請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84194完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃義侑(Yi-You Huang) | |
| dc.contributor.author | KAI-WEN YANG | en |
| dc.contributor.author | 楊開文 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:06:06Z | - |
| dc.date.copyright | 2022-07-05 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-01 | |
| dc.identifier.citation | 參考文獻 1. Federation, I.D., IDF Diabetes Atlas 2021. International Diabetes Federation 2021. https://diabetesatlas.org/. 2. American Diabetes, A., Diagnosis and classification of diabetes mellitus. Diabetes Care, 2004. 27 Suppl 1: p. S5-S10. 3. Harding, J.L., M.E. Pavkov, D.J. Magliano, J.E. Shaw, and E.W. Gregg, Global trends in diabetes complications: a review of current evidence. Diabetologia, 2019. 62(1): p. 3-16. 4. Brem, H. and M. Tomic-Canic, Cellular and molecular basis of wound healing in diabetes. J Clin Invest, 2007. 117(5): p. 1219-22. 5. Al-Isa, A.N., L. Thalib, and A.O. Akanji, Circulating markers of inflammation and endothelial dysfunction in Arab adolescent subjects: reference ranges and associations with age, gender, body mass and insulin sensitivity. Atherosclerosis, 2010. 208(2): p. 543-9. 6. Goligorsky, M.S., Endothelial cell dysfunction: can't live with it, how to live without it. Am J Physiol Renal Physiol, 2005. 288(5): p. F871-80. 7. Kim, J.H., N.Y. Yoon, D.H. Kim, M. Jung, M. Jun, H.Y. Park, C.H. Chung, K. Lee, S. Kim, C.S. Park, K.H. Liu, and E.H. Choi, Impaired permeability and antimicrobial barriers in type 2 diabetes skin are linked to increased serum levels of advanced glycation end-product. Exp Dermatol, 2018. 27(8): p. 815-823. 8. Park, H.Y., J.H. Kim, M. Jung, C.H. Chung, R. Hasham, C.S. Park, and E.H. Choi, A long-standing hyperglycaemic condition impairs skin barrier by accelerating skin ageing process. Exp Dermatol, 2011. 20(12): p. 969-74. 9. Li, H., B. Isomaa, M.R. Taskinen, L. Groop, and T. Tuomi, Consequences of a family history of type 1 and type 2 diabetes on the phenotype of patients with type 2 diabetes. Diabetes Care, 2000. 23(5): p. 589-94. 10. Meza, C.A., J.D. La Favor, D.H. Kim, and R.C. Hickner, Endothelial Dysfunction: Is There a Hyperglycemia-Induced Imbalance of NOX and NOS? Int J Mol Sci, 2019. 20(15). 11. Kevil, C.G., G.K. Kolluru, C.B. Pattillo, and T. Giordano, Inorganic nitrite therapy: historical perspective and future directions. Free radical biology and medicine, 2011. 51(3): p. 576-593. 12. Primer, K.R., P.J. Psaltis, J.T.M. Tan, and C.A. Bursill, The Role of High-Density Lipoproteins in Endothelial Cell Metabolism and Diabetes-Impaired Angiogenesis. Int J Mol Sci, 2020. 21(10). 13. Rosenberger, D.C., V. Blechschmidt, H. Timmerman, A. Wolff, and R.D. Treede, Challenges of neuropathic pain: focus on diabetic neuropathy. J Neural Transm (Vienna), 2020. 127(4): p. 589-624. 14. Fernyhough, P. and J. McGavock, Mechanisms of disease: Mitochondrial dysfunction in sensory neuropathy and other complications in diabetes. Handb Clin Neurol, 2014. 126: p. 353-77. 15. Palumbo, P., L. Elveback, and J. Whisnant, Neurologic complications of diabetes mellitus: transient ischemic attack, stroke, and peripheral neuropathy. Advances in neurology, 1978. 19: p. 593-601. 16. Armstrong, D.G., A.J.M. Boulton, and S.A. Bus, Diabetic Foot Ulcers and Their Recurrence. N Engl J Med, 2017. 376(24): p. 2367-2375. 17. Oliver, T.I. and M. Mutluoglu, Diabetic Foot Ulcer, in StatPearls. 2022, StatPearls Publishing. Copyright © 2022, StatPearls Publishing LLC.: Treasure Island (FL). 18. Deng, L., C. Du, P. Song, T. Chen, S. Rui, D.G. Armstrong, and W. Deng, The Role of Oxidative Stress and Antioxidants in Diabetic Wound Healing. Oxid Med Cell Longev, 2021. 2021: p. 8852759. 19. Obrosova, I.G., Update on the pathogenesis of diabetic neuropathy. Curr Diab Rep, 2003. 3(6): p. 439-45. 20. Said, G., Diabetic neuropathy--a review. Nat Clin Pract Neurol, 2007. 3(6): p. 331-40. 21. Falanga, V., The chronic wound: impaired healing and solutions in the context of wound bed preparation. Blood Cells Mol Dis, 2004. 32(1): p. 88-94. 22. Okonkwo, U.A. and L.A. DiPietro, Diabetes and wound angiogenesis. International journal of molecular sciences, 2017. 18(7): p. 1419. 23. Liu, L., G.P. Marti, X. Wei, X. Zhang, H. Zhang, Y.V. Liu, M. Nastai, G.L. Semenza, and J.W. Harmon, Age‐dependent impairment of HIF‐1α expression in diabetic mice: Correction with electroporation‐facilitated gene therapy increases wound healing, angiogenesis, and circulating angiogenic cells. Journal of cellular physiology, 2008. 217(2): p. 319-327. 24. Malone‐Povolny, M.J., S.E. Maloney, and M.H. Schoenfisch, Nitric oxide therapy for diabetic wound healing. Advanced healthcare materials, 2019. 8(12): p. 1801210. 25. Hirschi, K.K. and P.A. D'Amore, Pericytes in the microvasculature. Cardiovascular research, 1996. 32(4): p. 687-698. 26. Petreaca, M. and M. Martins-Green, The dynamics of cell–extracellular matrix interactions, with implications for tissue engineering, in Principles of Tissue Engineering. 2020, Elsevier. p. 93-117. 27. Han, G. and R. Ceilley, Chronic wound healing: a review of current management and treatments. Advances in therapy, 2017. 34(3): p. 599-610. 28. Armstrong, D.G. and G.C. Gurtner, A histologically hostile environment made more hospitable? Nat Rev Endocrinol, 2018. 14(9): p. 511-512. 29. Spampinato, S.F., G.I. Caruso, R. De Pasquale, M.A. Sortino, and S. Merlo, The Treatment of Impaired Wound Healing in Diabetes: Looking among Old Drugs. Pharmaceuticals (Basel), 2020. 13(4). 30. Hunt, T.K. and H.W. Hopf, Wound healing and wound infection: what surgeons and anesthesiologists can do. Surgical Clinics of North America, 1997. 77(3): p. 587-606. 31. Wetzler, C., H. Kämpfer, B. Stallmeyer, J. Pfeilschifter, and S. Frank, Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistence of neutrophils and macrophages during the late phase of repair. Journal of Investigative Dermatology, 2000. 115(2): p. 245-253. 32. Brown, D.L., C.D. Kane, S.D. Chernausek, and D.G. Greenhalgh, Differential expression and localization of insulin-like growth factors I and II in cutaneous wounds of diabetic and nondiabetic mice. The American journal of pathology, 1997. 151(3): p. 715. 33. Drela, E., K. Stankowska, A. Kulwas, and D. Rosc, Endothelial progenitor cells in diabetic foot syndrome. Adv Clin Exp Med, 2012. 21(2): p. 249-254. 34. Liu, Y., D. Min, T. Bolton, V. Nubé, S.M. Twigg, D.K. Yue, and S.V. McLennan, Increased matrix metalloproteinase-9 predicts poor wound healing in diabetic foot ulcers. Diabetes care, 2009. 32(1): p. 117-119. 35. Kim, S.Y., T.H. Kim, J.Y. Choi, Y.J. Kwon, D.H. Choi, K.C. Kim, M.J. Kim, H.K. Hwang, and K.B. Lee, Predictors for Amputation in Patients with Diabetic Foot Wound. Vasc Specialist Int, 2018. 34(4): p. 109-116. 36. Glover, K., A.C. Stratakos, A. Varadi, and D.A. Lamprou, 3D scaffolds in the treatment of diabetic foot ulcers: New trends vs conventional approaches. Int J Pharm, 2021. 599: p. 120423. 37. Peppa, M., P. Stavroulakis, and S.A. Raptis, Advanced glycoxidation products and impaired diabetic wound healing. Wound Repair Regen, 2009. 17(4): p. 461-72. 38. Motley, T.A., A.M. Gilligan, D.L. Lange, C.R. Waycaster, and J.E. Dickerson, Cost-effectiveness of clostridial collagenase ointment on wound closure in patients with diabetic foot ulcers: economic analysis of results from a multicenter, randomized, open-label trial. Journal of foot and ankle research, 2015. 8(1): p. 1-12. 39. Chen, S., J. Shi, M. Zhang, Y. Chen, X. Wang, L. Zhang, Z. Tian, Y. Yan, Q. Li, and W. Zhong, Mesenchymal stem cell-laden anti-inflammatory hydrogel enhances diabetic wound healing. Scientific reports, 2015. 5(1): p. 1-12. 40. Alven, S., S. Peter, Z. Mbese, and B.A. Aderibigbe, Polymer-Based Wound Dressing Materials Loaded with Bioactive Agents: Potential Materials for the Treatment of Diabetic Wounds. Polymers (Basel), 2022. 14(4). 41. Francesko, A., P. Petkova, and T. Tzanov, Hydrogel dressings for advanced wound management. Current medicinal chemistry, 2018. 25(41): p. 5782-5797. 42. Graça, M.F., S.P. Miguel, C.S. Cabral, and I.J. Correia, Hyaluronic acid—Based wound dressings: A review. Carbohydrate polymers, 2020. 241: p. 116364. 43. Sun, G., Y.I. Shen, and J.W. Harmon, Engineering Pro‐Regenerative Hydrogels for Scarless Wound Healing. Advanced Healthcare Materials, 2018. 7(14): p. 1800016. 44. Weller, C. and V. Team, Interactive dressings and their role in moist wound management, in Advanced textiles for wound care. 2019, Elsevier. p. 105-134. 45. da Silva, L.P., T.C. Santos, D.B. Rodrigues, R.P. Pirraco, M.T. Cerqueira, R.L. Reis, V.M. Correlo, and A.P. Marques, Stem cell-containing hyaluronic acid-based spongy hydrogels for integrated diabetic wound healing. Journal of Investigative Dermatology, 2017. 137(7): p. 1541-1551. 46. Kaisang, L., W. Siyu, F. Lijun, P. Daoyan, C.J. Xian, and S. Jie, Adipose-derived stem cells seeded in Pluronic F-127 hydrogel promotes diabetic wound healing. Journal of Surgical Research, 2017. 217: p. 63-74. 47. Moon, K.-C., H.-S. Suh, K.-B. Kim, S.-K. Han, K.-W. Young, J.-W. Lee, and M.-H. Kim, Potential of allogeneic adipose-derived stem cell–hydrogel complex for treating diabetic foot ulcers. Diabetes, 2019. 68(4): p. 837-846. 48. Zhao, L., L. Niu, H. Liang, H. Tan, C. Liu, and F. Zhu, pH and glucose dual-responsive injectable hydrogels with insulin and fibroblasts as bioactive dressings for diabetic wound healing. ACS applied materials & interfaces, 2017. 9(43): p. 37563-37574. 49. Yoon, D.S., Y. Lee, H.A. Ryu, Y. Jang, K.-M. Lee, Y. Choi, W.J. Choi, M. Lee, K.M. Park, and K.D. Park, Cell recruiting chemokine-loaded sprayable gelatin hydrogel dressings for diabetic wound healing. Acta Biomaterialia, 2016. 38: p. 59-68. 50. Shi, G., W. Chen, Y. Zhang, X. Dai, X. Zhang, and Z. Wu, An antifouling hydrogel containing silver nanoparticles for modulating the therapeutic immune response in chronic wound healing. Langmuir, 2018. 35(5): p. 1837-1845. 51. Zeng, X., B. Chen, L. Wang, Y. Sun, Z. Jin, X. Liu, L. Ouyang, and Y. Liao, Chitosan@Puerarin hydrogel for accelerated wound healing in diabetic subjects by miR-29ab1 mediated inflammatory axis suppression. Bioact Mater, 2023. 19: p. 653-665. 52. Kirchner, S., V. Lei, and A.S. MacLeod, The cutaneous wound innate immunological microenvironment. International Journal of Molecular Sciences, 2020. 21(22): p. 8748. 53. Information, N.C.f.B., PubChem Compound Summary for CID 969516, Curcumin. PubChem, 2022. https://pubchem.ncbi.nlm.nih.gov/compound/Curcumin. 54. Wang, Y.-J., M.-H. Pan, A.-L. Cheng, L.-I. Lin, Y.-S. Ho, C.-Y. Hsieh, and J.-K. Lin, Stability of curcumin in buffer solutions and characterization of its degradation products. Journal of Pharmaceutical and Biomedical Analysis, 1997. 15(12): p. 1867-1876. 55. Srimal, R.C. and B.N. Dhawan, Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. J Pharm Pharmacol, 1973. 25(6): p. 447-52. 56. Arajo, M.C.P., L.M.G. Antunes, and C.S. Takahashi, Protective effect of thiourea, a hydroxyl-radical scavenger, on curcumin-induced chromosomal aberrations in an in vitro mammalian cell system. Teratogenesis, Carcinogenesis, and Mutagenesis, 2001. 21(2): p. 175-180. 57. Aggarwal, B.B., Y. Takada, and O.V. Oommen, From chemoprevention to chemotherapy: common targets and common goals. Expert Opin Investig Drugs, 2004. 13(10): p. 1327-38. 58. Chainani-Wu, N., S. Silverman, Jr., A. Reingold, A. Bostrom, C. Mc Culloch, F. Lozada-Nur, and J. Weintraub, A randomized, placebo-controlled, double-blind clinical trial of curcuminoids in oral lichen planus. Phytomedicine, 2007. 14(7-8): p. 437-46. 59. Bhavanishankar, T., N. Shantha, H. Ramesh, A. Indira Murthy, and V. Sreenivasa Murthy, Toxicity studies on turmeric (Curcuma longa): acute toxicity studies in rats, guineapigs and monkeys. Indian journal of experimental biology, 1980. 18(1): p. 73-75. 60. Lao, C.D., M.T.t. Ruffin, D. Normolle, D.D. Heath, S.I. Murray, J.M. Bailey, M.E. Boggs, J. Crowell, C.L. Rock, and D.E. Brenner, Dose escalation of a curcuminoid formulation. BMC Complement Altern Med, 2006. 6: p. 10. 61. Yadav, S., A.K. Singh, A.K. Agrahari, K. Sharma, A.S. Singh, M.K. Gupta, V.K. Tiwari, and P. Prakash, Making of water soluble curcumin to potentiate conventional antimicrobials by inducing apoptosis-like phenomena among drug-resistant bacteria. Sci Rep, 2020. 10(1): p. 14204. 62. Zhang, S., J. Ye, X. Liu, G. Wang, Y. Qi, T. Wang, Y. Song, Y. Li, and G. Ning, Dual Stimuli-Responsive smart fibrous membranes for efficient Photothermal/Photodynamic/Chemo-Therapy of Drug-Resistant bacterial infection. Chemical Engineering Journal, 2022. 432. 63. Fernandes, M., I. Lopes, L. Magalhaes, M.P. Sarria, R. Machado, J.C. Sousa, C. Botelho, J. Teixeira, and A.C. Gomes, Novel concept of exosome-like liposomes for the treatment of Alzheimer's disease. J Control Release, 2021. 336: p. 130-143. 64. Chen, Z., G. Shen, X. Tan, L. Qu, C. Zhang, L. Ma, P. Luo, X. Cao, F. Yang, Y. Liu, Y. Wang, and C. Shi, ID1/ID3 mediate the contribution of skin fibroblasts to local nerve regeneration through Itga6 in wound repair. Stem Cells Transl Med, 2021. 10(12): p. 1637-1649. 65. Yao, T. and S. Janaswamy, Ordered hydrocolloids networks as delivery vehicles of nutraceuticals: Optimal encapsulation of curcumin and resveratrol. Food Hydrocolloids, 2022. 126. 66. Samrot, A.V., J.L.A. Angalene, S.M. Roshini, S.M. Stefi, R. Preethi, P. Raji, A.M. Kumar, P. Paulraj, and S.S. Kumar, Purification, characterization and utilization of polysaccharide of Araucaria heterophylla gum for the synthesis of curcumin loaded nanocarrier. Int J Biol Macromol, 2019. 140: p. 393-400. 67. Moura, L.I., A.M. Dias, E. Carvalho, and H.C. de Sousa, Recent advances on the development of wound dressings for diabetic foot ulcer treatment—A review. Acta biomaterialia, 2013. 9(7): p. 7093-7114. 68. ChemSrc, PLGA. 2022. https://www.chemsrc.com/en/cas/34346-01-5_1470921.html. 69. Hussein, A.S., N. Abdullah, and F.R. Ahmadun, In vitro degradation of poly (D, L-lactide-co-glycolide) nanoparticles loaded with linamarin. IET Nanobiotechnol, 2013. 7(2): p. 33-41. 70. Manoukian, O.S., A. Ahmad, C. Marin, R. James, A.D. Mazzocca, and S.G. Kumbar, 22 - Bioactive nanofiber dressings for wound healing, in Wound Healing Biomaterials, M.S. Ågren, Editor. 2016, Woodhead Publishing. p. 451-481. 71. Chai, Q., Y. Jiao, and X. Yu, Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels, 2017. 3(1): p. 6. 72. Sikareepaisan, P., U. Ruktanonchai, and P. Supaphol, Preparation and characterization of asiaticoside-loaded alginate films and their potential for use as effectual wound dressings. Carbohydrate Polymers, 2011. 83(4): p. 1457-1469. 73. Lee, K.Y. and D.J. Mooney, Alginate: properties and biomedical applications. Prog Polym Sci, 2012. 37(1): p. 106-126. 74. Dabiri, G., E. Damstetter, and T. Phillips, Choosing a wound dressing based on common wound characteristics. Advances in wound care, 2016. 5(1): p. 32-41. 75. Vowden, K. and P. Vowden, Wound dressings: principles and practice. Surgery (Oxford), 2017. 35(9): p. 489-494. 76. Jin, S.G., A.M. Yousaf, K.S. Kim, D.W. Kim, D.S. Kim, J.K. Kim, C.S. Yong, Y.S. Youn, J.O. Kim, and H.-G. Choi, Influence of hydrophilic polymers on functional properties and wound healing efficacy of hydrocolloid based wound dressings. International journal of pharmaceutics, 2016. 501(1-2): p. 160-166. 77. Information, N.C.f.B., Alginic acid, sodium salt. PubChem Compound Summary for CID 45357541, 2022. https://pubchem.ncbi.nlm.nih.gov/compound/Alginic-acid_-sodium-salt. 78. Purcell, E.K., A. Singh, and D.R. Kipke, Alginate composition effects on a neural stem cell-seeded scaffold. Tissue Eng Part C Methods, 2009. 15(4): p. 541-50. 79. Shaikh, J., D.D. Ankola, V. Beniwal, D. Singh, and M.N. Kumar, Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci, 2009. 37(3-4): p. 223-30. 80. Sai, K.B., G. Prema, M. Jaideep, and C. Ram, Antioxidant and free radical scavenging activity of curcumin determined by using different in vitro and ex vivo models. Journal of Medicinal Plants Research, 2013. 7(36): p. 2680-2690. 81. Justus, C.R., N. Leffler, M. Ruiz-Echevarria, and L.V. Yang, In vitro cell migration and invasion assays. J Vis Exp, 2014(88). 82. Kumar, A. and C.K. Dixit, 3 - Methods for characterization of nanoparticles, in Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids, S. Nimesh, R. Chandra, and N. Gupta, Editors. 2017, Woodhead Publishing. p. 43-58. 83. Fonte, P., S. Soares, A. Costa, J.C. Andrade, V. Seabra, S. Reis, and B. Sarmento, Effect of cryoprotectants on the porosity and stability of insulin-loaded PLGA nanoparticles after freeze-drying. Biomatter, 2012. 2(4): p. 329-39. 84. Jahan, S.T. and A. Haddadi, Investigation and optimization of formulation parameters on preparation of targeted anti-CD205 tailored PLGA nanoparticles. Int J Nanomedicine, 2015. 10: p. 7371-84. 85. Fonte, P., S. Soares, F. Sousa, A. Costa, V. Seabra, S. Reis, and B. Sarmento, Stability study perspective of the effect of freeze-drying using cryoprotectants on the structure of insulin loaded into PLGA nanoparticles. Biomacromolecules, 2014. 15(10): p. 3753-65. 86. Bajpai, S. and S. Sharma, Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. Reactive and Functional Polymers, 2004. 59(2): p. 129-140. 87. Kharkar, P.M., K.L. Kiick, and A.M. Kloxin, Designing degradable hydrogels for orthogonal control of cell microenvironments. Chem Soc Rev, 2013. 42(17): p. 7335-72. 88. Takahashi, N., C.B. Knudson, S. Thankamony, W. Ariyoshi, L. Mellor, H.J. Im, and W. Knudson, Induction of CD44 cleavage in articular chondrocytes. Arthritis Rheum, 2010. 62(5): p. 1338-48. 89. Layane Duarte e, S., F. Elisa Raquel Anastácio, S. Isis Soares, F. Adenilson Souza da, F. Israel, and M. Andre Luiz, Alginate Matrix of MDA-MB-231 Breast Cancer Cell 3D Culturing Alters CD44 and CD24 mRNA Levels and Induces ALDH1 Expression. Journal of Life Sciences, 2017. 11(5). 90. Senbanjo, L.T. and M.A. Chellaiah, CD44: A Multifunctional Cell Surface Adhesion Receptor Is a Regulator of Progression and Metastasis of Cancer Cells. Frontiers in Cell and Developmental Biology, 2017. 5. 91. Calaf, G.M., R. Ponce-Cusi, and J. Abarca-Quinones, Effect of curcumin on the cell surface markers CD44 and CD24 in breast cancer. Oncol Rep, 2018. 39(6): p. 2741-2748. 92. Klank, R.L., S.A. Decker Grunke, B.L. Bangasser, C.L. Forster, M.A. Price, T.J. Odde, K.S. SantaCruz, S.S. Rosenfeld, P. Canoll, E.A. Turley, J.B. McCarthy, J.R. Ohlfest, and D.J. Odde, Biphasic Dependence of Glioma Survival and Cell Migration on CD44 Expression Level. Cell Rep, 2017. 18(1): p. 23-31. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84194 | - |
| dc.description.abstract | 傷口癒合障礙是糖尿病患者最主要的死因。它是多種因素引發的病症,涉及到一系列內皮細胞功能障礙、糖尿病性神經病變、抵抗感染的能力受損等因素。目前臨床上主要是通過抗氧化劑,針對內皮的修復機制進行治療。但單靠傳統的抗氧化療法無法完全解決多種因素引起的糖尿病傷口癒合障礙。由於神經病變在糖尿病模型中至關重要,因此我們猜想是否能通過神經與內皮並行治療的策略,為糖尿病傷口提供一種新的治療可能。本研究選擇對神經保護與修復、血管再生均有益處的薑黃素,搭載於PLGA上形成藥物控制釋放體系,並結合水膠以形成複合型的藥物遞送系統,製成傷口敷料。期待能增強糖尿病傷口局部的抗氧化、抗炎症能力的同時,關注神經保護部分,達到早期治療的功效。 本研究合成出平均粒徑,凍乾前為190 nm,凍乾後為416 nm,但凍乾後粒徑分布更集中。薑黃素於PLGA上搭載率為10 ± 0.07 %。於體外試驗中,複合型水膠敷料能維持5天的完整性,同時顯現出藥物緩釋的能力並仍具有抗氧化性;於纖維母細胞、帶有神經脊細胞性質的嗜鉻細胞瘤細胞試驗中,均表現出無毒性,且能有效加速細胞爬行,具有促進生長的功效。於動物實驗中,搭載有薑黃素的水膠敷料在大鼠上表現出更佳的癒合能力。本研究證實了薑黃素水膠在糖尿病傷口模型中具有早期治療的潛力。 | zh_TW |
| dc.description.abstract | Impaired wound healing is the major causes of death in diabetic patients. It is involved endothelial cell dysfunction, diabetic neuropathy and increased risk of infection. At present, the main clinical treatment is antioxidants, aiming at the repair mechanism of the endothelium. However, there is no single therapy to date can fully treat diabetes-induced wound caused by multiple mechanisms. A strategy of parallel treatment between nerves and endothelium may provide a new therapeutic possibility for diabetic wounds. In this study, curcumin was used due to its antioxidant, anti-inflammatory, antibacterial properties. PLGA loaded with curcumin as a drug controlled-release system, combined with sodium alginate were made for wound dressings. The average particle size was 190 nm and 416 nm, before and after freeze-drying, but polydispersity index decreased to 0.005. The loading rate of curcumin on PLGA was 10 ± 0.07 %. In vitro analysis, the dressings maintained for 5 days and showed the ability of sustained drug release, still with antioxidant; biocompatibility tests showed no toxicity on fibroblasts and PC-12. It accelerated cell crawling effectively. In vivo analysis, dressings loaded with curcumin showed better healing ability. This study confirmed the early therapeutic potential of curcumin hydrogel in a diabetic wound model. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:06:06Z (GMT). No. of bitstreams: 1 U0001-2806202213443600.pdf: 5423690 bytes, checksum: 8170494fbc236df39a129a245ee159ca (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 目 錄 口試委員審定書 i 致謝 ii 摘要 iii Abstract iv 第一章 糖尿病與傷口癒合障礙 1 1.1 糖尿病 1 1.2 糖尿病的傷口癒合障礙 1 1.2.1 內皮細胞功能障礙 2 1.2.2 糖尿病性神經病變 3 1.2.3 傷口癒合障礙 4 1.2.4 治療方式 8 第二章 研究概述 11 2.1 研究動機與目的 11 2.2 藥物的選擇策略 11 2.3 藥物載體的的選擇策略 14 2.3.1 聚乳酸-甘醇酸 14 2.3.2 海藻酸钠 15 2.4 實驗流程圖 17 第三章 實驗材料及方法 18 3.1 實驗試劑 18 3.2 實驗儀器 18 3.3 材料製備 19 3.3.1 搭載薑黃素之PLGA奈米顆粒 19 3.3.2 複合型藥物傳輸體系──搭載薑黃素之PLGA-藻酸鹽水膠敷料 21 3.4 材料分析 22 3.4.1 搭載薑黃素之PLGA奈米顆粒基礎特性分析 22 3.4.1.1 動態光散射分析 (Dynamic Light Scattering, DLS) 22 3.4.1.2 掃描式電子顯微鏡分析(Scanning Electron Microscope, SEM) 22 3.4.1.3 薑黃素載藥率測定 22 3.4.2 PLGA搭載薑黃素之水膠敷料特性分析 23 3.4.3 體外試驗 23 3.4.3.1 降解/膨潤分析 23 3.4.3.2 體外水膠球藥物控釋分析 23 3.4.3.3 體外抗氧化試驗 24 3.4.3.4 體外細胞毒性分析 25 3.4.3.5 體外細胞遷移/傷口癒合測試 26 3.4.4 體內試驗 27 3.4.4.1 糖尿病大鼠模型建立 27 3.4.4.2 糖尿病大鼠模型傷口建立 27 3.4.4.3 組織學 28 3.5 統計分析 28 第四章 實驗結果與討論 29 4.1 搭載薑黃素之PLGA奈米顆粒基礎特性分析與討論 29 4.1.1 水合粒徑分布及Zeta電位分析 29 4.1.2 掃描式電子顯微鏡分析 30 4.1.3 薑黃素搭載率 31 4.2 PLGA搭載薑黃素之水膠球特性分析 31 4.2.1 體外試驗 31 4.2.1.1 降解/膨潤分析 31 4.2.1.2 體外敷料藥物控釋分析 33 4.2.1.3 體外抗氧化試驗 34 4.2.1.4 體外細胞毒性分析 35 4.2.1.5 體外細胞遷移/傷口癒合測試 38 4.2.2 體內試驗 42 4.2.2.1 體內細胞遷移/傷口癒合測試 42 4.2.2.2 組織學 44 第五章 結論 47 參考文獻 49 附錄Ⅰ常用英文縮寫對照表 57 附錄Ⅱ 切除傷口癒合的組織學評分標準 60 | |
| dc.language.iso | zh-TW | |
| dc.subject | 糖尿病 | zh_TW |
| dc.subject | 傷口癒合 | zh_TW |
| dc.subject | 薑黃素 | zh_TW |
| dc.subject | 聚乳酸甘醇酸 | zh_TW |
| dc.subject | 海藻酸鈉 | zh_TW |
| dc.subject | 傷口敷料 | zh_TW |
| dc.subject | wound dressing | en |
| dc.subject | diabetes | en |
| dc.subject | wound healing | en |
| dc.subject | curcumin | en |
| dc.subject | PLGA | en |
| dc.subject | alginate | en |
| dc.title | 搭載薑黃素之藻酸鹽PLGA複合水膠敷料於糖尿病傷口治療上的應用 | zh_TW |
| dc.title | Application of Alginate-PLGA Composite Dressing for the Treatment of Diabetes Mellitus | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許馨云(Hsin-Yun Hsu),黃意真(Yi-Cheng Huang) | |
| dc.subject.keyword | 糖尿病,傷口癒合,薑黃素,聚乳酸甘醇酸,海藻酸鈉,傷口敷料, | zh_TW |
| dc.subject.keyword | diabetes,wound healing,curcumin,PLGA,alginate,wound dressing, | en |
| dc.relation.page | 61 | |
| dc.identifier.doi | 10.6342/NTU202201174 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-07-03 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-05 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2806202213443600.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
