Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84191
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳中平(Chung-Ping Chen)
dc.contributor.authorChia-Hsuan Linen
dc.contributor.author林家軒zh_TW
dc.date.accessioned2023-03-19T22:06:03Z-
dc.date.copyright2022-07-06
dc.date.issued2022
dc.date.submitted2022-07-04
dc.identifier.citationNnatu, D.I. What is Treatment-Resistant Depression? 2022; Available from: https://www.priorygroup.com/mental-health/depression-treatment/treatment-resistant-depression. Bergfeld, I.O., et al., Treatment-resistant depression and suicidality. Journal of affective disorders, 2018. 235: p. 362-367. Kennedy, N. and E. Paykel, Residual symptoms at remission from depression: impact on long-term outcome. Journal of affective disorders, 2004. 80(2-3): p. 135-144. Fava, M., Diagnosis and definition of treatment-resistant depression. Biological psychiatry, 2003. 53(8): p. 649-659. Rush, A.J., et al., Star* d. CNS drugs, 2009. 23(8): p. 627-647. Centre, P. Transcranial Magnetic Stimulation (rTMS). 2017; Available from: http://manorog.com/rtms/. Li, C.-T., et al., Prefrontal glucose metabolism in medication-resistant major depression. The British Journal of Psychiatry, 2015. 206(4): p. 316-323. Li, C.T., et al., The effects of low‐dose ketamine on the prefrontal cortex and amygdala in treatment‐resistant depression: A randomized controlled study. Human brain mapping, 2016. 37(3): p. 1080-1090. Pizzagalli, D.A., Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacology, 2011. 36(1): p. 183-206. Yan, C.-G., et al., Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. Proceedings of the National Academy of Sciences, 2019. 116(18): p. 9078-9083. Li, C.-T., 重覆經顱磁刺激 rTMS與 抗鬱藥物治療頑固型 憂鬱症 TRD. 2022. Berlim, M., F. Van den Eynde, and Z.J. Daskalakis, A systematic review and meta-analysis on the efficacy and acceptability of bilateral repetitive transcranial magnetic stimulation (rTMS) for treating major depression. Psychological medicine, 2013. 43(11): p. 2245-2254. Khosla, M., et al., Machine learning in resting-state fMRI analysis. Magnetic resonance imaging, 2019. 64: p. 101-121. Hojjati, S.H., et al., Predicting conversion from MCI to AD using resting-state fMRI, graph theoretical approach and SVM. Journal of neuroscience methods, 2017. 282: p. 69-80. Riaz, A., et al., DeepFMRI: End-to-end deep learning for functional connectivity and classification of ADHD using fMRI. Journal of neuroscience methods, 2020. 335: p. 108506. Wang, L., et al., Interhemispheric functional connectivity and its relationships with clinical characteristics in major depressive disorder: a resting state fMRI study. PloS one, 2013. 8(3): p. e60191. Vincent, K., et al., Blood oxygenation level dependent functional magnetic resonance imaging: current and potential uses in obstetrics and gynaecology. BJOG: An International Journal of Obstetrics & Gynaecology, 2009. 116(2): p. 240-246. Feldman, S., et al., The Blood Oxygen Level–Dependent Functional MR Imaging Signal Can Be Used to Identify Brain Tumors and Distinguish Them from Normal Tissue. American journal of neuroradiology, 2009. 30(2): p. 389-395. Khodayari-Rostamabad, A., et al., A machine learning approach using EEG data to predict response to SSRI treatment for major depressive disorder. Clinical Neurophysiology, 2013. 124(10): p. 1975-1985. Mumtaz, W., et al., A machine learning framework involving EEG-based functional connectivity to diagnose major depressive disorder (MDD). Medical & biological engineering & computing, 2018. 56(2): p. 233-246. Kautzky, A., et al., The influence of the rs6295 gene polymorphism on serotonin-1A receptor distribution investigated with PET in patients with major depression applying machine learning. Translational psychiatry, 2017. 7(6): p. e1150-e1150. Kautzky, A., et al., Refining prediction in treatment-resistant depression: results of machine learning analyses in the TRD III sample. The Journal of clinical psychiatry, 2017. 78(1): p. 14989. Li, C.-T., et al., Structural and cognitive deficits in remitting and non-remitting recurrent depression: a voxel-based morphometric study. Neuroimage, 2010. 50(1): p. 347-356. Wikipedia. Dorsolateral prefrontal cortex. 2022; Available from: https://en.wikipedia.org/wiki/Dorsolateral_prefrontal_cortex. Drevets, W.C., Neuroimaging studies of mood disorders. Biological psychiatry, 2000. 48(8): p. 813-829. Veiel, H.O., A preliminary profile of neuropsychological deficits associated with major depression. Journal of clinical and experimental neuropsychology, 1997. 19(4): p. 587-603. Bench, C.J., et al., Regional cerebral blood flow in depression measured by positron emission tomography: the relationship with clinical dimensions. Psychological medicine, 1993. 23(3): p. 579-590. Mayberg, H.S., et al., Paralimbic hypoperfusion in unipolar depression. Journal of Nuclear Medicine, 1994. 35(6): p. 929-934. Coben, R. and J.R. Evans, Neurofeedback and neuromodulation techniques and applications. 2010: Academic Press. Yoshida, K., et al., Prediction of clinical depression scores and detection of changes in whole-brain using resting-state functional MRI data with partial least squares regression. PloS one, 2017. 12(7): p. e0179638. Zhong, X., et al., Whole-brain resting-state functional connectivity identified major depressive disorder: a multivariate pattern analysis in two independent samples. Journal of Affective Disorders, 2017. 218: p. 346-352. Wang, X., Y. Ren, and W. Zhang, Depression disorder classification of fMRI data using sparse low-rank functional brain network and graph-based features. Computational and mathematical methods in medicine, 2017. 2017. Sundermann, B., et al., Diagnostic classification of unipolar depression based on resting-state functional connectivity MRI: effects of generalization to a diverse sample. Journal of Neural Transmission, 2017. 124(5): p. 589-605. Ma, Z., et al., Alterations in regional homogeneity of spontaneous brain activity in late-life subthreshold depression. PloS one, 2013. 8(1): p. e53148. Guo, H., et al., Resting-state functional connectivity abnormalities in first-onset unmedicated depression. Neural regeneration research, 2014. 9(2): p. 153. Liu, F., et al., Classification of different therapeutic responses of major depressive disorder with multivariate pattern analysis method based on structural MR scans. PloS one, 2012. 7(7): p. e40968. Zou, L., et al., 3D CNN based automatic diagnosis of attention deficit hyperactivity disorder using functional and structural MRI. IEEE Access, 2017. 5: p. 23626-23636. Subah, F.Z., et al., A deep learning approach to predict autism spectrum disorder using multisite resting-state fMRI. Applied Sciences, 2021. 11(8): p. 3636. Duc, N.T., et al., 3D-deep learning based automatic diagnosis of Alzheimer’s disease with joint MMSE prediction using resting-state fMRI. Neuroinformatics, 2020. 18(1): p. 71-86. Salman, S. and X. Liu, Overfitting mechanism and avoidance in deep neural networks. arXiv preprint arXiv:1901.06566, 2019. Duan, Z., et al., Multivariate time series classification with hierarchical variational graph pooling. arXiv preprint arXiv:2010.05649, 2020. Wang, L., Z. Wang, and S. Liu, An effective multivariate time series classification approach using echo state network and adaptive differential evolution algorithm. Expert Systems with Applications, 2016. 43: p. 237-249. Lines, J., S. Taylor, and A. Bagnall, Time series classification with HIVE-COTE: The hierarchical vote collective of transformation-based ensembles. ACM Transactions on Knowledge Discovery from Data, 2018. 12(5). Jaworska, N., et al., Leveraging machine learning approaches for predicting antidepressant treatment response using electroencephalography (EEG) and clinical data. Frontiers in psychiatry, 2019. 9: p. 768. Wyner, A.J., et al., Explaining the success of adaboost and random forests as interpolating classifiers. The Journal of Machine Learning Research, 2017. 18(1): p. 1558-1590. Ratsch, G., et al., Constructing boosting algorithms from SVMs: An application to one-class classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002. 24(9): p. 1184-1199. Mali, D., et al., A Machine Learning Technique to Analyze Depressive Disorders. 2021. Alhamid, M. Ensemble Models. 2021; Available from: https://towardsdatascience.com/ensemble-models-5a62d4f4cb0c. Wikipedia. Hamilton Rating Scale for Depression. 2022; Available from: https://en.wikipedia.org/wiki/Hamilton_Rating_Scale_for_Depression. Chao-Gan, Y. Data Processing Assistant for Resting-State fMRI (DPARSF). 2014; Available from: http://rfmri.org/DPARSF. Stehling, M.K., R. Turner, and P. Mansfield, Echo-planar imaging: magnetic resonance imaging in a fraction of a second. Science, 1991. 254(5028): p. 43-50. Sladky, R., et al., Slice-timing effects and their correction in functional MRI. Neuroimage, 2011. 58(2): p. 588-594. Zafar, R., et al. Importance of realignment parameters in fMRI data analysis. in 2015 IEEE International Conference on Signal and Image Processing Applications (ICSIPA). 2015. IEEE. Friston, K.J., et al., Movement‐related effects in fMRI time‐series. Magnetic resonance in medicine, 1996. 35(3): p. 346-355. 知乎. 在回归分析中如何去除协变量呢?. 2021; Available from: https://www.zhihu.com/question/269676743. Liu, T.T., Noise contributions to the fMRI signal: An overview. NeuroImage, 2016. 143: p. 141-151. Ciric, R., et al., Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. Neuroimage, 2017. 154: p. 174-187. Pterosaur_Zero. 【DPABI教程】DPARSF详细教程笔记. 2020; Available from: https://blog.csdn.net/qq_33924470/article/details/108106069. Yan, C. and Y. Zang, DPARSF: a MATLAB toolbox for' pipeline' data analysis of resting-state fMRI. Frontiers in systems neuroscience, 2010. 4: p. 13. MathWork. 去除数据的线性趋势. 2022; Available from: https://ww2.mathworks.cn/help/matlab/data_analysis/detrending-data.html. Gohel, S.R. and B.B. Biswal, Functional integration between brain regions at rest occurs in multiple-frequency bands. Brain connectivity, 2015. 5(1): p. 23-34. Williams, J.C., et al., Advancing motion denoising of multiband resting-state functional connectivity fMRI data. NeuroImage, 2022: p. 118907. Lee, L.-H., et al., Evaluating the performance of machine learning models for automatic diagnosis of patients with schizophrenia based on a single site dataset of 440 participants. European Psychiatry, 2022. 65(1). Ripollés, P., et al., Analysis of automated methods for spatial normalization of lesioned brains. Neuroimage, 2012. 60(2): p. 1296-1306. 知乎. 【fMRI Note】Module 14 Pre-processing of fMRI data. 2020; Available from: https://zhuanlan.zhihu.com/p/22385985. Tzourio-Mazoyer, N., et al., Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 2002. 15(1): p. 273-289. Zang, Y., et al., Regional homogeneity approach to fMRI data analysis. Neuroimage, 2004. 22(1): p. 394-400. 知乎. 功能性核磁共振成像--知识点汇总. 2022; Available from: https://zhuanlan.zhihu.com/p/190264374. 意疏. fMRI脑影像特征提取——静息态与任务态,ALFF/fALFF和ReHo. 2021; Available from: https://blog.csdn.net/sinat_35907936/article/details/118264261. Zou, Q.-H., et al., An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. Journal of neuroscience methods, 2008. 172(1): p. 137-141. Rubinov, M. and O. Sporns, Complex network measures of brain connectivity: uses and interpretations. Neuroimage, 2010. 52(3): p. 1059-1069. Kruschwitz, J., et al., GraphVar: a user-friendly toolbox for comprehensive graph analyses of functional brain connectivity. Journal of neuroscience methods, 2015. 245: p. 107-115. Freeman, L.C., Centrality in social networks conceptual clarification. Social networks, 1978. 1(3): p. 215-239. Watts, D.J. and S.H. Strogatz, Collective dynamics of ‘small-world’networks. nature, 1998. 393(6684): p. 440-442. Wikipedia. Efficiency (network science). 2022; Available from: https://en.wikipedia.org/wiki/Efficiency_(network_science). Latora, V. and M. Marchiori, Efficient behavior of small-world networks. Physical review letters, 2001. 87(19): p. 198701. Sayama, H. Centralities and Coreness. 2020; Available from: https://math.libretexts.org/Bookshelves/Scientific_Computing_Simulations_and_Modeling/Book%3A_Introduction_to_the_Modeling_and_Analysis_of_Complex_Systems_(Sayama)/17%3A_Dynamical_Networks_II__Analysis_of_Network_Topologies/17.03%3A_Centralities_and_Coreness. Bae, J. and S. Kim, Identifying and ranking influential spreaders in complex networks by neighborhood coreness. Physica A: Statistical Mechanics and its Applications, 2014. 395: p. 549-559. Newman, M.E., Fast algorithm for detecting community structure in networks. Physical review E, 2004. 69(6): p. 066133. GraphVar. GraphVar Manual. 2014; Available from: https://www.nitrc.org/docman/view.php/844/1824/GraphVar_Manual.pdf. Farahani, F.V., W. Karwowski, and N.R. Lighthall, Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review. frontiers in Neuroscience, 2019. 13: p. 585. CentiServer. Subgraph Centrality. 2022; Available from: https://www.centiserver.org/centrality/Subgraph_Centrality/. Estrada, E. and J.A. Rodriguez-Velazquez, Subgraph centrality in complex networks. Physical Review E, 2005. 71(5): p. 056103. TEAM, A.F. 【資料科學】 - 資料的正規化與標準化. 2018; Available from: https://aifreeblog.herokuapp.com/posts/54/data_science_203/. paper, T.m., P-value-wikipedia.jpeg,. 2017. i.m.a.c_wishing_well. 機器學習:交叉驗證!. 2018; Available from: https://ithelp.ithome.com.tw/articles/10197461. 10程式中. 核模型 - 支持向量機 (SVM). 2021; Available from: https://ithelp.ithome.com.tw/articles/10270447. 10程式中. 多棵決策樹更厲害:隨機森林 (Random forest). 2021; Available from: https://ithelp.ithome.com.tw/articles/10272586. Huang, T. 機器學習: Ensemble learning之Bagging、Boosting和AdaBoost. 2018; Available from: https://chih-sheng-huang821.medium.com/%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92-ensemble-learning%E4%B9%8Bbagging-boosting%E5%92%8Cadaboost-af031229ebc3. Wang, Y., et al., A hybrid ensemble method for pulsar candidate classification. Astrophysics and Space Science, 2019. 364(8): p. 1-13. Belyadi, H. and A. Haghighat, Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications. 2021: Gulf Professional Publishing. Zhang, X., et al. Tapnet: Multivariate time series classification with attentional prototypical network. in Proceedings of the AAAI Conference on Artificial Intelligence. 2020. Gao, Y. and J. Lin, Hime: discovering variable-length motifs in large-scale time series. Knowledge and Information Systems, 2019. 61(1): p. 513-542. Krizhevsky, A., I. Sutskever, and G.E. Hinton, Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 2012. 25. Sundermeyer, M., R. Schlüter, and H. Ney. LSTM neural networks for language modeling. in Thirteenth annual conference of the international speech communication association. 2012. Ioffe, S. and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. in International conference on machine learning. 2015. PMLR. Xu, B., et al., Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853, 2015. Ilse, M., J. Tomczak, and M. Welling. Attention-based deep multiple instance learning. in International conference on machine learning. 2018. PMLR. Kingma, D.P. and J. Ba, Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. Medium. 分類器評估方法 — ROC曲線、AUC、Accuracy、PR曲線. 2020; Available from: https://medium.com/marketingdatascience/%E5%88%86%E9%A1%9E%E5%99%A8%E8%A9%95%E4%BC%B0%E6%96%B9%E6%B3%95-roc%E6%9B%B2%E7%B7%9A-auc-accuracy-pr%E6%9B%B2%E7%B7%9A-d3a39977022c. ZACH. How to Interpret a ROC Curve (With Examples). 2021; Available from: https://www.statology.org/interpret-roc-curve/. Weisstein, E.W., Bonferroni correction. https://mathworld. wolfram. com/, 2004. Abdi, H., Holm’s sequential Bonferroni procedure. Encyclopedia of research design, 2010. 1(8): p. 1-8. GitBook. 多重假设检验校正与P-value. 2022; Available from: https://liuyujie0136.gitbook.io/sci-tech-notes/bioinformatics/p-value. Wikipedia. Bonferroni correction. 2022; Available from: https://en.wikipedia.org/wiki/Bonferroni_correction. Silicon. Multiple Testing Corrections. 2003; Available from: https://physiology.med.cornell.edu/people/banfelder/qbio/resources_2008/1.5_GenespringMTC.pdf. Al-Zubaidi, A., et al., Machine learning based classification of resting-state fMRI features exemplified by metabolic state (hunger/satiety). Frontiers in human neuroscience, 2019. 13: p. 164. Chu, Y., et al., Automatic image captioning based on ResNet50 and LSTM with soft attention. Wireless Communications and Mobile Computing, 2020. 2020. Targ, S., D. Almeida, and K. Lyman, Resnet in resnet: Generalizing residual architectures. arXiv preprint arXiv:1603.08029, 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84191-
dc.description.abstract重度憂鬱症是影響人類的一種常見的世紀重大疾病。而具有一定比率的重度憂鬱症患者在數個抗憂鬱症藥物的治療下沒有好轉就會被定義成頑固型憂鬱症。本研究分析199位受試者的靜息態功能性磁共振造影訊號,包含頑固型憂鬱症患者(無效藥物3種以上)、非頑固型憂鬱症患者(無效藥物2種以下)和健康受試者,我們想要建構一套輔助醫師預測是否為憂鬱症患者並依照嚴重程度預測是否為頑固型憂鬱症患者或是非頑固型憂鬱症患者的系統。 我們從靜息態功能性磁共振造影訊號中提取三種不同面向的特徵,包含區域同質性特徵、圖論式網路特徵和皮爾森相關性特徵,通過結合大量的特徵再選出最為相關且重要的特徵,經由我們的機器學習演算法能夠成功預測並分別在三種模型上(預測是否憂鬱症、預測是否頑固型憂鬱症、複雜情況預測是否頑固型憂鬱症)得到的準確率是84.3%、88.4% 和78.6%。並依照重要特徵能夠找出憂鬱症特徵分布在額葉、顳葉和頂葉,而頑固性嚴重度特徵主要分布在額葉和顳葉。 最後,我們透過深度學習來簡化處理資料步驟,並分別在三種模型上的準確度為87.5%、84.2% 和71.0%。 關鍵字:重度憂鬱症、頑固型憂鬱症、靜息態功能性磁共振造影、機器學習、深度學習zh_TW
dc.description.abstractMajor depressive disorder (MDD) is a common and a major disease of the century that affects human beings. Treatment resistant depression (TRD) is described as a fraction of people with MDD who do not cure after being treated with various antidepressant medicines. This study analyzed the resting-state fMRI (rs-fMRI) signals of 199 subjects, including patients with TRD (more than 3 ineffective drugs), Non-TRD (with less than 2 ineffective drugs) and healthy subjects. We want to construct a system that assists physicians in predicting depression and predicting TRD or Non-TRD according to severity. We extracted three different oriented features from the rs-fMRI signals, including correlation-based feature, Graph-based feature and Between-region connectivity-based features, and then selected the most relevant and important features by combining a large number of features. Our machine learning algorithm can predict the class of subject and the accuracy obtained on the three models (prediction of depression, prediction of resistant severity, and complex case prediction of resistant severity) are 84.3% and 88.4%. and 78.6%. And according to the important features, it can be found that the features of depression are distributed in the frontal lobe, temporal lobe and parietal lobe, and the features of resistant severity are mainly distributed in the frontal and temporal lobe. Finally, we use deep learning to simplify the data processing step and achieve 87.5%, 84.2% and 71.0% accuracy on the three models, respectively. Keywords: major depression, refractory depression, resting-state functional magnetic resonance imaging, machine learning, deep learningen
dc.description.provenanceMade available in DSpace on 2023-03-19T22:06:03Z (GMT). No. of bitstreams: 1
U0001-0307202214463100.pdf: 3184783 bytes, checksum: ccd33e034b5bfb74fe29b93b640f2c4d (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試審定書 i 誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES xi LIST OF TABLES xv Chapter 1 Introduction 1 1.1 Major Depressive Disorder 1 1.2 Treatment Resistant Depression 1 1.3 Advanced Treatment for depression patients 3 1.4 Resting-state Functional MRI 6 1.5 Thesis Motivation 7 1.6 Thesis organization 8 Chapter 2 Previous research 9 2.1 DLPFC dysfunction in MDD 9 2.2 Machine Learning on MDD/TRD rs-fMRI data 10 2.3 Deep Learning on MDD/TRD rs-fMRI data 11 2.4 Aims and hypothesis 12 Chapter 3 Data acquisition 14 3.1 Psychiatric Evaluations 14 3.2 Clinical Subject 15 3.3 Rs-fMRI Data Acquisition 17 3.4 Classification Model 19 Chapter 4 Methodology 20 4.1 Machine Learning method overview 20 4.2 Preprocessing 21 4.2.1 Slice timing 22 4.2.2 Realignment 23 4.2.3 Nuisance regression 24 4.2.4 Detrend 25 4.2.5 Filter 25 4.2.6 Normalization 26 4.2.7 Smooth 27 4.3 Feature extraction 28 4.3.1 Correlation-based features 29 4.3.1.1 Regional Homogeneity (ReHo) 29 4.3.1.2 fractional Amplitude Low Frequency Fluctuation (fALFF) 30 4.3.2 Graph-based features 32 4.3.2.1 Betweenness centrality 34 4.3.2.2 Characteristic path [74] 34 4.3.2.3 Clustering coefficient [74] 34 4.3.2.4 Degree 35 4.3.2.5 Local efficiency 35 4.3.2.6 Eigenvector centrality [77] 35 4.3.2.7 K-coreness centrality [77, 78] 36 4.3.2.8 Community structure Newman (Modularity)[79] 36 4.3.2.9 Within module degree z-score 37 4.3.2.10 Eccentricity [80] 37 4.3.2.11 Participation coefficient [81] 37 4.3.2.12 Subgraph centrality [82, 83] 38 4.3.3 Between-region connectivity-based features 38 4.3.4 Summary of Features 39 4.4 Data splitting 40 4.5 Standardization 40 4.6 Feature Selection 41 4.7 K-Cross Validation 43 4.8 Model training 44 4.8.1 Support Vector Machine (SVM) 44 4.8.2 Random Forest (RF) 45 4.8.3 XGboost 46 4.8.4 Logistic Regression (LR) 46 4.8.5 Ensemble model 47 4.9 Deep Learning method Overview 48 4.10 TapNet structure 49 Chapter 5 Experimental Results 54 5.1 Evaluation Method 54 5.2 Feature Selection Result 57 5.3 Performance of Classifiers 59 5.4 Final Result 60 5.5 Features of Importance 63 5.6 Result of Prevents Overfitting of TapNet 67 5.7 Classification Results of TapNet 68 5.8 Comparison with Traditional Method 70 5.8.1 Feature selected by our team 71 5.8.2 P-value corrected for multiple comparison 72 5.9 Comparison with Single type feature 73 5.10 Comparison with different Deep Learning model 74 5.11 Comparison with Machine Learning and Deep Learning 76 Chapter 6 Conclusion 78 Chapter 7 Future work 80 Reference 81
dc.language.isoen
dc.subject靜息態功能性磁共振造影zh_TW
dc.subject靜息態功能性磁共振造影zh_TW
dc.subject機器學習zh_TW
dc.subject頑固型憂鬱症zh_TW
dc.subject重度憂鬱症zh_TW
dc.subject深度學習zh_TW
dc.subjectrefractory depressionen
dc.subjectesting-state functional magnetic resonance imagingen
dc.subjectmajor depressionen
dc.subjectmachine learningen
dc.subjectdeep learningen
dc.title基於機器學習和深度學習應用於預測重度憂鬱症之靜息態功能性磁共振造影訊號zh_TW
dc.titleUsing rs-fMRI Signals for Prediction of Major Depressive Disorder Based on Machine Learning and Deep Learningen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.coadvisor李正達(Cheng-Ta Li)
dc.contributor.oralexamcommittee鍾孝文(Hsiao-Wen Chung),陳文翔(Wen-Shiang Chen)
dc.subject.keyword重度憂鬱症,頑固型憂鬱症,靜息態功能性磁共振造影,靜息態功能性磁共振造影,機器學習,深度學習,zh_TW
dc.subject.keywordmajor depression,refractory depression,esting-state functional magnetic resonance imaging,machine learning,deep learning,en
dc.relation.page96
dc.identifier.doi10.6342/NTU202201254
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-07-04
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
dc.date.embargo-lift2022-07-06-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
U0001-0307202214463100.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved