Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 物理治療學系所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84227
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王興國(Hsing-Kuo Wang)
dc.contributor.authorHuan-Chen Linen
dc.contributor.author林煥宸zh_TW
dc.date.accessioned2023-03-19T22:06:40Z-
dc.date.copyright2022-07-02
dc.date.issued2022
dc.date.submitted2022-06-28
dc.identifier.citation1. Braun J, Sieper JJTL. Ankylosing spondylitis. 2007;369:1379-1390. 2. Linden SVD, Valkenburg HA, Cats AJA, Rheumatism. Evaluation of diagnostic criteria for ankylosing spondylitis. 1984;27:361-368. 3. Watad A, Bridgewood C, Russell T, Marzo-Ortega H, Cuthbert R, McGonagle DJFii. The early phases of ankylosing spondylitis: emerging insights from clinical and basic science. 2018;9:2668. 4. Rudwaleit Mv, van der Heijde D, Landewé R, et al. The Assessment of SpondyloArthritis International Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. 2011;70:25-31. 5. Taurog JD, Chhabra A, Colbert RAJNEJoM. Ankylosing spondylitis and axial spondyloarthritis. 2016;374:2563-2574. 6. Dean LE, Jones GT, MacDonald AG, Downham C, Sturrock RD, Macfarlane GJJR. Global prevalence of ankylosing spondylitis. 2014;53:650-657. 7. Zeng QY, Chen R, Darmawan J, et al. Rheumatic diseases in China. 2008;10:1-11. 8. Chou C-T, Pei L, Chang D-M, Lee C-F, Schumacher H, Liang MJTJor. Prevalence of rheumatic diseases in Taiwan: a population study of urban, suburban, rural differences. 1994;21:302-306. 9. Chang C-T, Hsieh M-Y, Kuo C-FJFJoR. Trend of epidemiology of ankylosing spondylitis between 2006 and 2015 in Taiwan: A 10 years nationwide population study. 2017;31:1-9. 10. Rusman T, van Vollenhoven R, van der Horst-Bruinsma IJCrr. Gender differences in axial spondyloarthritis: women are not so lucky. 2018;20:1-12. 11. Liu C-H, Raj S, Chen C-H, et al. HLA-B27–mediated activation of TNAP phosphatase promotes pathogenic syndesmophyte formation in ankylosing spondylitis. 2019;129:5357-5373. 12. Schett G, Lories RJ, D'Agostino M-A, et al. Enthesitis: from pathophysiology to treatment. 2017;13:731. 13. Gravallese EM, Schett GJNRR. Effects of the IL-23–IL-17 pathway on bone in spondyloarthritis. 2018;14:631-640. 14. Braun J, Baraliakos X, Golder W, et al. Magnetic resonance imaging examinations of the spine in patients with ankylosing spondylitis, before and after successful therapy with infliximab: evaluation of a new scoring system. 2003;48:1126-1136. 15. Ramonda R, Marchesoni A, Carletto A, et al. Patient-reported impact of spondyloarthritis on work disability and working life: the ATLANTIS survey. 2016;18:1-7. 16. Kwan YH, Fong W, How P, et al. The impact of axial spondyloarthritis on quality of life (QoL): a comparison with the impact of moderate to end-stage chronic kidney disease on QoL. 2018;27:2321-2327. 17. Lin Y-C, Chen W-S, Hsiao K-H, Lin H-YJFJoR. Gender Differences in Clinical and Radiographic Presentations of Ankylosing spondylitis. 2011;25:47-55. 18. Feldtkeller E, Khan M, van der Heijde D, van der Linden S, Braun JJRi. Age at disease onset and diagnosis delay in HLA-B27 negative vs. positive patients with ankylosing spondylitis. 2003;23:61-66. 19. Resnick D, Niwayama G, Goergen TJAJoR. Comparison of radiographic abnormalities of the sacroiliac joint in degenerative disease and ankylosing spondylitis. 1977;128:189-196. 20. Berens DLJCO, Research R. Roentgen features of ankylosing spondylitis. 1971;74:20-33. 21. Hermann K-GA, Landewé RB, Braun J, van der HEIJDE DMJTjor. Magnetic resonance imaging of inflammatory lesions in the spine in ankylosing spondylitis clinical trials: is paramagnetic contrast medium necessary? 2005;32:2056-2060. 22. Hermann K-GA, Althoff CE, Schneider U, et al. Spinal changes in patients with spondyloarthritis: comparison of MR imaging and radiographic appearances. 2005;25:559-569. 23. Huerta-Sil G, Casasola-Vargas JC, Londoño JD, et al. Low grade radiographic sacroiliitis as prognostic factor in patients with undifferentiated spondyloarthritis fulfilling diagnostic criteria for ankylosing spondylitis throughout follow up. 2006;65:642-646. 24. Østergaard M. Imaging of ankylosing spondylitis. Paper presented at: Arthritis Research & Therapy2012. 25. 施庭芳. 磁振造影於脊椎病變的應用: 國立台灣大學醫學院; 2002. 26. Sieper J, Rudwaleit M, Baraliakos X, et al. The Assessment of SpondyloArthritis international Society (ASAS) handbook: a guide to assess spondyloarthritis. 2009;68:ii1-ii44. 27. Braun J, Bollow M, Eggens U, et al. Use of dynamic magnetic resonance imaging with fast imaging in the detection of early and advanced sacroiliitis in spondylarthropathy patients. 1994;37:1039-1045. 28. Yilmaz MH, Ozbayrak M, Kasapcopur O, Kurugoglu S, Kanberoglu KJCr. Pelvic MRI findings of juvenile-onset ankylosing spondylitis. 2010;29:1007-1013. 29. Masi AT, Nair K, Andonian BJ, et al. Integrative structural biomechanical concepts of ankylosing spondylitis. 2011;2011. 30. Alderink GJJJoO, Therapy SP. The sacroiliac joint: review of anatomy, mechanics, and function. 1991;13:71-84. 31. Brolinson PG, Kozar AJ, Cibor GJCSMR. Sacroiliac joint dysfunction in athletes. 2003;2:47-56. 32. Vleeming A, Schuenke M, Masi A, Carreiro J, Danneels L, Willard FJJoa. The sacroiliac joint: an overview of its anatomy, function and potential clinical implications. 2012;221:537-567. 33. Peake J, Nosaka KK, Suzuki K. Characterization of inflammatory responses to eccentric exercise in humans. 2005. 34. Wang JH-C, Thampatty BPJB, mechanobiology mi. An introductory review of cell mechanobiology. 2006;5:1-16. 35. Sun HB, Li Y, Fung DT, et al. Coordinate regulation of IL-1β and MMP-13 in rat tendons following subrupture fatigue damage. 2008;466:1555-1561. 36. Lories RJ, Luyten FP, De Vlam KJAr, therapy. Progress in spondylarthritis. Mechanisms of new bone formation in spondyloarthritis. 2009;11:1-8. 37. Lories RJ, Derese I, Luyten FPJTJoci. Modulation of bone morphogenetic protein signaling inhibits the onset and progression of ankylosing enthesitis. 2005;115:1571-1579. 38. Bochkova AG, Levshakova AV, Bunchuk NV, Braun JJR. Spinal inflammation lesions as detected by magnetic resonance imaging in patients with early ankylosing spondylitis are more often observed in posterior structures of the spine. 2010;49:749-755. 39. François RJ, Gardner DL, Degrave EJ, Bywaters EGJA, Rheumatology ROJotACo. Histopathologic evidence that sacroiliitis in ankylosing spondylitis is not merely enthesitis: systematic study of specimens from patients and control subjects. 2000;43:2011-2024. 40. Zhang Y, Xu H, Hu X, Zhang C, Chu T, Zhou YJIjord. Histopathological changes in supraspinous ligaments, ligamentum flava and paraspinal muscle tissues of patients with ankylosing spondylitis. 2016;19:420-429. 41. Slobodin G, Hussein H, Rosner I, Eshed IJJoir. Sacroiliitis–early diagnosis is key. 2018;11:339. 42. Puhakka K, Melsen F, Jurik A, Boel L, Vesterby A, Egund NJSr. MR imaging of the normal sacroiliac joint with correlation to histology. 2004;33:15-28. 43. Vleeming AJM, stability,, pelvis lbpTerot. The role of the sacroiliac joints in coupling between spine, pelvis, legs and arms. 1997. 44. Le Goff B, Berthelot J-M, Maugars YJC, Supplements ER-I. Ultrasound assessment of the posterior sacroiliac ligaments. 2011;29:1014. 45. Moore AE, Jeffery R, Gray A, Stringer MDJCA. An anatomical ultrasound study of the long posterior sacro‐iliac ligament. 2010;23:971-977. 46. Saunders J, Cusi M, Hackett LJJPM. An exploration of ultrasound-guided therapeutic injection of the dorsal interosseous ligaments of the sacroiliac joint for mechanical dysfunction of the joint. 2016;1:1003-1007. 47. Harmon D, Alexiev VJPP. Sonoanatomy and injection technique of the iliolumbar ligament. 2011;14:469-474. 48. Peng P, Tumber PSJPp. Ultrasound-guided interventional procedures for patients with chronic pelvic pain–a description of techniques and review of literature. 2008;11:215-224. 49. Snijders CJ, Hermans PF, Kleinrensink GJJCb. Functional aspects of cross-legged sitting with special attention to piriformis muscles and sacroiliac joints. 2006;21:116-121. 50. Travell J, Simons DJMp, manual dttp. Piriformis and other short lateral rotators. 1983:186-214. 51. Smith J, Hurdle M-F, Locketz AJ, Wisniewski SJJAopm, rehabilitation. Ultrasound-guided piriformis injection: technique description and verification. 2006;87:1664-1667. 52. Chen CP, Shen C-Y, Lew HLJAJoPM, Rehabilitation. Ultrasound-guided injection of the piriformis muscle. 2011;90:871-872. 53. Bardowski EA, Byrd JTJAt. Piriformis injection: an ultrasound-guided technique. 2019;8:e1457-e1461. 54. Arslan H, Sakarya ME, Adak B, Unal O, Sayarlioglu MJAAjor. Duplex and color Doppler sonographic findings in active sacroiliitis. 1999;173:677-680. 55. Hu Y, Zhu J, Xue Q, Wang N, Hu BJTJor. Scanning of the sacroiliac joint and entheses by color Doppler ultrasonography in patients with ankylosing spondylitis. 2011;38:1651-1655. 56. Zhu J, Xing C, Jiang Y, Hu Y, Hu B, Wang NJRi. Evaluation of complex appearance in vascularity of sacroiliac joint in ankylosing spondylitis by color Doppler ultrasonography. 2012;32:69-72. 57. Mohammadi A, Ghasemi-rad M, Aghdashi M, Mladkova N, Baradaransafa PJSr. Evaluation of disease activity in ankylosing spondylitis; diagnostic value of color Doppler ultrasonography. 2013;42:219-224. 58. Gandjbakhch F, Terslev L, Joshua F, et al. Ultrasound in the evaluation of enthesitis: status and perspectives. 2011;13:1-15. 59. Ishida SN, Furtado RNV, Rosenfeld A, Proglhof JEP, Estrela GBQ, Natour JJC. Ultrasound of entheses in ankylosing spondylitis patients: The importance of the calcaneal and quadriceps entheses for differentiating patients from healthy individuals. 2019;74. 60. Lai K-L, Kuo F-C, Tseng C-W, Chen H-H, Liao Y-YJJoMU. Echotexture analysis of L4 supraspinous enthesis in ankylosing spondylitis. 2021;29:32. 61. Garra BSJUq. Elastography: current status, future prospects, and making it work for you. 2011;27:177-186. 62. Taljanovic MS, Gimber LH, Becker GW, et al. Shear-wave elastography: basic physics and musculoskeletal applications. 2017;37:855-870. 63. Takaza M, Moerman KM, Gindre J, Lyons G, Simms CKJJotmbobm. The anisotropic mechanical behaviour of passive skeletal muscle tissue subjected to large tensile strain. 2013;17:209-220. 64. Vergari C, Pourcelot P, Holden L, et al. True stress and Poisson's ratio of tendons during loading. 2011;44:719-724. 65. Muller M, Gennisson J-L, Deffieux T, Tanter M, Fink MJUim, biology. Quantitative viscoelasticity mapping of human liver using supersonic shear imaging: preliminary in vivo feasability study. 2009;35:219-229. 66. Siu W-l, Chan C-h, Lam C-h, Lee C-m, Ying MJJos, sport mi. Sonographic evaluation of the effect of long-term exercise on Achilles tendon stiffness using shear wave elastography. 2016;19:883-887. 67. Taş S, Onur MR, Yılmaz S, Soylu AR, Korkusuz FJJoUiM. Shear wave elastography is a reliable and repeatable method for measuring the elastic modulus of the rectus femoris muscle and patellar tendon. 2017;36:565-570. 68. Alfuraih AM, O'Connor P, Hensor E, Tan AL, Emery P, Wakefield RJJJoCU. The effect of unit, depth, and probe load on the reliability of muscle shear wave elastography: variables affecting reliability of SWE. 2018;46:108-115. 69. Lin C-Y, Sadeghi S, Bader DA, Cortes DHJJoE, Diagnostics SiM, Therapy. Ultrasound shear wave elastography of the elbow ulnar collateral ligament: reliability test and a preliminary case study in a baseball pitcher. 2018;1. 70. Kanazawa K, Hagiwara Y, Sekiguchi T, et al. Correlations between range of motion and elasticity of the coracohumeral ligament evaluated with shear-wave elastography. 2020;30:9-15. 71. Turan A, Tufan A, Mercan R, et al. Real-time sonoelastography of Achilles tendon in patients with ankylosing spondylitis. 2013;42:1113-1118. 72. Stetson P, Sommer GJUim, biology. Ultrasonic characterization of tissues via backscatter frequency dependence. 1997;23:989-996. 73. Bashford GR, Tomsen N, Arya S, Burnfield JM, Kulig KJItomi. Tendinopathy discrimination by use of spatial frequency parameters in ultrasound B-mode images. 2008;27:608-615. 74. Kuo C, Lee W, Fong S, et al. Ultrasound Tissue Characteristics of Diabetic Muscles and Tendons: Associations with Strength and Laboratory Blood Tests. 2020;10. 75. Martinoli C, Pretolesi F, Crespi G, et al. Power Doppler sonography: clinical applications. 1998;27:S133-S140. 76. Garrett S, Jenkinson T, Kennedy LG, Whitelock H, Gaisford P, Calin AJTJor. A new approach to defining disease status in ankylosing spondylitis: the Bath Ankylosing Spondylitis Disease Activity Index. 1994;21:2286-2291. 77. Calin A, Garrett S, Whitelock H, et al. A new approach to defining functional ability in ankylosing spondylitis: the development of the Bath Ankylosing Spondylitis Functional Index. 1994;21:2281-2285. 78. Jones S, Steiner A, Garrett S, Calin AJR. The bath ankylosing spondylitis patient global score (BAS-G). 1996;35:66-71. 79. Wei JC-C, Wong R-H, Huang J-H, et al. Evaluation of internal consistency and re-test reliability of Bath ankylosing spondylitis indices in a large cohort of adult and juvenile spondylitis patients in Taiwan. 2007;26:1685-1691. 80. 劉影梅. 國際身體活動量表台灣中文版之發展與信效度驗證. 2004. 81. Fan M, Lyu J, He PJZlxbxzzZlz. Chinese guidelines for data processing and analysis concerning the International Physical Activity Questionnaire. 2014;35:961-964. 82. Jiang Y, Chen L, Zhu J, et al. Power Doppler ultrasonography in the evaluation of infliximab treatment for sacroiliitis in patients with ankylosing spondylitis. 2013;33:2025-2029. 83. Rezvani A, Ergin O, Karacan I, Oncu MJS. Validity and reliability of the metric measurements in the assessment of lumbar spine motion in patients with ankylosing spondylitis. 2012;37:E1189-E1196. 84. Tousignant M, Poulin L, Marchand S, Viau A, Place CJD, rehabilitation. The Modified–Modified Schober Test for range of motion assessment of lumbar flexion in patients with low back pain: A study of criterion validity, intra-and inter-rater reliability and minimum metrically detectable change. 2005;27:553-559. 85. Weir JPJTJoS, Research C. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. 2005;19:231-240. 86. Perneger TVJB. What's wrong with Bonferroni adjustments. 1998;316:1236-1238. 87. Osei-Bimpong A, Meek J, Lewis SJH. ESR or CRP? A comparison of their clinical utility. 2007;12:353-357. 88. Pagana KD, Pagana TJ. Mosby's Manual of Diagnostic and Laboratory Tests-E-Book: Elsevier Health Sciences; 2013. 89. Braun J, Pham T, Sieper J, et al. International ASAS consensus statement for the use of anti-tumour necrosis factor agents in patients with ankylosing spondylitis. 2003;62:817-824. 90. Wariaghli G, Allali F, Berrada K, et al. Normative values for the bath ankylosing spondylitis functional index in the general population compared with ankylosing spondylitis patients in Morocco. 2012;13:1-5. 91. Cidem M, Karacan I, Uludag MJRi. Normal range of spinal mobility for healthy young adult Turkish men. 2012;32:2265-2269. 92. de Miguel E, Cobo T, Muñoz-Fernández S, et al. Validity of enthesis ultrasound assessment in spondyloarthropathy. 2009;68:169-174. 93. Aydın SZ, Filippucci E, Atagündüz P, Yavuz Ş, Grassi W, Direskeneli HJEjor. Sonographic measurement of Achilles tendon thickness in seronegative spondyloarthropathies. 2014;1:7. 94. Hur JW, Kim B-J, Park J-H, et al. The mechanism of ligamentum flavum hypertrophy: introducing angiogenesis as a critical link that couples mechanical stress and hypertrophy. 2015;77:274-282. 95. De Zordo T, Chhem R, Smekal V, et al. Real-time sonoelastography: findings in patients with symptomatic achilles tendons and comparison to healthy volunteers. 2010;31:394-400. 96. Tan S, Kudaş S, Özcan AŞ, et al. Real-time sonoelastography of the Achilles tendon: pattern description in healthy subjects and patients with surgically repaired complete ruptures. 2012;41:1067-1072. 97. Dickson DM, Fawole HO, Newcombe L, Smith SL, Hendry GJJU. Reliability of ultrasound strain elastography in the assessment of the quadriceps and patellar tendon in healthy adults. 2019;27:252-261. 98. Brage K, Hjarbaek J, Kjaer P, Ingwersen KG, Juul-Kristensen BJBo. Ultrasonic strain elastography for detecting abnormalities in the supraspinatus tendon: an intra-and inter-rater reliability study. 2019;9:e027725. 99. Allen RL, O’Callaghan CA, McMichael AJ, Bowness PJTJoI. Cutting edge: HLA-B27 can form a novel β2-microglobulin-free heavy chain homodimer structure. 1999;162:5045-5048. 100. Bird LA, Peh CA, Kollnberger S, Elliott T, McMichael AJ, Bowness PJEjoi. Lymphoblastoid cells express HLA‐B27 homodimers both intracellularly and at the cell surface following endosomal recycling. 2003;33:748-759. 101. Kollnberger S, Bird L, Sun MY, et al. Cell‐surface expression and immune receptor recognition of HLA–B27 homodimers. 2002;46:2972-2982. 102. Remtoula N, Bensussan A, Marie-Cardine AJTJoI. Cutting edge: selective expression of inhibitory or activating killer cell Ig-like receptors in circulating CD4+ T lymphocytes. 2008;180:2767-2771. 103. Bowness P, Ridley A, Shaw J, et al. Th17 cells expressing KIR3DL2+ and responsive to HLA-B27 homodimers are increased in ankylosing spondylitis. 2011;186:2672-2680. 104. Mear JP, Schreiber KL, Münz C, et al. Misfolding of HLA-B27 as a result of its B pocket suggests a novel mechanism for its role in susceptibility to spondyloarthropathies. 1999;163:6665-6670. 105. Goodall JC, Wu C, Zhang Y, et al. Endoplasmic reticulum stress-induced transcription factor, CHOP, is crucial for dendritic cell IL-23 expression. 2010;107:17698-17703. 106. Simone D, Al Mossawi MH, Bowness PJR. Progress in our understanding of the pathogenesis of ankylosing spondylitis. 2018;57:vi4-vi9. 107. Yago T, Nanke Y, Kawamoto M, Kobashigawa T, Yamanaka H, Kotake SJJocm. IL-23 and Th17 disease in inflammatory arthritis. 2017;6:81. 108. Wang X, Lin Z, Wei Q, Jiang Y, Gu JJRi. Expression of IL-23 and IL-17 and effect of IL-23 on IL-17 production in ankylosing spondylitis. 2009;29:1343-1347. 109. Beringer A, Miossec PJNRR. Systemic effects of IL-17 in inflammatory arthritis. 2019;15:491-501. 110. Millar NL, Akbar M, Campbell AL, et al. IL-17A mediates inflammatory and tissue remodelling events in early human tendinopathy. 2016;6:1-11. 111. Distler JH, Jüngel A, Huber LC, et al. The induction of matrix metalloproteinase and cytokine expression in synovial fibroblasts stimulated with immune cell microparticles. 2005;102:2892-2897. 112. Lee S-Y, Kwok S-K, Son H-J, et al. IL-17-mediated Bcl-2 expression regulates survival of fibroblast-like synoviocytes in rheumatoid arthritis through STAT3 activation. 2013;15:1-10. 113. Akbar M, Crowe LA, McLean M, et al. Translational targeting of inflammation and fibrosis in frozen shoulder: Molecular dissection of the T cell/IL-17A axis. 2021;118. 114. Ruvolo P, Deng X, May WJL. Phosphorylation of Bcl2 and regulation of apoptosis. 2001;15:515-522. 115. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DDJS. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. 1997;275:1132-1136. 116. Luo X, Budihardjo I, Zou H, Slaughter C, Wang XJC. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. 1998;94:481-490. 117. Cooper R, Freemont A, Fitzmaurice R, Alani S, Jayson MJAotrd. Paraspinal muscle fibrosis: a specific pathological component in ankylosing spondylitis. 1991;50:755-759. 118. Waragai M, Shinotoh HJJoN, Neurosurgery,, Psychiatry. Ankylosing spondylitis associated with myositis. 1994;57:661. 119. Ge Y, He LJCRiR. Coexistence of Axial Spondyloarthritis and Idiopathic Inflammatory Myopathy. 2020;2020. 120. Tournadre A, Miossec PJCrr. Interleukin-17 in inflammatory myopathies. 2012;14:252-256. 121. Verhasselt V, Buelens C, Willems F, De Groote D, Haeffner-Cavaillon N, Goldman MJTJoI. Bacterial lipopolysaccharide stimulates the production of cytokines and the expression of costimulatory molecules by human peripheral blood dendritic cells: evidence for a soluble CD14-dependent pathway. 1997;158:2919-2925. 122. Chalmers I, Janossy G, Contreras M, Navarrete CJB, The Journal of the American Society of Hematology. Intracellular cytokine profile of cord and adult blood lymphocytes. 1998;92:11-18. 123. Sullivan DE, Ferris M, Pociask D, Brody ARJAJRCMB. Tumor necrosis factor-induces transforming growth factor-1 expression in lung fibroblasts through the extracellular signal-regulated kinase pathway. 2005;32:342-349. 124. Liu Z-W, Zhang Y-M, Zhang L-Y, et al. Duality of Interactions Between TGF-β and TNF-α During Tumor Formation. 2021;12:810286-810286. 125. Wang Q, Zeng P, Cai Y, Chen C, Lu X, Lan HYJBdxxbYxbJoPUHS. Expression of transforming growth factor beta 1 and conection tissue growth factor in ankylosing spondylitis. 2012;44:244-249. 126. Jaakkola E, Crane A, Laiho K, et al. The effect of transforming growth factor β1 gene polymorphisms in ankylosing spondylitis. 2004;43:32-38. 127. Ma FY, Tesch GH, Ozols E, Xie M, Schneider MD, Nikolic-Paterson DJJAJoP-RP. TGF-β1-activated kinase-1 regulates inflammation and fibrosis in the obstructed kidney. 2011;300:F1410-F1421. 128. Wang B, Komers R, Carew R, et al. Suppression of microRNA-29 expression by TGF-β1 promotes collagen expression and renal fibrosis. 2012;23:252-265. 129. Wynn TAJNm. Fibrosis under arrest. 2010;16:523-525. 130. Douthwaite JA, Johnson TS, Haylor JL, Watson P, EL NAHAS AMJJotASoN. Effects of transforming growth factor-β1 on renal extracellular matrix components and their regulating proteins. 1999;10:2109-2119. 131. Xia C, Ding C, Yang X, Sun K, Tian SJO. Effects of Antisense Transforming Growth Factor-β1 Gene Transfer on the Biological Activities of Tendon Sheath Fibroblasts. 2010;33. 132. Hamacher S, Matern S, Roeb EJDMW. Extracellular matrix--from basic research to clinical significance. An overview with special consideration of matrix metalloproteinases. 2004;129:1976-1980. 133. Kiris A, Kaya A, Ozgocmen S, Kocakoc EJSr. Assessment of enthesitis in ankylosing spondylitis by power Doppler ultrasonography. 2006;35:522-528. 134. Drouart M, Saas P, Billot M, et al. High serum vascular endothelial growth factor correlates with disease activity of spondylarthropathies. 2003;132:158-162. 135. Mease PJJBotNHfjd. Spondyloarthritis Update. 2008;66. 136. Pozniak MA, Allan PL. Clinical Doppler Ultrasound E-Book: Expert Consult: Online: Elsevier Health Sciences; 2013. 137. Kennelly MM, Moran PJPDPiAWtISfPD. Directional Power Doppler in the midsagittal plane as an aid to the prenatal diagnosis of cleft lip and palate. 2008;28:56-58. 138. Amiel D, Frank C, Harwood F, Fronek J, Akeson WJJoOR. Tendons and ligaments: a morphological and biochemical comparison. 1983;1:257-265. 139. Nordin M, Frankel VH. Basic biomechanics of the musculoskeletal system: Lippincott Williams & Wilkins; 2001. 140. Cook J, Purdam CRJBjosm. Is tendon pathology a continuum? A pathology model to explain the clinical presentation of load-induced tendinopathy. 2009;43:409-416. 141. Cook J, Rio E, Purdam C, Docking SJBjosm. Revisiting the continuum model of tendon pathology: what is its merit in clinical practice and research? 2016;50:1187-1191. 142. Alcalde M, Acebes JC, Cruz M, Gonzalez-Hombrado L, Herrero-Beaumont G, Sánchez-Pernaute OJAotrd. A sonographic enthesitic index of lower limbs is a valuable tool in the assessment of ankylosing spondylitis. 2007;66:1015-1019. 143. Aydin SZ, Karadag O, Filippucci E, et al. Monitoring Achilles enthesitis in ankylosing spondylitis during TNF-α antagonist therapy: an ultrasound study. 2010;49:578-582. 144. Wang C-h, Feng Y, Ren Z, et al. Performance of ultrasound to monitor Achilles enthesitis in patients with ankylosing spondylitis during TNF-a antagonist therapy. 2015;34:1073-1078. 145. Yeoman WJTL. THE RELATION OF ARTHRITIS OF THE SACRO-ILIAC JOINT TO SCIATICA, WITH AN ANALYSIS OF 100 CASES. 1928;212:1119-1123. 146. Freiberg AH, Vinke THJJ. Sciatica and the sacro-iliac joint. 1934;16:126-136. 147. Boyajian-O’Neill LA, McClain RL, Coleman MK, Thomas PPJJoOM. Diagnosis and management of piriformis syndrome: an osteopathic approach. 2008;108:657-664.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84227-
dc.description.abstract研究背景:僵直性脊椎炎 (Ankylosing spondylitis, AS) 為自體免疫之慢性發炎性疾病,在肌肉骨骼系統上,主要侵犯人體的中軸骨骼,包含骨盆、薦腸關節與脊椎關節,其中薦腸關節炎 (sacroiliitis) 為較早的中軸骨骼侵犯的表現型,再逐漸進展到脊椎關節。接骨點炎是僵直性脊椎炎的主要病灶之一,Masi等人 (2011) 提出之免疫生物學和力學生物學機轉,並用於解釋僵直性脊椎炎接骨點和關節病變的發生。Masi等人認為:機械應力可導致僵直性脊椎炎軟組織張力過高或接骨點微損傷,並過度活化先天性免疫反應,導致慢性發炎和新骨生成。此免疫生物學和力學生物學機轉亦指出,中軸脊椎周圍的軟組織,尤其是薦腸關節與腰椎區域,也可能表現出對僵直性脊椎炎的適應不良。總結以上,僵直性脊椎炎中的接骨點炎不僅顯示接骨點有微損傷,還暗示著韌帶或肌肉在接近接骨點時出現發炎反應和對機械應力的適應不良,這些適應不良可能反應在其形態與機械特性的改變。然而,未有研究分析僵直性脊椎炎患者薦腸關節與腰椎區域的韌帶或肌肉的形態力學特徵,且無相關研究分析以上特徵與病史的相關性。 研究目的:本實驗目的為比較已確診之僵直性脊椎炎男性患者與健康控制組受試者薦腸關節與腰椎韌帶與肌肉的超音波巨觀形態、機械特性、血管化與微觀形態的差異,以及探討梨狀肌近端肌肉之超音波量測參數與患病時間之相關性。 研究設計:本研究為觀察型橫斷實驗。 研究對象:徵招20至45歲男性之僵直性脊椎炎患者,以及與病患組年齡、身高和體重相仿的健康對照組受試者。 研究方法:本研究徵招男性僵直性脊椎炎患者20位,健康對照組受試者19位。利用B模式超音波掃描兩組受試者的背側短薦腸韌帶、骨間薦腸韌帶、背側長薦腸韌帶、腸腰韌帶、梨狀肌近端肌肉與薦骨坐骨粗隆韌帶,並量測其厚度 (thickness) 代表巨觀形態,以超音波剪力波彈性影像量測其彈性模數 (elastic modulus) 以代表機械特性,並且使用方向性能量都卜勒超音波檢測其能量都卜勒血流訊號差異,最後利用空間頻率分析針對該軟組織之B模式影像進行分析,以峰值空間頻率半徑 (peak spatial frequency radius, PSFR) 代表軟組織微觀形態;並探討梨狀肌近端肌肉之超音波參數與患病時間之相關性。 統計分析:本實驗收取之人口統計學資料與超音波參數使用Shapiro-Wilk test進進行常態分布檢定,部分參數未呈現常態分布,因此連續變項 (continuous variables) 使用曼惠特尼U檢定 (Mann-Whitney U Test),類別變項 (categorical variables) 則使用卡方檢定 (Chi-square test) 檢測兩組之間的差異;以及使用斯皮爾曼等級相關係數 (Spearman's rank correlation coefficient) 分析僵直性脊椎炎患者梨狀肌近端肌肉之超音波參數與患病時間之相關性。 結果:僵直性脊椎炎患者的背側短薦腸韌帶、骨間薦腸韌帶、背側長薦腸韌帶、腸腰韌帶、梨狀肌近端肌肉與薦骨坐骨粗隆韌帶,相較於健康受試者皆具有增厚現象 (all p values <0.05);病患組的軟組織彈性模數亦大於控制組 (all p values <0.05);病患組之腸腰韌帶、梨狀肌近端肌肉、薦骨坐骨粗隆韌帶相較於控制組,亦具有較多之方向性能量都卜勒訊號 (p<0.001);兩組之間的峰值空間頻率半徑無統計顯著差異;梨狀肌近端肌肉之彈性模數與患病時間 (disease duration) 呈現中等程度之正相關性 (r=0.640, p=0.003)。 結論:僵直性脊椎炎病患的薦腸關節與腰椎的韌帶與肌肉之超音波特徵具有厚度增加、剛性上升、血管化顯著的情況。僵直性脊椎炎不僅會對骨骼造成重塑效應,也會對於中軸骨骼周圍的韌帶與肌肉造成影響,而使得可藉由超音波偵測其改變,這或許提供了另外可以監測疾病的途徑之一,未來研究可針對僵直性脊椎炎患者薦腸關節與腰椎的韌帶或肌肉進行組織學或免疫生物化學相關分析方法做進一步探討。zh_TW
dc.description.abstractBackground: Ankylosing spondylitis (AS) is a chronic inflammatory disease. In the musculoskeletal system, patients with ankylosing spondylitis mainly suffer from inflammation of the axial bone, including sacroiliac joints and the spine. Sacroiliitis is one of the earlier manifestations of axial bone involvement, which then progresses to the spinal joints. Masi et al. (2011) proposed immunobiological and mechanobiological mechanisms to explain the occurrence of enthesitis and osteopathy in ankylosing spondylitis. Mechanical stress can cause soft tissue hypertonicity or enthesis microinjury in ankylosing spondylitis and overactive the innate immune response, resulting in chronic inflammation and new bone formation. This mechanism also suggested that the soft tissues surrounding the axial bone, particularly the sacroiliac joint and lumbar region, may exhibit maladaptation of ankylosing spondylitis. To summarize, enthesitis not only means micro-injury in the site of the enthesis but also implies the inflammation and maladaptation to mechanical stress in ligaments or muscles approaching the enthesis. These maladaptations may reflect changes in their morphological and mechanical properties. However, no studies have analyzed the morpho-mechanical characteristics of ligaments or muscles surrounding sacroiliac joints and lumbar regions in patients with ankylosing spondylitis. No studies have explored the correlation between these characteristics and medical history. Purpose: The aim of the study was to compare the macro-morphology, mechanical properties, vascularization, and micro-morphology of ultrasound characteristics of ligaments and muscle surrounding sacroiliac joints and lumbar region in patients with ankylosing spondylitis and the healthy controls. In addition, we investigated the correlation between the elastic modulus of piriformis and disease duration. Study design: This study was an observational cross-sectional study Participants: The study recruited 20 to 45-year-old male patients with ankylosing spondylitis as a patient group (under-diagnosed by Modified New York criteria and ASAS criteria), healthy participants with matched age, heights, and weights as the healthy control group. Methods: We recruited twenty male patients with ankylosing spondylitis and 19 healthy control subjects. We scanned the short posterior sacroiliac ligament (SPSL), interosseous sacroiliac ligament (ISL), long posterior sacroiliac ligament (LPSL), and iliolumbar ligament (ILL), proximal piriformis muscle (PM) and sacrotuberous ligament with B-mode ultrasound. We measured the thickness to represent the macro-morphology, elastic modulus by shear wave elastography to represent mechanical properties, vascularization by directional power Doppler ultrasound, and micro-morphology by peak spatial frequency radius of spatial frequency analysis. We explored the correlation between the elastic modulus of piriformis and disease duration. Statistical analysis: We examined the normal distribution of the demographic data and ultrasonic parameters by Shapiro-Wilk test, and some parameters did not show a normal distribution. As a result, we used the Mann-Whitney U test to determine statistical significance in continuous variables and the Chi-square test to determine statistical significance in categorical variables between two groups. In addition, Spearman's rank correlation coefficient was used to examine the correlation between the elastic modulus of piriformis and disease duration. Results: The thickness of short posterior sacroiliac ligament, interosseous sacroiliac ligament, long posterior sacroiliac ligament, iliolumbar ligament, proximal piriformis muscle, and sacrotuberous ligament in the patient group were thicker than in healthy groups (all p<0.01). The elastic modulus of the soft tissues in the patient group was also greater than that in the control group (all p<0.01). The iliolumbar ligament, proximal piriformis muscle, and sacrotuberous ligament in the patient group also had more directional power Doppler signals than the control group (all p<0.001), but there was no significance of directional power Doppler signals in the short posterior sacroiliac ligament, interosseous sacroiliac ligament, long posterior sacroiliac ligament between groups. There were no statistically significant differences in peak spatial frequency radius between the two groups (p>0.05). There was a moderate correlation between the elastic modulus of the proximal piriformis muscle and disease duration (r=0.640, p=0.003). Conclusion: In patients with ankylosing spondylitis, the ultrasound characteristics of the ligaments and muscle around the sacroiliac joints and lumbar region are marked by increased thickness, stiffness, and vascularization. Ankylosing spondylitis affects not only the bone but also the ligaments and muscles that surround the axial skeleton. Future studies could look into the histological or immunobiochemical analysis of the ligaments or muscles surrounding the sacroiliac joints and lumbar spine in patients with ankylosing spondylitis.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:06:40Z (GMT). No. of bitstreams: 1
U0001-1306202219450400.pdf: 9271187 bytes, checksum: 2cecdb87b029d6ecc366ba4942e6ea13 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書 i 誌謝 ii 中文摘要 iii 英文摘要 v 目錄 viii 圖目錄 x 表目錄 xii 第一章 前言 1 第一節 研究背景 1 第二節 研究目的 2 第二章 文獻回顧 3 第一節 僵直性脊椎炎 3 一、疾病概述 3 二、流行病學 3 三、致病機轉 5 四、早期診斷重要性 9 五、醫學影像與診斷標準 9 六、好發部位與機械應力的關連性 14 七、組織病理特徵 18 八、使用薦腸關節與腰椎軟組織作為評估之標的 19 第二節 超音波相關研究 27 一、都卜勒超音波 27 二、B模式超音波 29 三、剪力波彈性影像 30 四、峰值空間頻率半徑 (peak spatial frequency radius, PSFR) 34 第三節 應用於本研究之非侵入性設備 36 一、超音波影像 36 二、問卷與量表 37 第三章 研究方法 40 第一節 理論架構 40 第二節 實驗假說 41 第三節 參數與操作型定義 42 第四節 研究對象 45 第五節 實驗方法 47 第六節 統計分析 53 第四章 實驗結果 54 第五章 討論 58 第一節 巨觀形態之厚度量測 58 第二節 機械特性之剪力波彈性影像量測 62 第三節 血管化特性之方向性能量都卜勒之量測 71 第四節 微觀形態之峰值空間頻率半徑 73 第五節 梨狀肌彈性模數與患病時間之相關性 75 第六節 臨床意義與未來研究方向 78 第七節 研究限制 79 第六章 結論 80 參考文獻 81 附錄一 本研究結果表格 91 附錄二 自填量表 96 附錄三 受試者同意書 106 附錄四 研究倫理委員會臨床試驗研究許可書 114
dc.language.isozh-TW
dc.subject薦腸關節炎zh_TW
dc.subject僵直性脊椎炎zh_TW
dc.subject超音波zh_TW
dc.subject機械特性zh_TW
dc.subject軟組織特性zh_TW
dc.subjectultrasounden
dc.subjectsacroiliitisen
dc.subjectmechanical propertyen
dc.subjectsoft tissue characteristicsen
dc.subjectankylosing spondylitisen
dc.title僵直性脊椎炎病患之薦腸關節與腰椎周圍軟組織的超音波特徵zh_TW
dc.titleUltrasound Characteristics of the Soft Tissues around Sacroiliac Joints and Lumbar Region in Patients with Ankylosing Spondylitisen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.advisor-orcid王興國(0000-0001-9199-0721)
dc.contributor.oralexamcommittee施庭芳(Ting-Fang Shih),陳文翔(Wen-Shiang Chen),李克仁(Ko-Jen Li)
dc.contributor.oralexamcommittee-orcid施庭芳(0000-0002-3292-9688),陳文翔(0000-0003-1488-5164),李克仁(0000-0002-4544-4620)
dc.subject.keyword僵直性脊椎炎,超音波,機械特性,軟組織特性,薦腸關節炎,zh_TW
dc.subject.keywordankylosing spondylitis,ultrasound,mechanical property,soft tissue characteristics,sacroiliitis,en
dc.relation.page115
dc.identifier.doi10.6342/NTU202200936
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-06-29
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept物理治療學研究所zh_TW
dc.date.embargo-lift2022-07-02-
顯示於系所單位:物理治療學系所

文件中的檔案:
檔案 大小格式 
U0001-1306202219450400.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
9.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved