane Technology a Literature Survey. In New Separation Chemistry Techniques for Radioactive Waste and Other Specific Applications, Cecille, M. L.; Casarci, M.; Pietrelli, L., Eds. Springer Netherlands: Dordrecht, 1991; pp 163-172. 43. Hsu, J.-P.; Chen, Y.-C.; Wu, C.-T., Detection of the Trace Level of Heavy Metal Ions by Ph-Regulated Conical Nanochannels. Journal of the Taiwan Institute of Chemical Engineers 2020, 109, 145-152. 44. Wu, C.-T.; Hsu, J.-P., Electrokinetic Behavior of Bullet-Shaped Nanopores Modified by Functional Groups: Influence of Finite Thickness of Modified Layer. Journal of Colloid and Interface Science 2021, 582, 741-751. 45. Sun, B.; Hao, X.-G.; Wang, Z.-D.; Guan, G.-Q.; Zhang, Z.-L.; Li, Y.-B.; Liu, S.-B., Separation of Low Concentration of Cesium Ion from Wastewater by Electrochemically Switched Ion Exchange Method: Experimental Adsorption Kinetics Analysis. J. Hazard. Mater. 2012, 233-234, 177-183. 46. Ramanjaneyulu, P. S.; Kumar, A. N.; Sayi, Y. S.; Ramakumar, K. L.; Nayak, S. K.; Chattopadhyay, S., A New Ion Selective Electrode for Cesium (I) Based on Calix[4]Arene-Crown-6 Compounds. J. Hazard. Mater. 2012, 205-206, 81-88. 47. Kumar, N.; Pham-Xuan, Q.; Depauw, A.; Hemadi, M.; Ha-Duong, N.-T.; Lefevre, J.-P.; Ha-Thi, M.-H.; Leray, I., New Sensitive and Selective Calixarene-Based Fluorescent Sensors for the Detection of Cs+ in an Organoaqueous Medium. New Journal of Chemistry 2017, 41, 7162-7170. 48. Kumar, N.; Leray, I.; Depauw, A., Chemically Derived Optical Sensors for the Detection of Cesium Ions. Coord. Chem. Rev. 2016, 310, 1-15. 49. Groll, H.; Schnürer-Patschan, C.; Kuritsyni, Y.; Niemax, K., Wavelength Modulation Diode Laser Atomic Absorption Spectrometry in Analytical Flames. Spectrochimica Acta Part B: Atomic Spectroscopy 1994, 49, 1463-1472. 50. Liezers, M.; Farmer, O. T.; Thomas, M. L., Low Level Detection of 135cs and 137cs in Environmental Samples by Icp-Ms. Journal of Radioanalytical and Nuclear Chemistry 2009, 282, 309. 51. Ai, J.; Chen, F.-Y.; Gao, C.-Y.; Tian, H.-R.; Pan, Q.-J.; Sun, Z.-M., Porous Anionic Uranyl–Organic Networks for Highly Efficient Cs+ Adsorption and Investigation of the Mechanism. Inorganic Chemistry 2018, 57, 4419-4426. 52. Naeimi, S.; Faghihian, H., Performance of Novel Adsorbent Prepared by Magnetic Metal-Organic Framework (MOF) Modified by Potassium Nickel Hexacyanoferrate for Removal of Cs+ from Aqueous Solution. Separation and Purification Technology 2017, 175, 255-265. 53. Gao, Y.-J.; Feng, M.-L.; Zhang, B.; Wu, Z.-F.; Song, Y.; Huang, X.-Y., An Easily Synthesized Microporous Framework Material for the Selective Capture of Radioactive Cs+ and Sr2+ Ions. Journal of Materials Chemistry A 2018, 6, 3967-3976. 54. Ji, H.-F.; Finot, E.; Dabestani, R.; Thundat, T.; Brown, G. M.; Britt, P. F., A Novel Self-Assembled Monolayer (Sam) Coated Microcantilever for Low Level Caesium Detection. Chemical Communications 2000, 457-458. 55. Zhang, S.; Echegoyen, L., Self-Assembled Monolayers of Different Conformers of P-Tert-Butylcalix[4]Crown-6 Derivatives and Their Metal Cation Recognition Properties. Tetrahedron Letters 2003, 44, 9079-9082. 56. Ai, Y.; Liu, J.; Zhang, B.; Qian, S., Field Effect Regulation of DNA Translocation through a Nanopore. Analytical Chemistry 2010, 82, 8217-8225. 57. Yeh, L.-H.; Hsu, J.-P., Effects of Double-Layer Polarization and Counterion Condensation on the Electrophoresis of Polyelectrolytes. Soft Matter 2011, 7, 396-411. 58. Hsu, J.-P.; Wu, H.-H.; Lin, C.-Y.; Tseng, S., Importance of Polyelectrolyte Modification for Rectifying the Ionic Current in Conically Shaped Nanochannels. Physical Chemistry Chemical Physics 2017, 19, 5351-5360. 59. Ohshima, H., Electrophoresis of Soft Particles. Advances in Colloid and Interface Science 1995, 62, 189-235. 60. Zhang, M.; Ai, Y.; Kim, D.-S.; Jeong, J.-H.; Joo, S. W.; Qian, S., Electrophoretic Motion of a Soft Spherical Particle in a Nanopore. Colloids Surf. B. Biointerfaces 2011, 88, 165-174. 61. Yeh, L.-H.; Hsu, J.-P.; Tseng, S., Electrophoresis of a Membrane-Coated Cylindrical Particle Positioned Eccentrically Along the Axis of a Narrow Cylindrical Pore. The Journal of Physical Chemistry C 2010, 114, 16576-16587. 62. Hsu, J.-P.; Lin, C.-Y.; Yeh, L.-H.; Lin, S.-H., Influence of the Shape of a Polyelectrolyte on Its Electrophoretic Behavior. Soft Matter 2012, 8, 9469-9479. 63. Lin, C.-Y.; Chen, F.; Yeh, L.-H.; Hsu, J.-P., Salt Gradient Driven Ion Transport in Solid-State Nanopores: The Crucial Role of Reservoir Geometry and Size. Physical Chemistry Chemical Physics 2016, 18, 30160-30165. 64. Yeh, L.-H.; Zhang, M.; Qian, S., Ion Transport in a Ph-Regulated Nanopore. Analytical Chemistry 2013, 85, 7527-7534. 65. Duval, J. F. L.; Gaboriaud, F., Progress in Electrohydrodynamics of Soft Microbial Particle Interphases. Current Opinion in Colloid & Interface Science 2010, 15, 184-195. 66. Duval, J. F. L.; Gaboriaud, F., Progress in Electrohydrodynamics of Soft Microbial Particle Interphases. Current Opinion in Colloid & Interface Science 2010, 15, 184-195. 67. Wolf, A.; Reber, N.; Apel, P. Y.; Fischer, B. E.; Spohr, R., Electrolyte Transport in Charged Single Ion Track Capillaries. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 1995, 105, 291-293. 68. Siwy, Z.; Gu, Y.; Spohr, H. A.; Baur, D.; Wolf-Reber, A.; Spohr, R.; Apel, P.; Korchev, Y. E., Rectification and Voltage Gating of Ion Currents in a Nanofabricated Pore. Europhysics Letters (EPL) 2002, 60, 349-355. 69. Zhang, H.; Hou, X.; Hou, J.; Zeng, L.; Tian, Y.; Li, L.; Jiang, L., Synthetic Asymmetric-Shaped Nanodevices with Symmetric Ph-Gating Characteristics. Adv. Funct. Mater. 2015, 25, 1102-1110. 70. Sato, H.; Yui, M.; Yoshikawa, H., Ionic Diffusion Coefficients of Cs+, Pb2+, Sm3+, Ni2+, Seo2- 4 and Tco− 4 in Free Water Determined from Conductivity Measurements. Journal of Nuclear Science and Technology 1996, 33, 950-955. 71. Samson, E.; Marchand, J.; Snyder, K. A., Calculation of Ionic Diffusion Coefficients on the Basis of Migration Test Results. Materials and Structures 2003, 36, 156-165. 72. Bassignana, I. C.; Reiss, H., Ion Transport and Water Dissociation in Bipolar Ion Exchange Membranes. J. Membr. Sci. 1983, 15, 27-41. 73. Karnik, R.; Duan, C.; Castelino, K.; Daiguji, H.; Majumdar, A., Rectification of Ionic Current in a Nanofluidic Diode. Nano Lett. 2007, 7, 547-551. 74. Constantin, D.; Siwy, Z. S., Poisson-Nernst-Planck Model of Ion Current Rectification through a Nanofluidic Diode. Physical Review E 2007, 76, 041202. 75. Tseng, S.; Lin, S.-C.; Lin, C.-Y.; Hsu, J.-P., Influences of Cone Angle and Surface Charge Density on the Ion Current Rectification Behavior of a Conical Nanopore. The Journal of Physical Chemistry C 2016, 120, 25620-25627. 1. Walker-Smith, J.; Blomfield, J., Wilson's Disease or Chronic Copper Poisoning? Arch. Dis. Child. 1973, 48, 476-479. 2. Hackos, D. H.; Korenbrot, J. I., Divalent Cation Selectivity Is a Function of Gating in Native and Recombinant Cyclic Nucleotide–Gated Ion Channels from Retinal Photoreceptors. J. Gen. Physiol. 1999, 113, 799-818. 3. Picones, A.; Korenbrot, J. I., Permeability and Interaction of Ca2+ with Cgmp-Gated Ion Channels Differ in Retinal Rod and Cone Photoreceptors. Biophys. J. 1995, 69, 120-127. 4. Fix, O. K.; Kowdley, K. V., Hereditary Hemochromatosis. Minerva Med 2008, 99, 605-617. 5. Altamura, S.; Muckenthaler, M. U., Iron Toxicity in Diseases of Aging: Alzheimer's Disease, Parkinson's Disease and Atherosclerosis. J. Alzheimer's Dis. 2009, 16, 879-895. 6. Aisen, P.; Wessling-Resnick, M.; Leibold, E. A., Iron Metabolism. Curr. Opin. Chem. Biol. 1999, 3, 200-206. 7. Wen, L.; Sun, Z.; Han, C.; Imene, B.; Tian, D.; Li, H.; Jiang, L., Fabrication of Layer-by-Layer Assembled Biomimetic Nanochannels for Highly Sensitive Acetylcholine Sensing. Chemistry – A European Journal 2013, 19, 7686-7690. 8. Calabresi, P.; Picconi, B.; Parnetti, L.; Di Filippo, M., A Convergent Model for Cognitive Dysfunctions in Parkinson's Disease: The Critical Dopamine–Acetylcholine Synaptic Balance. The Lancet Neurology 2006, 5, 974-983. 9. Groll, H.; Schnürer-Patschan, C.; Kuritsyni, Y.; Niemax, K., Wavelength Modulation Diode Laser Atomic Absorption Spectrometry in Analytical Flames. Spectrochimica Acta Part B: Atomic Spectroscopy 1994, 49, 1463-1472. 10. Es’haghi, Z.; Azmoodeh, R., Hollow Fiber Supported Liquid Membrane Microextraction of Cu2+ Followed by Flame Atomic Absorption Spectroscopy Determination. Arabian Journal of Chemistry 2010, 3, 21-26. 11. Kumar, N.; Leray, I.; Depauw, A., Chemically Derived Optical Sensors for the Detection of Cesium Ions. Coord. Chem. Rev. 2016, 310, 1-15. 12. Xiang, Y.; Li, Z.; Chen, X.; Tong, A., Highly Sensitive and Selective Optical Chemosensor for Determination of Cu2+ in Aqueous Solution. Talanta 2008, 74, 1148-1153. 13. Bansod, B.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I., A Review on Various Electrochemical Techniques for Heavy Metal Ions Detection with Different Sensing Platforms. Biosensors and Bioelectronics 2017, 94, 443-455. 14. Buchberger, W. W., Detection Techniques in Ion Chromatography of Inorganic Ions. TrAC, Trends Anal. Chem. 2001, 20, 296-303. 15. Singh, A.; Ramanathan, G., Red Fluorescence Protein Chromophore Inspired Selective Optical Chemosensor for Cu2+ and Hg2+ Metal Ions. J. Lumin. 2017, 182, 220-225. 16. Yang, Y.-C.; Hsu, J.-P., Theoretical Modeling of Nanopore-Based Detection of Trace Concentrations of Cesium Ions in an Aqueous Environment. The Journal of Physical Chemistry C 2021, 125, 24211-24220. 17. Niu, B.; Xiao, K.; Huang, X.; Zhang, Z.; Kong, X.-Y.; Wang, Z.; Wen, L.; Jiang, L., High-Sensitivity Detection of Iron(Iii) by Dopamine-Modified Funnel-Shaped Nanochannels. ACS Appl. Mater. Interfaces 2018, 10, 22632-22639. 18. Hsu, J.-P.; Chen, Y.-C.; Wu, C.-T., Detection of the Trace Level of Heavy Metal Ions by Ph-Regulated Conical Nanochannels. Journal of the Taiwan Institute of Chemical Engineers 2020, 109, 145-152. 19. Ai, Y.; Zhang, M.; Joo, S. W.; Cheney, M. A.; Qian, S., Effects of Electroosmotic Flow on Ionic Current Rectification in Conical Nanopores. The Journal of Physical Chemistry C 2010, 114, 3883-3890. 20. Siwy, Z. S.; Howorka, S., Engineered Voltage-Responsive Nanopores. Chem. Soc. Rev. 2010, 39, 1115-1132. 21. Hsu, J.-P.; Lin, T.-W.; Lin, C.-Y.; Tseng, S., Salt-Dependent Ion Current Rectification in Conical Nanopores: Impact of Salt Concentration and Cone Angle. The Journal of Physical Chemistry C 2017, 121, 28139-28147. 22. Siwy, Z. S., Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Adv. Funct. Mater. 2006, 16, 735-746. 23. Ramírez, P.; Apel, P. Y.; Cervera, J.; Mafé, S., Pore Structure and Function of Synthetic Nanopores with Fixed Charges: Tip Shape and Rectification Properties. Nanotechnology 2008, 19, 315707. 24. Daiguji, H.; Oka, Y.; Shirono, K., Nanofluidic Diode and Bipolar Transistor. Nano Lett. 2005, 5, 2274-2280. 25. Nasir, S.; Ali, M.; Ramirez, P.; Gómez, V.; Oschmann, B.; Muench, F.; Tahir, M. N.; Zentel, R.; Mafe, S.; Ensinger, W., Fabrication of Single Cylindrical Au-Coated Nanopores with Non-Homogeneous Fixed Charge Distribution Exhibiting High Current Rectifications. ACS Appl. Mater. Interfaces 2014, 6, 12486-12494. 26. Tagliazucchi, M.; Rabin, Y.; Szleifer, I., Transport Rectification in Nanopores with Outer Membranes Modified with Surface Charges and Polyelectrolytes. ACS Nano 2013, 7, 9085-9097. 27. Lin, T.-W.; Hsu, J.-P.; Lin, C.-Y.; Tseng, S., Dual Ph Gradient and Voltage Modulation of Ion Transport and Current Rectification in Biomimetic Nanopores Functionalized with a Ph-Tunable Polyelectrolyte. The Journal of Physical Chemistry C 2019, 123, 12437-12443. 28. Cao, L.; Guo, W.; Wang, Y.; Jiang, L., Concentration-Gradient-Dependent Ion Current Rectification in Charged Conical Nanopores. Langmuir 2012, 28, 2194-2199. 29. Ali, M.; Ramirez, P.; Nasir, S.; Nguyen, Q.-H.; Ensinger, W.; Mafe, S., Current Rectification by Nanoparticle Blocking in Single Cylindrical Nanopores. Nanoscale 2014, 6, 10740-10745. 30. Jung, J.-Y.; Joshi, P.; Petrossian, L.; Thornton, T. J.; Posner, J. D., Electromigration Current Rectification in a Cylindrical Nanopore Due to Asymmetric Concentration Polarization. Anal. Chem. 2009, 81, 3128-3133. 31. Cheng, L.-J.; Guo, L. J., Rectified Ion Transport through Concentration Gradient in Homogeneous Silica Nanochannels. Nano Lett. 2007, 7, 3165-3171. 32. Siwy, Z.; Gu, Y.; Spohr, H. A.; Baur, D.; Wolf-Reber, A.; Spohr, R.; Apel, P.; Korchev, Y. E., Rectification and Voltage Gating of Ion Currents in a Nanofabricated Pore. Europhysics Letters (EPL) 2002, 60, 349-355. 33. Stein, D.; Kruithof, M.; Dekker, C., Surface-Charge-Governed Ion Transport in Nanofluidic Channels. Phys. Rev. Lett. 2004, 93, 035901. 34. Tseng, S.; Lin, S.-C.; Lin, C.-Y.; Hsu, J.-P., Influences of Cone Angle and Surface Charge Density on the Ion Current Rectification Behavior of a Conical Nanopore. The Journal of Physical Chemistry C 2016, 120, 25620-25627. 35. Cervera, J.; Schiedt, B.; Neumann, R.; Mafé, S.; Ramírez, P., Ionic Conduction, Rectification, and Selectivity in Single Conical Nanopores. The Journal of Chemical Physics 2006, 124, 104706. 36. Hsu, J.-P.; Chen, Y.-M.; Yang, S.-T.; Lin, C.-Y.; Tseng, S., Influence of Salt Valence on the Rectification Behavior of Nanochannels. J. Colloid Interface Sci. 2018, 531, 483-492. 37. Ramirez, P.; Manzanares, J. A.; Cervera, J.; Gomez, V.; Ali, M.; Pause, I.; Ensinger, W.; Mafe, S., Nanopore Charge Inversion and Current-Voltage Curves in Mixtures of Asymmetric Electrolytes. J. Membr. Sci. 2018, 563, 633-642. 38. Pérez-Mitta, G.; Albesa, A. G.; Toimil Molares, M. E.; Trautmann, C.; Azzaroni, O., The Influence of Divalent Anions on the Rectification Properties of Nanofluidic Diodes: Insights from Experiments and Theoretical Simulations. ChemPhysChem 2016, 17, 2718-2725. 39. Ali, M.; Ahmed, I.; Nasir, S.; Duznovic, I.; Niemeyer, C. M.; Ensinger, W., Potassium-Induced Ionic Conduction through a Single Nanofluidic Pore Modified with Acyclic Polyether Derivative. Anal. Chim. Acta 2018, 1039, 132-139. 40. Zhao, X.-P.; Wang, S.-S.; Younis, M. R.; Xia, X.-H.; Wang, C., Asymmetric Nanochannel–Ionchannel Hybrid for Ultrasensitive and Label-Free Detection of Copper Ions in Blood. Anal. Chem. 2018, 90, 896-902. 41. Wu, X.; Experton, J.; Xu, W.; Martin, C. R., Chemoresponsive Nanofluidic Pump That Turns Off in the Presence of Lead Ion. Anal. Chem. 2018, 90, 7715-7720. 42. Zhan, K., et al., Tannic Acid Modified Single Nanopore with Multivalent Metal Ions Recognition and Ultra-Trace Level Detection. Nano Today 2020, 33, 100868. 43. Chung, C.-Y.; Hsu, J.-P., Nanosensing of Acetylcholine Molecules: Influence of the Association Mechanism. Langmuir 2022, 38, 289-298. 44. Yameen, B.; Ali, M.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O., Proton-Regulated Rectified Ionic Transport through Solid-State Conical Nanopores Modified with Phosphate-Bearing Polymer Brushes. Chem Commun (Camb) 2010, 46, 1908-10. 45. Ai, Y.; Liu, J.; Zhang, B.; Qian, S., Field Effect Regulation of DNA Translocation through a Nanopore. Anal. Chem. 2010, 82, 8217-25. 46. Yeh, L.-H.; Hsu, J.-P., Effects of Double-Layer Polarization and Counterion Condensation on the Electrophoresis of Polyelectrolytes. Soft Matter 2011, 7, 396-411. 47. Hsu, J.-P.; Wu, H.-H.; Lin, C.-Y.; Tseng, S., Importance of Polyelectrolyte Modification for Rectifying the Ionic Current in Conically Shaped Nanochannels. Physical Chemistry Chemical Physics 2017, 19, 5351-5360. 48. Ohshima, H., Electrophoresis of Soft Particles. Adv. Colloid Interface Sci. 1995, 62, 189-235. 49. Yeh, L.-H.; Hsu, J.-P.; Tseng, S., Electrophoresis of a Membrane-Coated Cylindrical Particle Positioned Eccentrically Along the Axis of a Narrow Cylindrical Pore. The Journal of Physical Chemistry C 2010, 114, 16576-16587. 50. Wu, C.-T.; Hsu, J.-P., Electrokinetic Behavior of Bullet-Shaped Nanopores Modified by Functional Groups: Influence of Finite Thickness of Modified Layer. J. Colloid Interface Sci. 2021, 582, 741-751. 51. Yeh, L.-H.; Liu, K.-L.; Hsu, J.-P., Importance of Ionic Polarization Effect on the Electrophoretic Behavior of Polyelectrolyte Nanoparticles in Aqueous Electrolyte Solutions. The Journal of Physical Chemistry C 2012, 116, 367-373. 52. Buffle, J.; Zhang, Z.; Startchev, K., Metal Flux and Dynamic Speciation at (Bio)Interfaces. Part I: Critical Evaluation and Compilation of Physicochemical Parameters for Complexes with Simple Ligands and Fulvic/Humic Substances. Environ. Sci. Technol. 2007, 41, 7609-7620. 53. Hay, R. W., 2 - the Kinetic Background. In Reaction Mechanisms of Metal Complexes, Hay, R. W., Ed. Woodhead Publishing: 2000; pp 35-57. 54. Duleba, D.; Dutta, P.; Denuga, S.; Johnson, R. P., Effect of Electrolyte Concentration and Pore Size on Ion Current Rectification Inversion. ACS Measurement Science Au 2022. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84234 | - |
| dc.description.abstract | 奈米流體裝置具有高度的應用潛力,目前已在發展中的應用有: 離子電流整流、壓差發電、濃鹽差發電、奈米孔道之海水淡化(除鹽)以及金屬離子檢測等應用。在本篇當中吾人將展示離子電流整流和金屬離子檢測及其機制的探討。 在第一章節中,吾人利用p-tert-butylcalix[4]arene crown將聚對苯二甲酸乙二酯的錐形奈米孔道進行表面改質,以理論模擬透過離子電流整流的特性,檢測銫離子在水溶液環境中的痕量濃度。其中吾人針對表面改質長度以及奈米孔道的半角等因素於奈米孔道在檢測上的影響。由線性迴歸分析整流比(Rf =|I(-1 V)|/|I(+1 V)|)與銫離子濃度的關係,可得知當改質長度1000奈米和奈米孔道的半角為1°時會有最佳的檢測效果,其最大的檢測範圍為[0.3 nM, 500 nM],檢測極限為0.3 nM。此檢測極限相比常用的分析工具,如原子吸收光譜、光電化學傳感器等還要更靈敏。 在第二章節中,吾人利用表面以單寧酸改質的子彈型孔道檢測以銅離子為目標離子,鐵離子為雜質離子(反之亦然),鉀離子為背景離子進行檢測。其中吾人針對這三種離子跟單寧酸的吸附反應其反應級數對於奈米孔道離子電流整流的影響。吾人展示在背景電解質濃度為1, 10, 100以及1000 mM時,當背景電解質濃度為1mM時由於電雙層重疊的現象較顯著,使其有最佳的檢測效果。銅離子和鐵離子的最佳檢測範圍分別為[0.5 μM, 1000 μM] 和 [1 nM, 1000 nM]。兩者的檢測極限都較傳統的檢測儀器來得更加靈敏,因此以奈米孔道做為檢測方法之一為更加的選擇。 | zh_TW |
| dc.description.abstract | Nanofluidic device is capable of many usage including ionic current rectification (ICR), pressure driven energy conservation, desalination, salinity gradient power generation and metal ion detection. Among these, we perform two applications: ion current rectification and metal ion detection; and the underlying mechanism is investigated. In chapter 1, a conical polyethylene terephthalate nanopore surface modified with p-tert-butylcalix[4]arene crown is adopted to model theoretically the detection of a trace concentration of cesium ions in an aqueous environment through its ion current rectification (ICR) behavior. In particular, the background salt, the modification length of the modified layer and the half cone angle of the nanopore are examined for their influence on the performance of the nanopore, measured by its ICR factor. The results of regression analysis for the dependence of the ICR ratio on the concentration of cesium ions suggest that the optimum performance can be achieved by choosing a modified layer length of 1000 nm and half cone angle of 1°, where the widest detection range is [0.3 nM, 500 nM] and the lowest detection limit is 0.3 nM. This detection limit is lower than that of the commonly used analytical tools such as atomic absorption spectroscopy, optical chemosensors, and electrochemical sensors. In chapter 2, we adopt a bullet-shaped nanopore surface modified with tannic acid as an example, the detection of a trace concentrations of Cu2+ (target ion) when Fe3+ (impurity) is present with K+ as background ions under various conditions is simulated. In particular, the influence of the reaction order of the association of target ions and tannic acid on the nanopore performance is examined. We show that the lower the background concentration the better the detection performance. For the examined background concentrations of 1, 10, 100, and 1000 mM, the optimal detection ranges are [0.5 μM, 1000 μM] and [1 nM, 1000 nM] for Cu2+ and Fe3+, respectively. The detection limits, 0.5 μM for Cu2+ and 1 nM for Fe3+, are lower than those retrivable from conventional instruments, suggesting the potential of applying the present nanopore based approach. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:06:47Z (GMT). No. of bitstreams: 1 U0001-2406202215250300.pdf: 5937674 bytes, checksum: 80abefdb9bf9714ded87517344f06742 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書……………………………………………………………………I 誌謝………………………………………………………………………II 中文摘要……………………………………………………………………………III Abstract…………………………………………………………………………IV Contents………………………………………………………………………VI List of Tables……………………………………………………………………VII List of Figures…………………………………………………………………VIII Chapter 1 Theoretical Modeling of Nanopore-based Detection of Trace Concentration of Cesium Ions in an Aqueous Environment……………………………1 References of Chapter 1………………………………………………………………17 Chapter 2 Nanopore-based detection of trace concentration of multivalent ions when impurity ions might present……………………………………………………39 References of Chapter 2……………………………………………………………56 | |
| dc.language.iso | zh-TW | |
| dc.subject | 檢測極限 | zh_TW |
| dc.subject | 奈米流體裝置 | zh_TW |
| dc.subject | 子彈型奈米孔道 | zh_TW |
| dc.subject | 表面改質 | zh_TW |
| dc.subject | 離子電流整流 | zh_TW |
| dc.subject | 金屬離子檢測 | zh_TW |
| dc.subject | 雜質離子 | zh_TW |
| dc.subject | Nanofluidic device | en |
| dc.subject | Impurity ions | en |
| dc.subject | Metal ion detection | en |
| dc.subject | Ion current rectification | en |
| dc.subject | Surface modification | en |
| dc.subject | Bullet-shaped nanopore | en |
| dc.subject | Detection limit | en |
| dc.title | 利用奈米孔道檢測水溶液環境中痕量金屬離子濃度的理論模型分析 | zh_TW |
| dc.title | Theoretical Modeling of Nanopore-based Detection of Trace Concentration of Metal Ions in an Aqueous Environment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 曾琇瑱(Shio-Jenn Tseng),劉博滔(Bo-Tau Liu),郭勇志(Yung-Chih Kuo) | |
| dc.subject.keyword | 奈米流體裝置,子彈型奈米孔道,表面改質,離子電流整流,金屬離子檢測,雜質離子,檢測極限, | zh_TW |
| dc.subject.keyword | Nanofluidic device,Bullet-shaped nanopore,Surface modification,Ion current rectification,Metal ion detection,Impurity ions,Detection limit, | en |
| dc.relation.page | 77 | |
| dc.identifier.doi | 10.6342/NTU202201096 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-06-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-08 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2406202215250300.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
