Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84163
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪士灝(Shih-Hao Hung)
dc.contributor.authorHung-Hsin Chenen
dc.contributor.author陳弘欣zh_TW
dc.date.accessioned2023-03-19T22:05:36Z-
dc.date.copyright2022-07-11
dc.date.issued2022
dc.date.submitted2022-07-07
dc.identifier.citation[1] Redis. https://redis.io/. Accessed: 2022-04-19. [2] Closing the real-time intelligence gap with Napatech FPGA SmartNICs. https://www.napatech.com/support/resources/white-papers/closing-the-real-time-intelligence-gap/, Jan. 2015. Accessed: 2022-04-21. [3] Enabling the modern data center - rdma for the enterprise. https://www.infinibandta.org/wp-content/uploads/2019/05/IBTA_WhitePaper_May-20-2019.pdf, May 2019. [4] Marvell LiquidIO III. https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf, 2020. Accessed: 2022-04-20. [5] linux-rdma/perftest: Infiniband Verbs Performance Tests. https://github.com/linux-rdma/perftest, 2021. Version: 4.5-0.2. [6] NVIDIA BlueField-2 Datasheet. https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf, 2021. Accessed: 2022-04-20. [7] Functional Diagram - BlueField DPU OS 3.8.5 - NVIDIA Networking Docs. https://docs.nvidia.com/networking/display/BlueFieldDPUOSv385/Functional+Diagram, Jan. 2022. Accessed: 2022-04-30. [8] Nvidia infiniband adapters. https://www.nvidia.com/en-us/networking/infiniband-adapters/, 2022. Accessed: 2022-05-02. [9] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Workload analysis of a large-scale key-value store. In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems, SIGMETRICS ’12, page 53–64, New York, NY, USA, 2012. Association for Computing Machinery. [10] B. Cassell, T. Szepesi, B. Wong, T. Brecht, J. Ma, and X. Liu. Nessie: A decoupled, client-driven key-value store using rdma. IEEE Transactions on Parallel and Distributed Systems, 28(12):3537–3552, 2017. [11] S. Choi, M. Shahbaz, B. Prabhakar, and M. Rosenblum. λ-nic: Interactive serverless compute on programmable smartnics. In 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS), pages 67–77, 2020. [12] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC ’10, page 143–154, New York, NY, USA, 2010. Association for Computing Machinery. [13] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson. FaRM: Fast remote memory. In 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14), pages 401–414, Seattle, WA, Apr. 2014. USENIX Association. [14] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert, F. Berry, A. Merritt, E. Gronke, and C. Dodd. The virtual interface architecture. IEEE Micro, 18(2):66–76, 1998. [15] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. Andrewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung, H. K. Chandrappa, S. Chaturmohta, M. Humphrey, J. Lavier, N. Lam, F. Liu, K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel, T. Sapre, M. Shaw, G. Silva, M. Sivakumar, N. Srivastava, A. Verma, Q. Zuhair, D. Bansal, D. Burger, K. Vaid, D. A. Maltz, and A. Greenberg. Azure accelerated networking: SmartNICs in the public cloud. In 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18), pages 51–66, Renton, WA, Apr. 2018. USENIX Association. [16] B. Fitzpatrick. Distributed caching with memcached. Linux J., 2004(124):5, aug 2004. [17] L. Foundation. Data plane development kit (DPDK), 2015. [18] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall. Open MPI: Goals, concept, and design of a next generation MPI implementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting, pages 97–104, Budapest, Hungary, September 2004. [19] A. Kalia, M. Kaminsky, and D. G. Andersen. Using rdma efficiently for key-value services. SIGCOMM Comput. Commun. Rev., 44(4):295–306, aug 2014. [20] A. Kalia, M. Kaminsky, and D. G. Andersen. Design guidelines for high performance RDMA systems. In 2016 USENIX Annual Technical Conference (USENIX ATC 16), pages 437–450, Denver, CO, June 2016. USENIX Association. [21] J. Kim, I. Jang, W. Reda, J. Im, M. Canini, D. Kostić, Y. Kwon, S. Peter, and E. Witchel. Linefs: Efficient smartnic offload of a distributed file system with pipeline parallelism. In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles, SOSP ’21, page 756–771, New York, NY, USA, 2021. Association for Computing Machinery. [22] Y. Le, H. Chang, S. Mukherjee, L. Wang, A. Akella, M. M. Swift, and T. V. Lakshman. Uno: Uniflying host and smart nic offload for flexible packet processing. In Proceedings of the 2017 Symposium on Cloud Computing, SoCC ’17, page 506–519, New York, NY, USA, 2017. Association for Computing Machinery. [23] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen, and L. Zhang. Kvdirect: High-performance in-memory key-value store with programmable nic. In Proceedings of the 26th Symposium on Operating Systems Principles, SOSP ’17, page 137–152, New York, NY, USA, 2017. Association for Computing Machinery. [24] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky. MICA: A holistic approach to fast In-Memory Key-Value storage. In 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14), pages 429–444, Seattle, WA, Apr. 2014. USENIX Association. [25] J. Liu, C. Maltzahn, C. Ulmer, and M. L. Curry. Performance characteristics of the bluefield-2 smartnic, 2021. [26] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter, and K. Gupta. Offloading distributed applications onto smartnics using ipipe. In Proceedings of the ACM Special Interest Group on Data Communication, SIGCOMM ’19, page 318–333, New York, NY, USA, 2019. Association for Computing Machinery. [27] M. Liu, S. Peter, A. Krishnamurthy, and P. M. Phothilimthana. E3: Energy-Efficient microservices on SmartNIC-Accelerated servers. In 2019 USENIX Annual Technical Conference (USENIX ATC 19), pages 363–378, Renton, WA, July 2019. USENIX Association. [28] C. Mitchell, Y. Geng, and J. Li. Using One-Sided RDMA reads to build a fast, CPU-Efficient Key-Value store. In 2013 USENIX Annual Technical Conference (USENIX ATC 13), pages 103–114, San Jose, CA, June 2013. USENIX Association. [29] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and V. Venkataramani. Scaling memcache at facebook. In 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13), pages 385–398, Lombard, IL, Apr. 2013. USENIX Association. [30] S. Panda, Y. Feng, S. G. Kulkarni, K. K. Ramakrishnan, N. Duffield, and L. N. Bhuyan. Smartwatch: Accurate traffic analysis and flow-state tracking for intrusion prevention using smartnics. In Proceedings of the 17th International Conference on Emerging Networking EXperiments and Technologies, CoNEXT ’21, page 60–75, New York, NY, USA, 2021. Association for Computing Machinery. [31] H. N. Schuh, W. Liang, M. Liu, J. Nelson, and A. Krishnamurthy. Xenic: Smartnic-accelerated distributed transactions. In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles, SOSP ’21, page 740–755, New York, NY, USA, 2021. Association for Computing Machinery. [32] J. Shu, Y. Chen, Q. Wang, B. Zhu, J. Li, and Y. Lu. Th-dpms: Design and implementation of an rdma-enabled distributed persistent memory storage system. ACM Trans. Storage, 16(4), oct 2020. [33] D. Sidler, Z. Wang, M. Chiosa, A. Kulkarni, and G. Alonso. Strom: Smart remote memory. In Proceedings of the Fifteenth European Conference on Computer Systems, EuroSys ’20, New York, NY, USA, 2020. Association for Computing Machinery. [34] A. S. Tanenbaum and M. van Steen. Distributed Systems: Principles and Paradigms. Pearson Prentice Hall, Upper Saddle River, NJ, 2 edition, 2007. [35] S.-Y. Tsai, Y. Shan, and Y. Zhang. Disaggregating persistent memory and controlling them remotely: An exploration of passive disaggregated Key-Value stores. In 2020 USENIX Annual Technical Conference (USENIX ATC 20), pages 33–48. USENIX Association, July 2020. [36] X. Wei, R. Chen, and H. Chen. Fast RDMA-based ordered Key-Value store using remote learned cache. In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20), pages 117–135. USENIX Association, Nov. 2020. [37] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast in-memory transaction processing using rdma and htm. In Proceedings of the 25th Symposium on Operating Systems Principles, SOSP ’15, page 87–104, New York, NY, USA, 2015. Association for Computing Machinery. [38] J. Yang, Y. Yue, and K. V. Rashmi. A large scale analysis of hundreds of in-memory cache clusters at twitter. In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20), pages 191–208. USENIX Association, Nov. 2020. [39] P. Zuo, J. Sun, L. Yang, S. Zhang, and Y. Hua. One-sided RDMA-Conscious extendible hashing for disaggregated memory. In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pages 15–29. USENIX Association, July 2021.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84163-
dc.description.abstract記憶體鍵值儲存系統 (in-memory KVS) 是在資料中心的應用程式中一個重要的元件。因為記憶體具有高頻寬和低延遲的特性,常見 in-memory KVS 的效能瓶頸主要是網路堆疊。先前的研究嘗試使用遠端直接記憶體存取 (RDMA) 來取代傳統的網路堆疊,實現了數量級的更高吞吐量並且降低響應延遲。 為了進一步提升 in-memory KVS 的吞吐量,我們提出了一個使用支援 RDMA 的智慧網卡來卸載處理器的工作的異質 KVS 架構。由於其彈性和成本效益,智慧網卡已經被用於許多領域,包含軟體定義網路、入侵檢測和即時資料分析。近年的研究也嘗試將資料儲存系統和交易處理系統卸載到智慧網卡上。具有強大運算能力的智慧網卡如 NVIDIA 的 BlueField 系列資料處理器 (DPU) 已成為使資料中心的應用程式更有效率的關鍵元件。 本篇論文所提出的異質 KVS (hKVS) 設計,可以讓主機有效利用 BlueField-2 智慧網卡上的計算資源和 RDMA 功能來擴展 KVS 的吞吐量。藉由複製經常被讀取的鍵值物件到智慧網卡上,主機和智慧網卡共同形成更大且具有更高吞吐量的 RDMA KVS。我們設計 hKVS 的架構並且優化其軟體的實作,在實際的系統上進行一系列效能評估的實驗。藉由增加一張智慧網卡到主機,hKVS 可以在 100% 和 95% 讀取的工作負載中達到最多 1.86 倍和 1.49 倍的吞吐量。考量到智慧網卡的花費遠低於一般主機,並且可以透過加裝多張智慧網卡來提升吞吐量,相比於使用多台主機來達成相同的目的,hKVS是同時具有成本效益和擴展性的做法。zh_TW
dc.description.abstractIn-memory key-value store (KVS) is a crucial component in data center applications. Since DRAM provides high bandwidth and low latency, the major performance bottleneck of common in-memory KVS lies in the network stack. Prior works have attempted to replace the traditional network stack with remote direct memory access (RDMA), which achieve orders of magnitude higher throughput and reduce the response latency. To further increase the throughput of an in-memory KVS, we propose a heterogeneous KVS architecture which employs smart network interface card (SmartNIC) to support RDMA and offload the workload for the CPU. Because of their flexibility and cost-efficiency, SmartNICs have been used in various fields, including software-defined networking, intrusion detection, and real-time analysis. Recent research efforts have also attempted to offload data stores and transaction processing systems to SmartNICs. Powerful SmartNICs such as NVIDIA's BlueField data processing unit (DPU) have been developed as key components to make data center applications more efficient. In this thesis, we propose a heterogeneous KVS (hKVS) design that enables a host server to efficiently exploits the computational resources and the RDMA capability of the BlueField-2 SmartNICs to scale the throughput of the KVS. By replicating frequently-read key-value objects to SmartNIC, the host and SmartNIC jointly form a larger RDMA KVS with higher throughput. We design the architecture of the hKVS, optimize its software implementation, and conduct a series of experiments to evaluate the resulted performance in realistic applications. By adding a SmartNIC to the host, hKVS achieves up to 1.86× and 1.49× higher throughput in 100% and 95% read workloads, which is cost-effective and scalable compared to building a KVS with multiple hosts, considering the SmartNIC costs much less than a regular server and multiple SmartNICs can be added to scale the throughput if needed.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:05:36Z (GMT). No. of bitstreams: 1
U0001-2204202210112600.pdf: 1568131 bytes, checksum: 49e4492a06bbd2204c0cd35169f422c3 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 i 致謝 iii 摘要 v Abstract vii List of Figures xi List of Tables xiii Chapter 1 Introduction 1 Chapter 2 Background and Related Works 5 2.1 Key-Value Store . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 RDMA and RDMA-based Key-Value Stores . . . . . . . . . . . . . 6 2.3 SmartNIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 3 Running KVS on the BlueField-2 DPU 11 3.1 Setup for Performance Characterization Experiments . . . . . . . . . 11 3.2 Latency and Throughput with RDMA Verbs . . . . . . . . . . . . . . 12 3.2.1 Latency with RDMA Verbs . . . . . . . . . . . . . . . . . . . . . . 15 3.2.2 Throughput with RDMA Verbs . . . . . . . . . . . . . . . . . . . . 18 3.3 Throughput of RDMA Key-Value Stores . . . . . . . . . . . . . . . 19 Chapter 4 Design of hKVS 23 4.1 Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 Primary KVS Service . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3 Secondary KVS Service . . . . . . . . . . . . . . . . . . . . . . . . 28 4.4 Consistency between Two KVS Services . . . . . . . . . . . . . . . 30 4.5 Determining the Popular Keys . . . . . . . . . . . . . . . . . . . . . 33 Chapter 5 Evaluation 37 5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.2 Thread Allocation in the Primary KVS Service . . . . . . . . . . . . 39 5.2.1 The Number of Sync Threads . . . . . . . . . . . . . . . . . . . . . 39 5.2.2 The Number of Service Threads . . . . . . . . . . . . . . . . . . . 40 5.3 Comparison between Primary KVS Service and HERD . . . . . . . . 41 5.3.1 Overhead of Popular Key Selection . . . . . . . . . . . . . . . . . . 42 5.3.2 Limited Write Performance . . . . . . . . . . . . . . . . . . . . . . 42 5.4 Overall Throughput Comparison . . . . . . . . . . . . . . . . . . . . 44 5.5 Admission Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Chapter 6 Conclusion and Future Works 49 References 51
dc.language.isoen
dc.subject異質系統zh_TW
dc.subject鍵值儲存系統zh_TW
dc.subject智慧網卡zh_TW
dc.subject資料處理器zh_TW
dc.subject遠端直接記憶體存取zh_TW
dc.subjectHeterogeneous systemen
dc.subjectKey-value storeen
dc.subjectRemote Direct Memory Access (RDMA)en
dc.subjectSmartNICen
dc.subjectDPUen
dc.title使用智慧網卡和 RDMA 設計的高吞吐量異質鍵值儲存系統zh_TW
dc.titleDesigning a High Throughput Heterogeneous Key-Value Store with SmartNIC and Remote Direct Memory Accessen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0003-4171-7991
dc.contributor.oralexamcommittee周志遠(Jerry Chou),施吉昇(Chi-Sheng Shih),郭大維(Tei-Wei Kuo),劉邦鋒(Pangfeng Liu)
dc.subject.keyword鍵值儲存系統,遠端直接記憶體存取,智慧網卡,資料處理器,異質系統,zh_TW
dc.subject.keywordKey-value store,Remote Direct Memory Access (RDMA),SmartNIC,DPU,Heterogeneous system,en
dc.relation.page57
dc.identifier.doi10.6342/NTU202200715
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-07-07
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
dc.date.embargo-lift2027-07-01-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
U0001-2204202210112600.pdf
  未授權公開取用
1.53 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved