Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84119
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor諶玉真(Yu-Jane Sheng)
dc.contributor.authorYi-Ting Chengen
dc.contributor.author鄭宜庭zh_TW
dc.date.accessioned2023-03-19T22:05:00Z-
dc.date.copyright2022-07-29
dc.date.issued2022
dc.date.submitted2022-07-13
dc.identifier.citation1 Y. Zhou, H. Ding, A. T. Smith, X. Jia, S. Chen, L. Liu, S. E. Chavez, Z. Hou, J. Liu and H.Cheng, J. Mater. Chem. A, 2019, 7, 14089–14096. 2 K. Yamamoto, K. Morikawa, H. Imanaka, K. Imamura and T. Kitamori, Analyst, 2020, 145, 5801–5807. 3 A. Choudhary, H. Joshi, H.-Y. Chou, K. Sarthak, J. Wilson, C. Maffeo and A. Aksimentiev, ACS Nano, 2020, 14, 15566–15576. 4 K. Shirai, K. Mawatari, R. Ohta, H. Shimizu and T. Kitamori, Analyst, 2018, 143, 943–948. 5 B. Radha, A. Esfandiar, F. C. Wang, A. P. Rooney, K. Gopinadhan, A. Keerthi, A. Mishchenko, A. Janardanan, P. Blake and L. Fumagalli, Nature, 2016, 538, 222–225. 6 Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff, Adv. Mater., 2010, 22, 3906–3924. 7 L. J. Cote, F. Kim and J. Huang, J. Am. Chem. Soc., 2009, 131, 1043–1049. 8 H.-K. Jeong, Y. P. Lee, M. H. Jin, E. S. Kim, J. J. Bae and Y. H. Lee, Chem. Phys. Lett., 2009, 470, 255–258. 9 S. K. Srivastava and J. Pionteck, J. Nanosci. Nanotechnol., 2015, 15, 1984–2000. 10 Y. Liu, D. Yu, C. Zeng, Z. Miao and L. Dai, Langmuir, 2010, 26, 6158–6160. 11 K. Huang, G. Liu, Y. Lou, Z. Dong, J. Shen and W. Jin, Angew. Chemie, 2014, 126, 7049–7052. 12 S. Wang, Y. Wu, N. Zhang, G. He, Q. Xin, X. Wu, H. Wu, X. Cao, M. D. Guiver and Z. Jiang, Energy Environ. Sci., 2016, 9, 3107–3112. 13 F. Calabrò, K. P. Lee and D. Mattia, Appl. Math. Lett., 2013, 26, 991–994. 14 D. Mattia and Y. Gogotsi, Microfluid. Nanofluidics, 2008, 5, 289–305. 15 Y. Jin, R. Tao and Z. Li, Electrophoresis, 2019, 40, 859–864. 16 C. Neto, D. R. Evans, E. Bonaccurso, H.-J. Butt and V. S. J. Craig, Reports Prog. Phys., 2005, 68, 2859. 17 K. Falk, F. Sedlmeier, L. Joly, R. R. Netz and L. Bocquet, Nano Lett., 2010, 10, 4067–4073. 18 A. T. Celebi, C. T. Nguyen, R. Hartkamp and A. Beskok, J. Chem. Phys., 2019, 151, 174705. 19 H. Huang, Z. Song, N. Wei, L. Shi, Y. Mao, Y. Ying, L. Sun, Z. Xu and X. Peng, Nat. Commun., 2013, 4, 1–9. 20 N. Wei, X. Peng and Z. Xu, ACS Appl. Mater. Interfaces, 2014, 6, 5877–5883. 21 B. Chen, H. Jiang, X. Liu and X. Hu, J. Phys. Chem. C, 2017, 121, 1321–1328. 22 E. W. Washburn, Phys. Rev., 1921, 17, 273. 23 J. Rafiee, X. Mi, H. Gullapalli, A. VThomas, F. Yavari, Y. Shi, P. M. Ajayan and N. A. Koratkar, Nat. Mater., 2012, 11, 217–222. 24 F. Taherian, V. Marcon, N. F. A. van derVegt and F.Leroy, Langmuir, 2013, 29, 1457–1465. 25 L. J. Cote, R. Cruz-Silva and J. Huang, J. Am. Chem. Soc., 2009, 131, 11027–11032. 26 S. A. Hasan, J. L. Rigueur, R. R. Harl, A. J. Krejci, I. Gonzalo-Juan, B. R. Rogers and J. H. Dickerson, ACS Nano, 2010, 4, 7367–7372. 27 I. K. Moon, J. Lee, R. S. Ruoff and H. Lee, Nat. Commun., 2010, 1, 1–6. 28 Y. Chen, F. Guo, A. Jachak, S.-P. Kim, D. Datta, J. Liu, I. Kulaots, C. Vaslet, H. D. Jang and J. Huang, Nano Lett., 2012, 12, 1996–2002. 29 P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Z. Xu and H. Zhu, ACS Nano, 2013, 7, 428–437. 30 N. Wei, C. Lv and Z. Xu, Langmuir, 2014, 30, 3572–3578. 31 B. Qi, X. He, G. Zeng, Y. Pan, G. Li, G. Liu, Y. Zhang, W. Chen and Y. Sun, Nat. Commun., 2017, 8, 1–10. 32 T.-Y. Wang, H.-Y. Chang, G.-Y. He, H.-K. Tsao and Y.-J. Sheng, J. Mol. Liq., 2022, 352, 118701. 33 M. Shankla and A. Aksimentiev, Nat. Nanotechnol., 2019, 14, 858–865. 34 Y. Yang, D.-M. Tang, C. Zhang, Y. Zhang, Q. Liang, S. Chen, Q. Weng, M. Zhou, Y. Xue and J. Liu, Energy Environ. Sci., 2017, 10, 979–986. 35 J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé and K. Schulten, J. Comput. Chem., 2005, 26, 1781–1802. 36 J. C. Phillips, D. J. Hardy, J. D. C. Maia, J. E. Stone, J. VRibeiro, R. C. Bernardi, R. Buch, G. Fiorin, J. Hénin, W. Jiang, R. McGreevy, M. C. R. Melo, B. K. Radak, R. D. Skeel, A. Singharoy, Y. Wang, B. Roux, A. Aksimentiev, Z. Luthey-Schulten, L. VKalé, K. Schulten, C. Chipot and E. Tajkhorshid, J. Chem. Phys., 2020, 153, 44130. 37 L. Wang, Y. Zhu, L. Xu, W. Chen, H. Kuang, L. Liu, A. Agarwal, C. Xu and N. A. Kotov, Angew. Chemie, 2010, 122, 5604–5607. 38 J. L. F. Abascal and C. Vega, J. Chem. Phys., 2005, 123, 234505. 39 M. A. González and J. L. F. Abascal, J. Chem. Phys., 2010, 132, 96101. 40 W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 1996, 14, 33–38. 41 S. Muraru, J. S. Burns and M. Ionita, SoftwareX, 2020, 12, 100586. 42 J. D. Bernal, Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. Character, 1924, 106, 749–773. 43 O. Hod, J. Chem. Theory Comput., 2012, 8, 1360–1369. 44 M. Khalkhali, N. Kazemi, H. Zhang and Q. Liu, J. Chem. Phys., 2017, 146, 114704. 45 J. Włoch, A. P. Terzyk and P. Kowalczyk, Chem. Phys. Lett., 2017, 674, 98–102. 46 H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones and M. S. Dresselhaus, Sci. Rep., 2013, 3, 2714. 47 V. VNeklyudov, N. R. Khafizov, I. A. Sedov and A. M. Dimiev, Phys. Chem. Chem. Phys., 2017, 19, 17000–17008. 48 N. Wei, X. Peng and Z. Xu, Phys. Rev. E, 2014, 89, 12113. 49 W. Xiong, J. Z. Liu, M. Ma, Z. Xu, J. Sheridan and Q. Zheng, Phys. Rev. E, 2011, 84, 56329. 50 R. S. Voronov, D. VPapavassiliou and L. L. Lee, J. Chem. Phys., 2006, 124, 204701. 51 D. M. Huang, C. Sendner, D. Horinek, R. R. Netz and L. Bocquet, Phys. Rev. Lett., 2008, 101, 226101. 52 P. S. H. Forsberg, C. Priest, M. Brinkmann, R. Sedev and J. Ralston, Langmuir, 2010, 26, 860–865. 53 S.-J. Hong, F.-M. Chang, T.-H. Chou, S. H. Chan, Y.-J. Sheng and H.-K. Tsao, Langmuir, 2011, 27, 6890–6896. 54 Y. F. Li, Y. J. Sheng and H. K. Tsao, Langmuir, 2013, 29, 7802–7811.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84119-
dc.description.abstract在奈米流體學的應用中,幾何和化學缺陷時常在光滑石墨烯表面被發現或是創造。本研究使用分子動力學模擬來探索水在附有微量缺陷石墨烯奈米管道中的浸潤動力學與穩流。首先,幾何缺陷(孔洞和突起)略微提高了水接觸角,但化學缺陷(羥基和環氧基團)顯著降低了水接觸角。在穩態流動中,平均速度和滑移長度總是會因微量缺陷而減小,並且化學缺陷的影響相較幾何缺陷的影響更顯著。然而,有趣的是,無論滑移長度如何,幾何缺陷的速度分布都呈柱狀流,而化學缺陷則總是拋物線。再來,石墨烯奈米狹縫上的微量缺陷也顯著影響著浸潤動力學,且通常遵循帶有滑移長度的 Washburn 方程。對於化學缺陷,表面摩擦(滑移長度)相較表面潤濕性(接觸角)驅使的驅動力來說更佔優勢。儘管如此,對於突起缺陷,可以觀察到由接觸線遲滯和熱擾動引起的滯滑行為。我們的模擬結果表明,缺陷性質在奈米級流動和浸潤過程中至關重要,且傳統流體力學理論無法描述。zh_TW
dc.description.abstractGeometric and chemical defects are frequently found or created on smooth graphene for applications of nanofluidics. In this work, imbibition dynamics and steady flow of water in graphene nanochannels with sparse defects are explored by molecular dynamics. The water contact angle is raised slightly by geometric defects (hole and protrusion) but lowered significantly by chemical defects (hydroxyl and epoxide groups). In steady flows, the mean velocity and slip length are always reduced by sparse defects and the effect of chemical defects is more significant than that of geometric defects. However, it is interesting to find that the velocity profile is plug-like for geometric defects but becomes parabolic for chemical defects, regardless of the slip length. Sparse defects on graphene nanoslits also affect the imbibition dynamics remarkably, which generally follows Washburn’s equation with the slip length. For chemical defects, surface friction (slip length) dominates over the driving force associated with surface wettability (contact angle). Nonetheless, for protrusion defects, the stick-slip behavior caused by contact line pinning and thermal fluctuations can be observed. Our simulation results indicate that the defect nature is crucial in nanoscale flows and imbibition processes, which the conventional hydrodynamic theory fails to depict.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:05:00Z (GMT). No. of bitstreams: 1
U0001-1307202218394600.pdf: 2418791 bytes, checksum: 8f97973d009d05ccf14c59b1c44ef17f (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents序言與謝辭 ii 摘要 iii ABSTRACT iv CONTENT vi LIST OF FIGURES vii LIST OF TABLES ix Chapter 1 Introduction 1 1.1 Nanofluidics 1 1.2 Graphite Oxide 1 1.3 Slip Length 2 1.4 Washburn’s Equation 3 Chapter 2 Model and Simulation Method 6 2.1 Simulation Model and Parameters 6 2.2 Simulation System: Equilibrium Contact Angles 9 2.3 Simulation System: Slip Length 12 2.4 Simulation System: Imbibition Dynamics 12 Chapter 3 Result and Discussion 14 3.1 Surface Wettability of Graphene-based Substrates 14 3.2 Velocity Profiles and Slip Lengths on Graphene-based Substrates 16 3.3 Imbibition dynamics 26 Chapter 4 Conclusion 39 REFERENCE 41
dc.language.isoen
dc.subject滯滑zh_TW
dc.subject奈米毛細流動zh_TW
dc.subjectWashburn’s 方程式zh_TW
dc.subject滑移長度zh_TW
dc.subject石墨烯奈米管道zh_TW
dc.subject幾何缺陷zh_TW
dc.subject化學缺陷zh_TW
dc.subjectWashburn’s equationen
dc.subjectstick-slipen
dc.subjectchemical defectsen
dc.subjectgeometric defectsen
dc.subjectgraphene nanochannelsen
dc.subjectslip lengthen
dc.subjectnanocapillary flowen
dc.title在少量幾何與化學缺陷石墨烯奈米管道中的毛細現象與穩流zh_TW
dc.titleImbibition dynamics and steady flow in graphene nanochannels with sparse geometric and chemical defectsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0002-1670-9933
dc.contributor.oralexamcommittee曹恆光(Heng-Kwong Tsao),陳儀帆(Yi-Fan Chen),魏憲宏(Hsien-Hung Wei)
dc.subject.keyword奈米毛細流動,Washburn’s 方程式,滑移長度,石墨烯奈米管道,幾何缺陷,化學缺陷,滯滑,zh_TW
dc.subject.keywordnanocapillary flow,Washburn’s equation,slip length,graphene nanochannels,geometric defects,chemical defects,stick-slip,en
dc.relation.page45
dc.identifier.doi10.6342/NTU202201453
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-07-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
dc.date.embargo-lift2022-07-29-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-1307202218394600.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved