請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84225完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 簡國龍(Kuo-Liong Chien) | |
| dc.contributor.author | Yi-Fan Wu | en |
| dc.contributor.author | 吳逸帆 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:06:38Z | - |
| dc.date.copyright | 2022-07-02 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-06-29 | |
| dc.identifier.citation | 1.Al-Maskari F, El-Sadig M and Nagelkerke N. Assessment of the direct medical costs of diabetes mellitus and its complications in the United Arab Emirates. BMC public health. 2010;10:679. 2.Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H and Al Kaabi J. Epidemiology of Type 2 Diabetes - Global Burden of Disease and Forecasted Trends. J Epidemiol Glob Health. 2020;10:107-111. 3.Harding JL, Pavkov ME, Magliano DJ, Shaw JE and Gregg EW. Global trends in diabetes complications: a review of current evidence. Diabetologia. 2019;62:3-16. 4.Li L, Ji L, Guo X, Ji Q, Gu W, Zhi X, Li X, Kuang H, Su B, Yan J and Yang X. Prevalence of microvascular diseases among tertiary care Chinese with early versus late onset of type 2 diabetes. Journal of diabetes and its complications. 2015;29:32-7. 5.Holden SH, Barnett AH, Peters JR, Jenkins-Jones S, Poole CD, Morgan CL and Currie CJ. The incidence of type 2 diabetes in the United Kingdom from 1991 to 2010. Diabetes Obes Metab. 2013;15:844-52. 6.International Diabetes Federation. IDF Diabetes Atlas, 6th edn. Brussels: International Diabetes Federation, 2013. http://wwwdiabetesatlasorg/resources/previous-editionshtml. 2013:(accessed April 1, 2017). 7.Lascar N, Brown J, Pattison H, Barnett AH, Bailey CJ and Bellary S. Type 2 diabetes in adolescents and young adults. The lancet Diabetes & endocrinology. 2018;6:69-80. 8.Wilmot E and Idris I. Early onset type 2 diabetes: risk factors, clinical impact and management. Ther Adv Chronic Dis. 2014;5:234-44. 9.Mast R, Danielle Jansen AP, Walraven I, Rauh SP, van der Heijden AA, Heine RJ, Elders PJ, Dekker JM, Nijpels G and Hugtenburg JG. Time to insulin initiation and long-term effects of initiating insulin in people with type 2 diabetes mellitus: the Hoorn Diabetes Care System Cohort Study. Eur J Endocrinol. 2016;174:563-71. 10.Song SH and Gray TA. Early-onset type 2 diabetes: higher burden of atherogenic apolipoprotein particles during statin treatment. QJM. 2012;105:973-80. 11.Simmonds M, Llewellyn A, Owen CG and Woolacott N. Predicting adult obesity from childhood obesity: a systematic review and meta-analysis. Obes Rev. 2016;17:95-107. 12.Weihrauch-Bluher S, Schwarz P and Klusmann JH. Childhood obesity: increased risk for cardiometabolic disease and cancer in adulthood. Metabolism. 2019;92:147-152. 13.Hsia Y, Neubert AC, Rani F, Viner RM, Hindmarsh PC and Wong IC. An increase in the prevalence of type 1 and 2 diabetes in children and adolescents: results from prescription data from a UK general practice database. Br J Clin Pharmacol. 2009;67:242-9. 14.Shield JP, Lynn R, Wan KC, Haines L and Barrett TG. Management and 1 year outcome for UK children with type 2 diabetes. Archives of disease in childhood. 2009;94:206-9. 15.Hillier TA and Pedula KL. Characteristics of an adult population with newly diagnosed type 2 diabetes: the relation of obesity and age of onset. Diabetes care. 2001;24:1522-7. 16.Bacha F, Gungor N, Lee S and Arslanian SA. Progressive deterioration of beta-cell function in obese youth with type 2 diabetes. Pediatr Diabetes. 2013;14:106-11. 17.Lumeng CN and Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011;121:2111-7. 18.Reinehr T, Karges B, Meissner T, Wiegand S, Stoffel-Wagner B, Holl RW and Woelfle J. Inflammatory Markers in Obese Adolescents with Type 2 Diabetes and Their Relationship to Hepatokines and Adipokines. The Journal of pediatrics. 2016;173:131-5. 19.Molyneaux L, Constantino M and Yue D. Strong family history predicts a younger age of onset for subjects diagnosed with type 2 diabetes. Diabetes Obes Metab. 2004;6:187-94. 20.Zhou K, Donnelly LA, Morris AD, Franks PW, Jennison C, Palmer CN and Pearson ER. Clinical and genetic determinants of progression of type 2 diabetes: a DIRECT study. Diabetes care. 2014;37:718-724. 21.Suchindran S, Vana AM, Shaffer RA, Alcaraz JE and McCarthy JJ. Racial differences in the interaction between family history and risk factors associated with diabetes in the National Health and Nutritional Examination Survey, 1999-2004. Genetics in medicine : official journal of the American College of Medical Genetics. 2009;11:542-7. 22.Simmonds M, Burch J, Llewellyn A, Griffiths C, Yang H, Owen C, Duffy S and Woolacott N. The use of measures of obesity in childhood for predicting obesity and the development of obesity-related diseases in adulthood: a systematic review and meta-analysis. Health technology assessment. 2015;19:1-336. 23.Peterson CM, Su H, Thomas DM, Heo M, Golnabi AH, Pietrobelli A and Heymsfield SB. Tri-Ponderal Mass Index vs Body Mass Index in Estimating Body Fat During Adolescence. JAMA pediatrics. 2017;171:629-636. 24.Wu F, Buscot MJ, Juonala M, Hutri-Kahonen N, Viikari JSA, Raitakari OT and Magnussen CG. Association of Youth Triponderal Mass Index vs Body Mass Index With Obesity-Related Outcomes in Adulthood. JAMA pediatrics. 2018;172:1192-1195. 25.McCarthy HD, Jarrett KV and Crawley HF. The development of waist circumference percentiles in British children aged 5.0-16.9 y. Eur J Clin Nutr. 2001;55:902-7. 26.Morrison JA, Glueck CJ, Horn PS and Wang P. Childhood predictors of adult type 2 diabetes at 9- and 26-year follow-ups. Arch Pediatr Adolesc Med. 2010;164:53-60. 27.Bozorgmanesh M, Hadaegh F and Azizi F. Diabetes prediction, lipid accumulation product, and adiposity measures; 6-year follow-up: Tehran lipid and glucose study. Lipids Health Dis. 2010;9:45. 28.Soriguer F, Rojo-Martinez G, Almaraz MC, Esteva I, Ruiz de Adana MS, Morcillo S, Valdes S, Garcia-Fuentes E, Garcia-Escobar E, Cardona I, Gomez-Zumaquero JM and Olveira-Fuster G. Incidence of type 2 diabetes in southern Spain (Pizarra Study). Eur J Clin Invest. 2008;38:126-33. 29.Lee JA and Laurson KR. Obesity and Insulin Resistance Screening Tools in American Adolescents: National Health and Nutrition Examination Survey (NHANES) 1999 to 2010. Can J Diabetes. 2016;40:311-7. 30.Thearle MS, Votruba SB, Piaggi P, Muller YL, Hanson RL, Baier LJ, Knowler W and Krakoff J. The effect of differing patterns of childhood body mass index gain on adult physiology in American Indians. Obesity. 2015;23:1872-80. 31.Attard SM, Herring AH, Howard AG and Gordon-Larsen P. Longitudinal trajectories of BMI and cardiovascular disease risk: the national longitudinal study of adolescent health. Obesity. 2013;21:2180-8. 32.Kwon S, Janz KF, Letuchy EM, Burns TL and Levy SM. Active lifestyle in childhood and adolescence prevents obesity development in young adulthood. Obesity. 2015;23:2462-9. 33.Lin LJ, Chang HY, Luh DL, Hurng BS and Yen LL. The trajectory and the related physical and social determinants of body mass index in elementary school children: results from the child and adolescent behaviors in long-term evolution study. J Obes. 2014;2014:728762. 34.Ng CD and Cunningham SA. In, out, and fluctuating: obesity from adolescence to adulthood. Ann Epidemiol. 2020;41:14-20. 35.Viner RM, Costa S and Johnson W. Patterns of BMI development between 10 and 42 years of age and their determinants in the 1970 British Cohort Study. Journal of epidemiology and community health. 2019;73:79-85. 36.Ingalls AM, Dickie MM and Snell GD. Obese, a new mutation in the house mouse. J Hered. 1950;41:317-8. 37.Cowley MA, Pronchuk N, Fan W, Dinulescu DM, Colmers WF and Cone RD. Integration of NPY, AGRP, and melanocortin signals in the hypothalamic paraventricular nucleus: evidence of a cellular basis for the adipostat. Neuron. 1999;24:155-63. 38.Yeo GS, Farooqi IS, Aminian S, Halsall DJ, Stanhope RG and O'Rahilly S. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nature genetics. 1998;20:111-2. 39.Vaisse C, Clement K, Guy-Grand B and Froguel P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nature genetics. 1998;20:113-4. 40.Krude H, Biebermann H, Luck W, Horn R, Brabant G and Gruters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nature genetics. 1998;19:155-7. 41.Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, Najjar S, Nagaraja R, Orru M, Usala G, Dei M, Lai S, Maschio A, Busonero F, Mulas A, Ehret GB, Fink AA, Weder AB, Cooper RS, Galan P, Chakravarti A, Schlessinger D, Cao A, Lakatta E and Abecasis GR. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 2007;3:e115. 42.Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JR, Elliott KS, Lango H, Rayner NW, Shields B, Harries LW, Barrett JC, Ellard S, Groves CJ, Knight B, Patch AM, Ness AR, Ebrahim S, Lawlor DA, Ring SM, Ben-Shlomo Y, Jarvelin MR, Sovio U, Bennett AJ, Melzer D, Ferrucci L, Loos RJ, Barroso I, Wareham NJ, Karpe F, Owen KR, Cardon LR, Walker M, Hitman GA, Palmer CN, Doney AS, Morris AD, Smith GD, Hattersley AT and McCarthy MI. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316:889-94. 43.Xu Y, Ling J, Yang M, Wang H, Zhang S, Zhang X and Zhu Y. Rs7206790 and rs11644943 in FTO gene are associated with risk of obesity in Chinese school-age population. PloS one. 2014;9:e108050. 44.Koj N, Grochowalski L, Jarczak J, Wojtowicz W, Sobalska-Kwapis M, Slomka M, Marciniak B and Strapagiel D. The association between polymorphisms near TMEM18 and the risk of obesity: a meta-analysis. BMC Med Genomics. 2021;14:179. 45.Wen W, Cho YS, Zheng W, Dorajoo R, Kato N, Qi L, Chen CH, Delahanty RJ, Okada Y, Tabara Y, Gu D, Zhu D, Haiman CA, Mo Z, Gao YT, Saw SM, Go MJ, Takeuchi F, Chang LC, Kokubo Y, Liang J, Hao M, Le Marchand L, Zhang Y, Hu Y, Wong TY, Long J, Han BG, Kubo M, Yamamoto K, Su MH, Miki T, Henderson BE, Song H, Tan A, He J, Ng DP, Cai Q, Tsunoda T, Tsai FJ, Iwai N, Chen GK, Shi J, Xu J, Sim X, Xiang YB, Maeda S, Ong RT, Li C, Nakamura Y, Aung T, Kamatani N, Liu JJ, Lu W, Yokota M, Seielstad M, Fann CS, Genetic Investigation of ATC, Wu JY, Lee JY, Hu FB, Tanaka T, Tai ES and Shu XO. Meta-analysis identifies common variants associated with body mass index in east Asians. Nature genetics. 2012;44:307-11. 46.Sanchez-Moreno C, Ordovas JM, Smith CE, Baraza JC, Lee YC and Garaulet M. APOA5 gene variation interacts with dietary fat intake to modulate obesity and circulating triglycerides in a Mediterranean population. J Nutr. 2011;141:380-5. 47.Qi Q, Chu AY, Kang JH, Huang J, Rose LM, Jensen MK, Liang L, Curhan GC, Pasquale LR, Wiggs JL, De Vivo I, Chan AT, Choi HK, Tamimi RM, Ridker PM, Hunter DJ, Willett WC, Rimm EB, Chasman DI, Hu FB and Qi L. Fried food consumption, genetic risk, and body mass index: gene-diet interaction analysis in three US cohort studies. BMJ. 2014;348:g1610. 48.Alsulami S, Nyakotey DA, Dudek K, Bawah AM, Lovegrove JA, Annan RA, Ellahi B and Vimaleswaran KS. Interaction between Metabolic Genetic Risk Score and Dietary Fatty Acid Intake on Central Obesity in a Ghanaian Population. Nutrients. 2020;12. 49.de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C and Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bulletin of the World Health Organization. 2007;85:660-7. 50.Park HK and Shim YS. Distribution of Tri-Ponderal Mass Index and its Relation to Body Mass Index in Children and Adolescents Aged 10 to 20 Years. J Clin Endocrinol Metab. 2020;105. 51.Jung T WK. An introduction to latent class growth analysis and growth mixture modeling. Soc Personal Psychol Compass. 2008;2:302-317. 52.Muthen B and Muthen LK. Integrating person-centered and variable-centered analyses: growth mixture modeling with latent trajectory classes. Alcohol Clin Exp Res. 2000;24:882-91. 53.Berlin KS, Parra GR and Williams NA. An introduction to latent variable mixture modeling (part 2): longitudinal latent class growth analysis and growth mixture models. Journal of pediatric psychology. 2014;39:188-203. 54.Little TD, Jorgensen TD, Lang KM and Moore EW. On the joys of missing data. Journal of pediatric psychology. 2014;39:151-62. 55.Marshall WA and Tanner JM. Variations in pattern of pubertal changes in girls. Archives of disease in childhood. 1969;44:291-303. 56.Zachmann M, Prader A, Kind HP, Hafliger H and Budliger H. Testicular volume during adolescence. Cross-sectional and longitudinal studies. Helv Paediatr Acta. 1974;29:61-72. 57.Wang JS, Hsieh RH, Tung YT, Chen YH, Yang C and Chen YC. Evaluation of a Technological Image-Based Dietary Assessment Tool for Children during Pubertal Growth: A Pilot Study. Nutrients. 2019;11. 58.Nedel F, Andre Dde A, de Oliveira IO, Tarquinio SB and Demarco FF. Buccal cells submitted to three different storage conditions before DNA extraction. J Appl Oral Sci. 2009;17:113-5. 59.Lu Y and Loos RJ. Obesity genomics: assessing the transferability of susceptibility loci across diverse populations. Genome Med. 2013;5:55. 60.Chang YC, Liu PH, Lee WJ, Chang TJ, Jiang YD, Li HY, Kuo SS, Lee KC and Chuang LM. Common variation in the fat mass and obesity-associated (FTO) gene confers risk of obesity and modulates BMI in the Chinese population. Diabetes. 2008;57:2245-52. 61.Cha SW, Choi SM, Kim KS, Park BL, Kim JR, Kim JY and Shin HD. Replication of genetic effects of FTO polymorphisms on BMI in a Korean population. Obesity. 2008;16:2187-9. 62.Fu J, Li G, Li L, Yin J, Cheng H, Han L, Zhang Q, Li N, Xiao X, Grant SFA, Li M, Gao S, Mi J and Li M. The role of established East Asian obesity-related loci on pediatric leptin levels highlights a neuronal influence on body weight regulation in Chinese children and adolescents: the BCAMS study. Oncotarget. 2017;8:93593-93607. 63.Liu C, Chu C, Zhang J, Wu D, Xu D, Li P, Chen Y, Liu B, Pei L, Zhang L, Liu S, Qi T, Lou XY and Li L. IRX3 is a genetic modifier for birth weight, adolescent obesity and transaminase metabolism. Pediatr Obes. 2018;13:141-148. 64.Renstrom F, Payne F, Nordstrom A, Brito EC, Rolandsson O, Hallmans G, Barroso I, Nordstrom P, Franks PW and Consortium G. Replication and extension of genome-wide association study results for obesity in 4923 adults from northern Sweden. Hum Mol Genet. 2009;18:1489-96. 65.Xi B, Shen Y, Reilly KH, Zhao X, Cheng H, Hou D, Wang X and Mi J. Sex-dependent associations of genetic variants identified by GWAS with indices of adiposity and obesity risk in a Chinese children population. Clin Endocrinol (Oxf). 2013;79:523-8. 66.Dorajoo R, Ong RT, Sim X, Wang L, Liu W, Tai ES, Liu J and Saw SM. The contribution of recently identified adult BMI risk loci to paediatric obesity in a Singaporean Chinese childhood dataset. Pediatr Obes. 2017;12:e46-e50. 67.El Hajj Chehadeh S, Osman W, Nazar S, Jerman L, Alghafri A, Sajwani A, Alawlaqi M, AlObeidli M, Jelinek HF, AlAnouti F, Khalaf K and Alsafar H. Implication of genetic variants in overweight and obesity susceptibility among the young Arab population of the United Arab Emirates. Gene. 2020;739:144509. 68.Chowdhury MZI and Turin TC. Variable selection strategies and its importance in clinical prediction modelling. Fam Med Community Health. 2020;8:e000262. 69.Skol AD, Scott LJ, Abecasis GR and Boehnke M. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nature genetics. 2006;38:209-13. 70.Pacifico L, Anania C, Martino F, Poggiogalle E, Chiarelli F, Arca M and Chiesa C. Management of metabolic syndrome in children and adolescents. Nutrition, metabolism, and cardiovascular diseases : NMCD. 2011;21:455-66. 71.Hannon TS, Janosky J and Arslanian SA. Longitudinal study of physiologic insulin resistance and metabolic changes of puberty. Pediatric research. 2006;60:759-63. 72.Group HS, Foster GD, Linder B, Baranowski T, Cooper DM, Goldberg L, Harrell JS, Kaufman F, Marcus MD, Trevino RP and Hirst K. A school-based intervention for diabetes risk reduction. The New England journal of medicine. 2010;363:443-53. 73.Chen LJ, Haase AM and Fox KR. Physical activity among adolescents in Taiwan. Asia Pacific journal of clinical nutrition. 2007;16:354-61. 74.Wu CL and Chang CK. Results from the Chinese Taipei (Taiwan) 2018 Report Card on physical activity for children and youth. Journal of exercise science and fitness. 2019;17:8-13. 75.Anik A, Catli G, Abaci A and Bober E. Maturity-onset diabetes of the young (MODY): an update. J Pediatr Endocrinol Metab. 2015;28:251-63. 76.Graff M, North KE, Richardson AS, Young KL, Mazul AL, Highland HM, Mohlke KL, Lange LA, Lange EM, Mullan Harris K and Gordon-Larsen P. BMI loci and longitudinal BMI from adolescence to young adulthood in an ethnically diverse cohort. Int J Obes (Lond). 2017;41:759-768. 77.Warrington NM, Howe LD, Paternoster L, Kaakinen M, Herrala S, Huikari V, Wu YY, Kemp JP, Timpson NJ, St Pourcain B, Davey Smith G, Tilling K, Jarvelin MR, Pennell CE, Evans DM, Lawlor DA, Briollais L and Palmer LJ. A genome-wide association study of body mass index across early life and childhood. Int J Epidemiol. 2015;44:700-12. 78.Resende CMM, Silva H, Campello CP, Ferraz LAA, de Lima ELS, Beserra MA, Muniz MTC and da Silva LMP. Polymorphisms on rs9939609 FTO and rs17782313 MC4R genes in children and adolescent obesity: A systematic review. Nutrition. 2021;91-92:111474. 79.Yang Y, Gao X, Tao X, Gao Q, Zhang Y and Yang J. Combined effect of FTO and MC4R gene polymorphisms on obesity in children and adolescents in Northwest China: a case-control study. Asia Pacific journal of clinical nutrition. 2019;28:177-182. 80.Dusatkova L, Zamrazilova H, Sedlackova B, Vcelak J, Hlavaty P, Aldhoon Hainerova I, Korenkova V, Bradnova O, Bendlova B, Kunesova M and Hainer V. Association of obesity susceptibility gene variants with metabolic syndrome and related traits in 1,443 Czech adolescents. Folia Biol (Praha). 2013;59:123-33. 81.Garcia-Solis P, Reyes-Bastidas M, Flores K, Garcia OP, Rosado JL, Mendez-Villa L, Garcia GC, Garcia-Gutierrez D, Kuri-Garcia A, Hernandez-Montiel HL, Soriano-Leon O, Villagran-Herrera ME and Solis-Sainz JC. Fat mass obesity-associated (FTO) (rs9939609) and melanocortin 4 receptor (MC4R) (rs17782313) SNP are positively associated with obesity and blood pressure in Mexican school-aged children. Br J Nutr. 2016:1-7. 82.The NS, Suchindran C, North KE, Popkin BM and Gordon-Larsen P. Association of adolescent obesity with risk of severe obesity in adulthood. JAMA. 2010;304:2042-7. 83.Wu YF, Fan HY, Chen YC, Kuo KL and Chien KL. Adolescent Tri-ponderal Mass Index Growth Trajectories and Incident Diabetes Mellitus in Early Adulthood. J Clin Endocrinol Metab. 2021;106:e2919-e2927. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84225 | - |
| dc.description.abstract | 背景與目標: 糖尿病目前在全球各國仍造成很大的負擔,其中早發性糖尿病因為病程時間較長,引發併發症的機率更高。青少年時期以身體質量指數所定義的肥胖已被證實受到某些基因變異的影響且和成年人的糖尿病有關,但新興肥胖指標體重立方質量指數及肥胖成長趨勢是否能對早發性糖尿病提供更好的預測能力,過去研究仍未提供足夠定論。本研究將比較兩種不同肥胖指標所建構的肥胖成長趨勢和成年人早期新診斷糖尿病的關聯性,並探討基因變異和肥胖成長趨勢之間的關聯性。 方法: 我們先使用台北市立聯合醫院輻射屋體檢資料庫中所收集的資料,用每年所收集到的標準化身體質量指數和體重立方質量指數以Growth mixture modeling分別建構出13-18歲之間的肥胖成長趨勢軌跡,再使用Cox’s proportional hazard model來比較不同分群之間早發性糖尿病的風險。此外我們會使用台灣青春期孩童世代追蹤研究中所召募的個案,採集口腔黏膜檢體的表皮細胞以取得個案肥胖相關的基因變異,以多分類羅吉斯回歸尋求此基因變異對不同肥胖成長軌跡的影響;最後透過飲食內容分析,探討基因變異的影響力是否和飲食中總熱量及三種主要營養素攝取習慣的差異間存有交互作用。 結果: 我們從台北市立聯合醫院輻射屋體檢資料庫中的1387個個案,以標準化身體質量指數和體重立方質量指數分別建構出五種不同的肥胖成長趨勢軌跡。在近20400人年的追蹤後,共發生了33個糖尿病的個案。再校正過孩童時期的肥胖其及他干擾因素後,體重立方質量指數在青少年時期呈現持續增加的個案,對成年人早期糖尿病的發生,仍存在顯著的風險 (Hazard ratio: 2.85,95%信賴區間: 1.01-8.09);在標準化身體質量指數所建構的成長趨勢中則無此發現。在台灣青春期孩童世代追蹤研究中,我們以體重立方質量指數建構出三種肥胖成長趨勢軌跡,當中肥胖程度持續向上的約占有9.7%。在校正過研究基期的肥胖程度和其他相關干擾因子後,FTO/rs7206790的變異仍和青少年時期體重立方質量指數持續增加有關 (odds ratio: 2.13,95%信賴區間: 1.08-4.21)。我們以4基因變異(FTO/ rs7206790, ADCY9/ rs2531995, TFAP2B/ rs4715210, and TMEM18/ rs6548238)所組成的基因風險分數10分為切點所定義的高低風險族群中,體重立方質量指數增加的青少年比例有明顯的差異 (11.66% vs. 3.24%)。而在不同飲食習慣的分群當中,可發現此基因影響的效力,在較低熱量攝取的青少年身上較為顯著。 結論: 青少年時期呈現體重立方質量指數持續增加趨勢的族群,是防治成年人早發型糖尿病重要的目標;而某些特殊的基因變異及在不同飲食習慣上的差異表現,可以協助我們辨認出這些高危險族群,提供個人化的介入與衛教。 | zh_TW |
| dc.description.abstract | Background: Diabetes mellitus is a chronic metabolic disease with a growing global health burden. Studies have reported the influence of adolescent obesity on development of early-onset type II diabetes, but the effect of the growth pattern during this period has rarely been explored. Besides, tri-ponderal mass index (TMI) was thought to be a better estimation of adolescent body fat levels than the body mass index (BMI), so we seek to investigate whether growth trajectories derived by these two indices could predict incident diabetes. At last, we will also explore the effect of obesity related genetic variations on adolescent growth pattern and examine the interaction between dietary fat components. Methods: Taipei City Hospital Radiation Building Database is a longitudinal cohort established from 1996 until now. Physical exam results including blood test results were collected annually and the BMI z-score/TMI growth trajectory groups during 13–18 years of age were identified using growth mixture modeling. A Cox proportional hazard model for incident diabetes was used to examine the risk of baseline obese status and different BMI/TMI growth trajectories. In addition, we conducted Taiwan Puberty Longitudinal Study since 2018 and recruited female adolescents aged 6-14 years-old and male adolescents aged 9-17 years-old. Anthropometric measurements, nutrition assessment, Tanner’s stages, physical activity level and genetic sampling were collected while the first visit. A multinomial logistic regression model for different growth trajectories was used to examine the effect of candidate SNPs, and the most related SNPs were used to establish the genetic risk score. We then explored the effect of the genetic risk score in subgroup analysis according to dietary calories and different dietary consumption patterns. Result: Five growth trajectory groups were identified for the BMI z-score and the TMI from Taipei City Hospital Radiation Building Database. During approximately 20 400 person-years follow-up, 33 of 1387 participants developed diabetes. Baseline obesity defined by the BMI z-score and the TMI were both related to adult diabetes. The persistent increase TMI growth trajectory exhibited a significantly increased risk of diabetes after adjusting for baseline obese status and other correlated covariates (hazard ratio: 2.85, 95% confidence interval: 1.01-8.09). There was no association between BMI growth trajectory groups and incident diabetes. Besides, three TMI-based growth trajectory groups were identified among adolescents in Taiwan Puberty Longitudinal Study. The “increased weight” trajectory group accounted for approximately 9.7% of the participants. FTO/rs7206790 was associated with the increased weight growth trajectory after adjusting for the baseline TMI and other correlated covariates (odds ratio: 2.13, 95% confidence interval: 1.08–4.21). We generated the genetic risk score by using 4 SNPs (FTO/rs7206790, ADCY9/rs2531995, TFAP2B/rs4715210, and TMEM18/rs6548238) and selected the threshold of 10 points to define risk categories. There were 11.66% and 3.24% of participants belonged to the increased weight trajectory in high- and low-risk groups, respectively; and the predictive ability of the genetic risk score was notable among low calories intake participants (odds ratio: 1.90, 95% confidence interval: 1.18-3.05 vs. odds ratio: 1.17, 95% confidence interval: 0.78-1.75 in high calories intake group). Conclusion: A specific TMI growth trajectory pattern during adolescence might be critical for diabetes prevention efforts. Our results offer a new perspective on the genetic and dietary basis of changes in adolescent obesity status. Individualized interventions for obesity prevention may be considered among high-risk children. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:06:38Z (GMT). No. of bitstreams: 1 U0001-2806202222500800.pdf: 3775829 bytes, checksum: 1d4f225528d0fff3c93dbb87dba6477f (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝 I 中文摘要 II Abstract IV 縮寫 VII 內容摘要 (Table of Contents) IX 附錄 XII Tables XIII Figures XVI 第一章 研究背景 1 1.1 早發性第二型糖尿病與青少年肥胖 1 1.1.1 早發性第二型糖尿病的發生率和臨床表現 1 1.1.2 早發性第二型糖尿病相關的危險因子 2 1.2 青少年肥胖測量因子及與糖尿病的關聯性 3 1.2.1 身體質量指數(BMI) 3 1.2.2 體重立方質量指數(Tri-Ponderal Mass Index, TMI) 4 1.2.3 其他肥胖測量因子 5 1.2.4 肥胖成長趨勢 7 1.3 青少年肥胖成長趨勢的關聯因子 8 1.3.1 生活型態、家庭社經地位及青春期發育 8 1.3.2 基因與肥胖的關聯性 9 1.3.3 飲食習慣對於基因於肥胖影響的調節作用 11 第二章 研究目的 13 第三章 研究方法 14 3.1 台北市立聯合醫院輻射屋體檢資料庫 14 3.1.1 研究設計與研究對象 14 3.1.2 研究變項測量與收集 15 3.1.3 統計分析方法 16 3.1.4 樣本數預估 18 3.2 台灣青春期孩童世代追蹤研究 19 3.2.1 研究設計與研究對象 19 3.2.2 研究變項測量與收集 19 3.2.3 統計分析方法 22 3.2.4 樣本數估計 24 第四章 研究結果 26 4.1 青少年肥胖成長趨勢與成年人早期糖尿病之關聯性 26 4.1.1 台北市立聯合醫院輻射屋體檢資料庫肥胖成長趨勢分群分析 26 4.1.2 成年人早期糖尿病相關描述性統計結果 27 4.1.3 成年人早期糖尿病相關分析性統計結果 28 4.1.4 肥胖成長趨勢-糖尿病家族史的交互作用 29 4.2 肥胖相關基因與青少年肥胖成長趨勢之關聯性 30 4.2.1 台灣青春期孩童世代追蹤研究肥胖成長趨勢分群分析 30 4.2.2 青少年肥胖成長趨勢相關因子的分析 31 4.2.3 基因風險分數的建構 32 4.2.4 基因風險分數對肥胖成長趨勢的預測效力 32 4.2.5基因-飲食對肥胖成長趨勢的交互作用 33 第五章 討論 36 5.1 青少年肥胖成長趨勢與成年人早發性糖尿病的關聯性 36 5.1.1 研究主要發現 36 5.1.2 與過去研究結果的關聯性 36 5.1.3 判斷青少年肥胖成長趨勢的臨床效益 38 5.1.4 研究強項及限制 39 5.1.5 結論 41 5.2 基因與青少年肥胖成長趨勢的關聯性 41 5.2.1 研究主要發現 41 5.2.2 與過去研究結果的關聯性 42 5.2.3 探討基因風險分數與青少年肥胖趨勢變化關聯性的臨床效益 44 5.2.4 研究強項及限制 45 5.2.5 結論 46 參考文獻 47 Publication 94 | |
| dc.language.iso | zh-TW | |
| dc.subject | 基因變異 | zh_TW |
| dc.subject | 青春期成長軌跡 | zh_TW |
| dc.subject | 糖尿病 | zh_TW |
| dc.subject | 體重立方質量指數 | zh_TW |
| dc.subject | 基因營養交互作用 | zh_TW |
| dc.subject | gene-diet interaction | en |
| dc.subject | tri-ponderal mass index | en |
| dc.subject | adolescent growth trajectories | en |
| dc.subject | diabetes | en |
| dc.subject | single-nucleotide polymorphism | en |
| dc.title | 青少年肥胖成長趨勢相關的基因變異及與成年人早發性糖尿病的關聯性 | zh_TW |
| dc.title | Adolescent growth trajectory: the associated genetic factors and the risk of diabetes in early adulthood | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 杜裕康(Yu-Kang Tu),黃國晉(Kuo-Chin Huang),張新儀(Hsing-Yi Chang),陳揚卿(Yang-Ching Chen),林菀俞(Wan-Yu Lin),曾翎威(Ling-Wei Chen) | |
| dc.subject.keyword | 體重立方質量指數,青春期成長軌跡,糖尿病,基因變異,基因營養交互作用, | zh_TW |
| dc.subject.keyword | tri-ponderal mass index,adolescent growth trajectories,diabetes,single-nucleotide polymorphism,gene-diet interaction, | en |
| dc.relation.page | 102 | |
| dc.identifier.doi | 10.6342/NTU202201188 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-06-29 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-02 | - |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2806202222500800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
