請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84207完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃義侑(Yi-You Huang) | |
| dc.contributor.author | Xiao-Rong Shen | en |
| dc.contributor.author | 沈筱蓉 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:06:19Z | - |
| dc.date.copyright | 2022-07-26 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-06-30 | |
| dc.identifier.citation | 1. Aijaz A, Li M, Smith D, Khong D, LeBlon C, Fenton OS, Olabisi RM, Libutti S, Tischfield J, Maus MV: Biomanufacturing for clinically advanced cell therapies. Nature biomedical engineering 2018, 2(6):362-376. 2. Borell M: Brown-Séquard's organotherapy and its appearance in America at the end of the nineteenth century. Bulletin of the History of Medicine 1976, 50(3):309-320. 3. Starzl TE: History of clinical transplantation. World J Surg 2000, 24(7):759-782. 4. Müller AM, Huppertz S, Henschler R: Hematopoietic stem cells in regenerative medicine: astray or on the path? Transfusion Medicine and Hemotherapy 2016, 43(4):247-254. 5. Afrough A, Heslop HE, Hill LC: Commercialization of Investigational Cell Therapy Products. In: Cell Therapy. edn.: Springer; 2022: 161-178. 6. Kim YS, Smoak MM, Melchiorri AJ, Mikos AG: An Overview of the Tissue Engineering Market in the United States from 2011 to 2018. Tissue Eng Part A 2019, 25(1-2):1-8. 7. Buzhor E, Leshansky L, Blumenthal J, Barash H, Warshawsky D, Mazor Y, Shtrichman R: Cell-based therapy approaches: the hope for incurable diseases. Regenerative medicine 2014, 9(5):649-672. 8. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM: Bone marrow cells regenerate infarcted myocardium. Nature 2001, 410(6829):701-705. 9. Friedenstein A, Piatetzky-Shapiro I, Petrakova K: Osteogenesis in transplants of bone marrow cells. 1966. 10. Diehl R, Ferrara F, Müller C, Dreyer AY, McLeod DD, Fricke S, Boltze J: Immunosuppression for in vivo research: state-of-the-art protocols and experimental approaches. Cellular & molecular immunology 2017, 14(2):146-179. 11. Zhuang WZ, Lin YH, Su LJ, Wu MS, Jeng HY, Chang HC, Huang YH, Ling TY: Mesenchymal stem/stromal cell-based therapy: mechanism, systemic safety and biodistribution for precision clinical applications. J Biomed Sci 2021, 28(1):28. 12. Zhao Z-G, Xu W, Sun L, You Y, Li F, Li Q-B, Zou P: Immunomodulatory function of regulatory dendritic cells induced by mesenchymal stem cells. Immunological Investigations 2012, 41(2):183-198. 13. Griffin MD, Ryan AE, Alagesan S, Lohan P, Treacy O, Ritter T: Anti‐donor immune responses elicited by allogeneic mesenchymal stem cells: what have we learned so far? Immunology and cell biology 2013, 91(1):40-51. 14. Mandel K, Yang Y, Schambach A, Glage S, Otte A, Hass R: Mesenchymal stem cells directly interact with breast cancer cells and promote tumor cell growth in vitro and in vivo. Stem cells and development 2013, 22(23):3114-3127. 15. Kouris NA, Schaefer JA, Hatta M, Freeman BT, Kamp TJ, Kawaoka Y, Ogle BM: Directed fusion of mesenchymal stem cells with cardiomyocytes via VSV-G facilitates stem cell programming. Stem cells international 2012, 2012. 16. Caplan AI, Bruder SP: Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends in molecular medicine 2001, 7(6):259-264. 17. Li X, Liu L, Yang J, Yu Y, Chai J, Wang L, Ma L, Yin H: Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation. EBioMedicine 2016, 8:72-82. 18. Overath JM, Gauer S, Obermüller N, Schubert R, Schäfer R, Geiger H, Baer PC: Short-term preconditioning enhances the therapeutic potential of adipose-derived stromal/stem cell-conditioned medium in cisplatin-induced acute kidney injury. Experimental cell research 2016, 342(2):175-183. 19. Bai M, Zhang L, Fu B, Bai J, Zhang Y, Cai G, Bai X, Feng Z, Sun S, Chen X: IL-17A improves the efficacy of mesenchymal stem cells in ischemic-reperfusion renal injury by increasing Treg percentages by the COX-2/PGE2 pathway. Kidney international 2018, 93(4):814-825. 20. Terunuma A, Ashiba K, Takane T, Sakaguchi Y, Terunuma H: Comparative transcriptomic analysis of human mesenchymal stem cells derived from dental pulp and adipose tissues. Journal of Stem Cells & Regenerative Medicine 2019, 15(1):8. 21. Du WJ, Chi Y, Yang ZX, Li ZJ, Cui JJ, Song BQ, Li X, Yang SG, Han ZB, Han ZC: Heterogeneity of proangiogenic features in mesenchymal stem cells derived from bone marrow, adipose tissue, umbilical cord, and placenta. Stem cell research & therapy 2016, 7(1):1-11. 22. Price VH: Treatment of hair loss. New England Journal of Medicine 1999, 341(13):964-973. 23. Alsalhi W, Alalola A, Randolph M, Gwillim E, Tosti A: Novel drug delivery approaches for the management of hair loss. Expert Opin Drug Deliv 2020, 17(3):287-295. 24. Filbrandt R, Rufaut N, Jones L, Sinclair R: Primary cicatricial alopecia: diagnosis and treatment. Cmaj 2013, 185(18):1579-1585. 25. Ramos PM, Miot HA: Female pattern hair loss: a clinical and pathophysiological review. Anais brasileiros de dermatologia 2015, 90:529-543. 26. Katzer T, Leite Junior A, Beck R, da Silva C: Physiopathology and current treatments of androgenetic alopecia: Going beyond androgens and anti-androgens. Dermatol Ther 2019, 32(5):e13059. 27. Hillmer AM, Hanneken S, Ritzmann S, Becker T, Freudenberg J, Brockschmidt FF, Flaquer A, Freudenberg-Hua Y, Abou Jamra R, Metzen C: Genetic variation in the human androgen receptor gene is the major determinant of common early-onset androgenetic alopecia. The American Journal of Human Genetics 2005, 77(1):140-148. 28. Gatherwright J, Liu MT, Amirlak B, Gliniak C, Totonchi A, Guyuron B: The contribution of endogenous and exogenous factors to male alopecia: a study of identical twins. Plastic and reconstructive surgery 2013, 131(5):794e-801e. 29. Rossi A, Anzalone A, Fortuna MC, Caro G, Garelli V, Pranteda G, Carlesimo M: Multi‐therapies in androgenetic alopecia: Review and clinical experiences. Dermatologic therapy 2016, 29(6):424-432. 30. Pratt CH, King LE, Jr., Messenger AG, Christiano AM, Sundberg JP: Alopecia areata. Nat Rev Dis Primers 2017, 3:17011. 31. Harris JE, Rashighi M, Nguyen N, Jabbari A, Ulerio G, Clynes R, Christiano AM, Mackay-Wiggan J: Rapid skin repigmentation on oral ruxolitinib in a patient with coexistent vitiligo and alopecia areata (AA). Journal of the American Academy of Dermatology 2016, 74(2):370-371. 32. Güleç AT, Tanrıverdi N, Dürü Ç, Saray Y, Akçalı C: The role of psychological factors in alopecia areata and the impact of the disease on the quality of life. International journal of dermatology 2004, 43(5):352-356. 33. Darwin E, Hirt PA, Fertig R, Doliner B, Delcanto G, Jimenez JJ: Alopecia areata: review of epidemiology, clinical features, pathogenesis, and new treatment options. International journal of trichology 2018, 10(2):51. 34. Betz RC, Petukhova L, Ripke S, Huang H, Menelaou A, Redler S, Becker T, Heilmann S, Yamany T, Duvic M: Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci. Nature communications 2015, 6(1):1-8. 35. Olsen EA, Whiting D, Bergfeld W, Miller J, Hordinsky M, Wanser R, Zhang P, Kohut B: A multicenter, randomized, placebo-controlled, double-blind clinical trial of a novel formulation of 5% minoxidil topical foam versus placebo in the treatment of androgenetic alopecia in men. Journal of the American Academy of Dermatology 2007, 57(5):767-774. 36. Messenger A, Rundegren J: Minoxidil: mechanisms of action on hair growth. British journal of dermatology 2004, 150(2):186-194. 37. Rittmaster RS: Finasteride. New England Journal of Medicine 1994, 330(2):120-125. 38. Mella JM, Perret MC, Manzotti M, Catalano HN, Guyatt G: Efficacy and safety of finasteride therapy for androgenetic alopecia: a systematic review. Archives of dermatology 2010, 146(10):1141-1150. 39. Olsen EA, Whiting DA, Savin R, Rodgers A, Johnson-Levonas AO, Round E, Rotonda J, Kaufman KD, Group MPHLS: Global photographic assessment of men aged 18 to 60 years with male pattern hair loss receiving finasteride 1 mg or placebo. Journal of the American Academy of Dermatology 2012, 67(3):379-386. 40. Rajabi F, Drake LA, Senna MM, Rezaei N: Alopecia areata: a review of disease pathogenesis. Br J Dermatol 2018, 179(5):1033-1048. 41. Charuwichitratana S, Wattanakrai P, Tanrattanakorn S: Randomized double-blind placebo-controlled trial in the treatment of alopecia areata with 0.25% desoximetasone cream. Archives of Dermatology 2000, 136(10):1276-1277. 42. Park KY, Jang WS, Son IP, Choi SY, Lee MY, Kim BJ, Kim MN, Ro BI: Combination therapy with cyclosporine and psoralen plus ultraviolet a in the patients with severe alopecia areata: a retrospective study with a self-controlled design. Annals of Dermatology 2013, 25(1):12-16. 43. El Taieb MA, Ibrahim H, Nada EA, Seif Al‐Din M: Platelets rich plasma versus minoxidil 5% in treatment of alopecia areata: a trichoscopic evaluation. Dermatologic therapy 2017, 30(1):e12437. 44. AL‐MUTAIRI N: 308‐nm excimer laser for the treatment of alopecia areata. Dermatologic surgery 2007, 33(12):1483-1487. 45. Park J, Jun EK, Son D, Hong W, Jang J, Yun W, Yoon BS, Song G, Kim IY, You S: Overexpression of Nanog in amniotic fluid–derived mesenchymal stem cells accelerates dermal papilla cell activity and promotes hair follicle regeneration. Experimental & molecular medicine 2019, 51(7):1-15. 46. Stenn K, Paus R: Controls of hair follicle cycling. Physiological reviews 2001. 47. Li XJ, Zhou Y: Microfluidic devices for biomedical applications: Woodhead Publishing; 2021. 48. Chambers R: Microdissection studies, III. Some problems in the maturation and fertilization of the echinoderm egg. The Biological Bulletin 1921, 41(6):318-350. 49. Gerstel M, Place V: Drug Delivery Device. Google Patents. US Patent No US3964482A 1976. 50. Henry S, McAllister DV, Allen MG, Prausnitz MR: Microfabricated microneedles: a novel approach to transdermal drug delivery. Journal of pharmaceutical sciences 1998, 87(8):922-925. 51. Larraneta E, Lutton RE, Woolfson AD, Donnelly RF: Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Materials Science and Engineering: R: Reports 2016, 104:1-32. 52. Prausnitz MR: Microneedles for transdermal drug delivery. Advanced drug delivery reviews 2004, 56(5):581-587. 53. Ita K: Transdermal delivery of drugs with microneedles—potential and challenges. Pharmaceutics 2015, 7(3):90-105. 54. Roxhed N, Griss P, Stemme G: Membrane-sealed hollow microneedles and related administration schemes for transdermal drug delivery. Biomedical microdevices 2008, 10(2):271-279. 55. Martanto W, Moore JS, Couse T, Prausnitz MR: Mechanism of fluid infusion during microneedle insertion and retraction. Journal of Controlled Release 2006, 112(3):357-361. 56. Gardeniers HJ, Luttge R, Berenschot EJ, De Boer MJ, Yeshurun SY, Hefetz M, Van't Oever R, Van Den Berg A: Silicon micromachined hollow microneedles for transdermal liquid transport. Journal of Microelectromechanical systems 2003, 12(6):855-862. 57. Elliott GD, Wang S, Fuller BJ: Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 2017, 76:74-91. 58. Mazur P: Cryobiology: The Freezing of Biological Systems: The responses of living cells to ice formation are of theoretical interest and practical concern. Science 1970, 168(3934):939-949. 59. Pegg DE: Long-term preservation of cells and tissues: a review. Journal of clinical pathology 1976, 29(4):271. 60. Clegg JS: Metabolic consequences of the extent and disposition of the aqueous intracellular environment. Journal of Experimental Zoology 1981, 215(3):303-313. 61. Carpenter JF, Crowe JH: The mechanism of cryoprotection of proteins by solutes. Cryobiology 1988, 25(3):244-255. 62. Muldrew K, McGann LE: Mechanisms of intracellular ice formation. Biophysical journal 1990, 57(3):525-532. 63. Iussig B, Maggiulli R, Fabozzi G, Bertelle S, Vaiarelli A, Cimadomo D, Ubaldi FM, Rienzi L: A brief history of oocyte cryopreservation: Arguments and facts. Acta obstetricia et gynecologica Scandinavica 2019, 98(5):550-558. 64. Neuhuber B, Gallo G, Howard L, Kostura L, Mackay A, Fischer I: Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. Journal of neuroscience research 2004, 77(2):192-204. 65. Mareschi K, Novara M, Rustichelli D, Ferrero I, Guido D, Carbone E, Medico E, Madon E, Vercelli A, Fagioli F: Neural differentiation of human mesenchymal stem cells: Evidence for expression of neural markers and eag K+ channel types. Experimental hematology 2006, 34(11):1563-1572. 66. Prusa A-R, Marton E, Rosner M, Bettelheim D, Lubec G, Pollack A, Bernaschek G, Hengstschläger M: Neurogenic cells in human amniotic fluid. American journal of obstetrics and gynecology 2004, 191(1):309-314. 67. Stroncek D, Fautsch SK, Lasky L, Hurd D, Ramsay N, McCullough J: Adverse reactions in patients transfused with cryopreserved marrow. Transfusion 1991, 31(6):521-526. 68. Syme R, Bewick M, Stewart D, Porter K, Chadderton T, Glück S: The role of depletion of dimethyl sulfoxide before autografting: on hematologic recovery, side effects, and toxicity. Biology of Blood and Marrow Transplantation 2004, 10(2):135-141. 69. Polge C, Smith AU, Parkes AS: Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 1949, 164(4172):666-666. 70. Smith AU, Polge C: Survivalof spermatozoa at low temperatures. Nature 1950, 166:668-669. 71. Polge C: Sir Alan Sterling Parkes. 10 September 1900—17 July 1990: Elected FRS 1933. In.: The Royal Society; 2006. 72. Salwowska NM, Bebenek KA, Żądło DA, Wcisło‐Dziadecka DL: Physiochemical properties and application of hyaluronic acid: a systematic review. Journal of cosmetic dermatology 2016, 15(4):520-526. 73. Jiang W, Li M, Chen Z, Leong KW: Cell-laden microfluidic microgels for tissue regeneration. Lab on a Chip 2016, 16(23):4482-4506. 74. Lotfi S, Mehri M, Sharafi M, Masoudi R: Hyaluronic acid improves frozen-thawed sperm quality and fertility potential in rooster. Animal reproduction science 2017, 184:204-210. 75. Khetan S, Corey O: Maintenance of stem cell viability and differentiation potential following cryopreservation within 3-dimensional hyaluronic acid hydrogels. Cryobiology 2019, 90:83-88. 76. Fernández S, Córdoba M: Hyaluronic acid-induced capacitation involves protein kinase C and tyrosine kinase activity modulation with a lower oxidative metabolism in cryopreserved bull sperm. Theriogenology 2018, 122:68-73. 77. Sbracia M, Grasso J, Sayme N, Stronk J, Huszar G: Hyaluronic acid substantially increases the retention of motility in cryopreserved/thawed human spermatozoa. Human Reproduction (Oxford, England) 1997, 12(9):1949-1954. 78. Turner RA, Mendel G, Wauthier E, Barbier C, Reid LM: Hyaluronan-supplemented buffers preserve adhesion mechanisms facilitating cryopreservation of human hepatic stem/progenitor cells. Cell transplantation 2012, 21(10):2257-2266. 79. Lee TW, Lee GW, An S, Seong KY, Lee JS, Yang SY: Enhanced Cellular Cryopreservation by Biopolymer-Associated Suppression of RhoA/ROCK Signaling Pathway. Materials (Basel) 2021, 14(20). 80. Stoll C, Holovati JL, Acker JP, Wolkers WF: Synergistic effects of liposomes, trehalose, and hydroxyethyl starch for cryopreservation of human erythrocytes. Biotechnology progress 2012, 28(2):364-371. 81. Rodrigues J, Paraguassú-Braga F, Carvalho L, Abdelhay E, Bouzas L, Porto L: Evaluation of trehalose and sucrose as cryoprotectants for hematopoietic stem cells of umbilical cord blood. Cryobiology 2008, 56(2):144-151. 82. Stokich B, Osgood Q, Grimm D, Moorthy S, Chakraborty N, Menze MA: Cryopreservation of hepatocyte (HepG2) cell monolayers: Impact of trehalose. Cryobiology 2014, 69(2):281-290. 83. Lynch AL, Slater NK: Influence of intracellular trehalose concentration and pre-freeze cell volume on the cryosurvival of rapidly frozen human erythrocytes. Cryobiology 2011, 63(1):26-31. 84. da Fonseca Cardoso LM, Pinto MA, Pons AH, Alves LA: Cryopreservation of rat hepatocytes with disaccharides for cell therapy. Cryobiology 2017, 78:15-21. 85. Katenz E, Vondran FWR, Schwartlander R, Pless G, Gong X, Cheng X, Neuhaus P, Sauer IM: Cryopreservation of primary human hepatocytes: the benefit of trehalose as an additional cryoprotective agent. Liver transplantation 2007, 13(1):38-45. 86. Buchanan SS, Gross SA, Acker JP, Toner M, Carpenter JF, Pyatt DW: Cryopreservation of stem cells using trehalose: evaluation of the method using a human hematopoietic cell line. Stem cells and development 2004, 13(3):295-305. 87. Beattie GM, Crowe JH, Lopez AD, Cirulli V, Ricordi C, Hayek A: Trehalose: a cryoprotectant that enhances recovery and preserves function of human pancreatic islets after long-term storage. Diabetes 1997, 46(3):519-523. 88. Eroglu A, Russo MJ, Bieganski R, Fowler A, Cheley S, Bayley H, Toner M: Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nature biotechnology 2000, 18(2):163-167. 89. Guo N, Puhlev I, Brown DR, Mansbridge J, Levine F: Trehalose expression confers desiccation tolerance on human cells. Nature biotechnology 2000, 18(2):168-171. 90. Ye Y, Yu J, Wen D, Kahkoska AR, Gu Z: Polymeric microneedles for transdermal protein delivery. Advanced drug delivery reviews 2018, 127:106-118. 91. Than A, Liu C, Chang H, Duong PK, Cheung CMG, Xu C, Wang X, Chen P: Self-implantable double-layered micro-drug-reservoirs for efficient and controlled ocular drug delivery. Nature communications 2018, 9(1):1-12. 92. Bhatnagar S, Dave K, Venuganti VVK: Microneedles in the clinic. Journal of controlled release 2017, 260:164-182. 93. Chang H, Zheng M, Chew SWT, Xu C: Advances in the formulations of microneedles for manifold biomedical applications. Advanced Materials Technologies 2020, 5(4):1900552. 94. Petrovic J: Review mechanical properties of ice and snow. Journal of materials science 2003, 38(1):1-6. 95. Chang H, Chew SWT, Zheng M, Lio DCS, Wiraja C, Mei Y, Ning X, Cui M, Than A, Shi P et al: Cryomicroneedles for transdermal cell delivery. Nat Biomed Eng 2021, 5(9):1008-1018. 96. Gentile P, Garcovich S: Advances in Regenerative Stem Cell Therapy in Androgenic Alopecia and Hair Loss: Wnt pathway, Growth-Factor, and Mesenchymal Stem Cell Signaling Impact Analysis on Cell Growth and Hair Follicle Development. Cells 2019, 8(5). 97. Guan Y, You H, Cai J, Zhang Q, Yan S, You R: Physically crosslinked silk fibroin/hyaluronic acid scaffolds. Carbohydrate Polymers 2020, 239:116232. 98. Baust JM, Van Buskirk R, Baust JG: Cell viability improves following inhibition of cryopreservation-induced apoptosis. In Vitro Cellular & Developmental Biology-Animal 2000, 36(4):262-270. 99. Galvao J, Davis B, Tilley M, Normando E, Duchen MR, Cordeiro MF: Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J 2014, 28(3):1317-1330. 100. Janz Fde L, Debes Ade A, Cavaglieri Rde C, Duarte SA, Romao CM, Moron AF, Zugaib M, Bydlowski SP: Evaluation of distinct freezing methods and cryoprotectants for human amniotic fluid stem cells cryopreservation. J Biomed Biotechnol 2012, 2012:649353. 101. Cui M, Zheng M, Wiraja C, Chew SWT, Mishra A, Mayandi V, Lakshminarayanan R, Xu C: Ocular Delivery of Predatory Bacteria with Cryomicroneedles Against Eye Infection. Advanced Science 2021, 8(21):2102327. 102. Lin H-J, Wang T-J, Li T-W, Chang Y-Y, Sheu M-T, Huang Y-Y, Liu D-Z: Development of decellularized cornea by organic acid treatment for corneal regeneration. Tissue Engineering Part A 2019, 25(7-8):652-662. 103. Maurice DM: The structure and transparency of the cornea. The Journal of physiology 1957, 136(2):263. 104. Hashimoto Y, Funamoto S, Sasaki S, Honda T, Hattori S, Nam K, Kimura T, Mochizuki M, Fujisato T, Kobayashi H: Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering. Biomaterials 2010, 31(14):3941-3948. 105. Simon-Giavarotti KA, Giavarotti L, Gomes LF, Lima AF, Veridiano AM, Garcia EA, Mora OA, Fernández V, Videla LA, Junqueira VB: Enhancement of lindane-induced liver oxidative stress and hepatotoxicity by thyroid hormone is reduced by gadolinium chloride. Free Radical Research 2002, 36(10):1033-1039. 106. Hasan KMM, Tamanna N, Haque MA: Biochemical and histopathological profiling of Wistar rat treated with Brassica napus as a supplementary feed. Food science and human wellness 2018, 7(1):77-82. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84207 | - |
| dc.description.abstract | 用於疾病治療的細胞療法可以透過簡易、有效與安全的經皮傳遞具治療效果細胞的技術來完成,傳統透過皮下或靜脈注射進行細胞傳遞會受患者依從性所影響,不同批次的細胞品質也不盡相同,且細胞的施打也需要訓練有素的醫療人員進行,如此不只使療效受到影響,也可能造成醫療資源吃緊。本篇研究使用特殊配製的冷凍保存液所製成冷凍微針貼片,裝載人類羊水幹細胞用於促進毛髮生長;這種冷凍微針是將懸浮細胞加入由透明質酸鈉、二甲基亞石碸與海藻糖所配製成的冷凍保存液,並透過漸進式冷凍的方式使細胞在良好的條件下被保存,同時也能使裝填於聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)模中的冷凍保存液凍結成為微針的形狀。 當冷凍微針刺穿大鼠皮膚並當微針溶解後,裝載其中的人類羊水幹細胞便會擴散而出,與其他部位相比,施打含有人類羊水幹細胞冷凍微針部位的毛髮生長速度較快,不僅如此,取人類羊水幹細胞的條件培養基(Conditioned medium)製成之冷凍微針,在施打於大鼠後也與施打人類羊水幹細胞冷凍微針有相同的效果;另外,我們也製作了裝載表現紅色螢光蛋白的豬骨髓間質幹細胞(Porcine Bone Marrow Mesenchymal Stem Cell)的冷凍微針,並將之使用於大鼠與去細胞牛眼角膜之上,觀察使用後不同時間的螢光強度與分布狀態,用以模擬細胞進入體內的生長與擴散情形,實驗顯示冷凍微針可以有效地將細胞傳送到目標組織,並均勻地分散於組織中生長,此系統未來很有潛力應用於細胞治療的領域。 | zh_TW |
| dc.description.abstract | Cell therapy for disease treatment can be completed through simple, effective, and safe transdermal delivery of therapeutic cells. The patient's compliance will affect the traditional cell delivery through subcutaneous or intravenous injection. The cell quality of different batches is different, and the injection of cells also needs trained medical personnel. This will affect the curative effect and cause a shortage of medical resources. In this study, we used a unique recipe of cryopreservation to make cryomicroneedle patch loaded with human amniotic fluid stem cells (hAFSCs) to promote hair growth. The cryomicroneedle is to add the suspended cells into the cryopreservation solution prepared with sodium hyaluronate, dimethyl sulfoxide, and trehalose and preserve the cells under ideal conditions through progressive freezing. Simultaneously, it can also freeze the solution filled in the polydimethylsiloxane (PDMS) mold into the shape of microneedles. When the cryomicroneedle pierces the rat skin and dissolves, the human amniotic fluid stem cells will spread out. Compared with other body parts without cryomicroneedle administration, the hair grew faster when applied with the cryomicroneedle loaded with hAFSCs. In addition, the cryomicroneedle made from the conditioned medium of h hAFSCs also has the same effect as that of h hAFSCs cryomicroneedle in rats. Moreover, we also fabricate cryomicroneedle loaded with porcine bone marrow mesenchymal stem cells (PBM-MSCs) that expressed red fluorescent protein. And applied the cryomicroneedle patches loaded with PBM-MSCs to rat and decellularized bovine cornea to observe the fluorescence intensity and distribution at different times after administration to simulate and confirm the growth and diffusion of cells. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:06:19Z (GMT). No. of bitstreams: 1 U0001-3006202213092100.pdf: 43726475 bytes, checksum: ff5179a3c0ee6cafa7b54f8e217277a1 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝 I 摘要 II ABSTRACT III 圖目錄 VII 表目錄 IX 第一章 序論 1 1.1細胞治療 1 1.1.1 細胞治療的機制 2 1.1.2 間質幹細胞於疾病治療之應用 2 1.2 禿髮 3 1.2.1 禿髮原因 3 1.2.2 治療方法 5 1.3 微針貼片 7 1.3.1 微針貼片的種類 7 1.4 冷凍保護劑 10 第二章 研究概述 13 2.1 研究背景 13 2.2 研究動機與目的 14 2.3 方法簡述 15 2.4 實驗流程圖 16 第三章 實驗材料與方法 17 3.1 實驗藥品 17 3.2 實驗儀器 18 3.3 PDMS微針模型製備 19 3.4 人類羊水幹細胞與小鼠纖維母細胞冷凍保存液之配製 20 3.5 人類羊水幹細胞與小鼠纖維母細胞之培養 21 3.6 人類羊水幹細胞與小鼠纖維母細胞之冷凍小管凍存 22 3.7 人類羊水幹細胞與小鼠纖維母細胞之微針模型凍存 22 3.8 細胞生存率染色(LIVE/DEAD ASSAY) 24 3.9 細胞增殖能力實驗 25 3.10 CCK-8 細胞增生實驗 25 3.11 CONDITIONED MEDIUM製作方法 26 3.12 去細胞牛眼角膜製備 27 3.13 動物實驗 28 3.14 冷凍微針細胞耗損率計算 30 3.15 冷凍保存液細胞毒性體外測試 30 第四章 結果與討論 31 4.1 人類羊水幹細胞的培養及型態觀察 31 4.2 豬骨髓間葉幹細胞(表達紅色螢光)的培養及型態觀察 33 4.3 冷凍保存液試驗:小鼠纖維母細胞之凍存後存活率與增殖能力比較 35 4.4 海藻糖添加後人類羊水幹細胞凍存後存活率與增殖能力比較 39 4.5人類羊水幹細胞凍存溫度比較 43 4.6 冷凍微針 47 4.7 以去細胞牛眼角膜模擬冷凍微針使用後細胞分佈狀況 52 4.8冷凍微針使用於大鼠後細胞分布狀況 56 4.9 人類羊水幹細胞冷凍微針使用於大鼠後毛髮生長狀況 61 4.10 生物相容性與細胞毒性測試 63 第五章 結論 67 第六章 參考文獻 68 | |
| dc.language.iso | zh-TW | |
| dc.subject | 冷凍保護劑 | zh_TW |
| dc.subject | 條件培養基 | zh_TW |
| dc.subject | 冷凍微針 | zh_TW |
| dc.subject | 細胞治療 | zh_TW |
| dc.subject | 人類羊水幹細胞 | zh_TW |
| dc.subject | cryoprotective agents | en |
| dc.subject | cell therapy | en |
| dc.subject | cryomicroneedle | en |
| dc.subject | conditioned medium | en |
| dc.subject | human amniotic fluid stem cells | en |
| dc.title | 冷凍微針貼片於經皮細胞治療之應用 | zh_TW |
| dc.title | The Application of Cryomicroneedle Patch for Transdermal Cell Therapy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃意真(Yi-Cheng Huang),許馨云(Hsin-Yun Hsu) | |
| dc.subject.keyword | 冷凍微針,人類羊水幹細胞,條件培養基,冷凍保護劑,細胞治療, | zh_TW |
| dc.subject.keyword | cryomicroneedle,human amniotic fluid stem cells,conditioned medium,cryoprotective agents,cell therapy, | en |
| dc.relation.page | 77 | |
| dc.identifier.doi | 10.6342/NTU202201227 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-07-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-26 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3006202213092100.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 42.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
