請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84119完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 諶玉真(Yu-Jane Sheng) | |
| dc.contributor.author | Yi-Ting Cheng | en |
| dc.contributor.author | 鄭宜庭 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:05:00Z | - |
| dc.date.copyright | 2022-07-29 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-13 | |
| dc.identifier.citation | 1 Y. Zhou, H. Ding, A. T. Smith, X. Jia, S. Chen, L. Liu, S. E. Chavez, Z. Hou, J. Liu and H.Cheng, J. Mater. Chem. A, 2019, 7, 14089–14096. 2 K. Yamamoto, K. Morikawa, H. Imanaka, K. Imamura and T. Kitamori, Analyst, 2020, 145, 5801–5807. 3 A. Choudhary, H. Joshi, H.-Y. Chou, K. Sarthak, J. Wilson, C. Maffeo and A. Aksimentiev, ACS Nano, 2020, 14, 15566–15576. 4 K. Shirai, K. Mawatari, R. Ohta, H. Shimizu and T. Kitamori, Analyst, 2018, 143, 943–948. 5 B. Radha, A. Esfandiar, F. C. Wang, A. P. Rooney, K. Gopinadhan, A. Keerthi, A. Mishchenko, A. Janardanan, P. Blake and L. Fumagalli, Nature, 2016, 538, 222–225. 6 Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff, Adv. Mater., 2010, 22, 3906–3924. 7 L. J. Cote, F. Kim and J. Huang, J. Am. Chem. Soc., 2009, 131, 1043–1049. 8 H.-K. Jeong, Y. P. Lee, M. H. Jin, E. S. Kim, J. J. Bae and Y. H. Lee, Chem. Phys. Lett., 2009, 470, 255–258. 9 S. K. Srivastava and J. Pionteck, J. Nanosci. Nanotechnol., 2015, 15, 1984–2000. 10 Y. Liu, D. Yu, C. Zeng, Z. Miao and L. Dai, Langmuir, 2010, 26, 6158–6160. 11 K. Huang, G. Liu, Y. Lou, Z. Dong, J. Shen and W. Jin, Angew. Chemie, 2014, 126, 7049–7052. 12 S. Wang, Y. Wu, N. Zhang, G. He, Q. Xin, X. Wu, H. Wu, X. Cao, M. D. Guiver and Z. Jiang, Energy Environ. Sci., 2016, 9, 3107–3112. 13 F. Calabrò, K. P. Lee and D. Mattia, Appl. Math. Lett., 2013, 26, 991–994. 14 D. Mattia and Y. Gogotsi, Microfluid. Nanofluidics, 2008, 5, 289–305. 15 Y. Jin, R. Tao and Z. Li, Electrophoresis, 2019, 40, 859–864. 16 C. Neto, D. R. Evans, E. Bonaccurso, H.-J. Butt and V. S. J. Craig, Reports Prog. Phys., 2005, 68, 2859. 17 K. Falk, F. Sedlmeier, L. Joly, R. R. Netz and L. Bocquet, Nano Lett., 2010, 10, 4067–4073. 18 A. T. Celebi, C. T. Nguyen, R. Hartkamp and A. Beskok, J. Chem. Phys., 2019, 151, 174705. 19 H. Huang, Z. Song, N. Wei, L. Shi, Y. Mao, Y. Ying, L. Sun, Z. Xu and X. Peng, Nat. Commun., 2013, 4, 1–9. 20 N. Wei, X. Peng and Z. Xu, ACS Appl. Mater. Interfaces, 2014, 6, 5877–5883. 21 B. Chen, H. Jiang, X. Liu and X. Hu, J. Phys. Chem. C, 2017, 121, 1321–1328. 22 E. W. Washburn, Phys. Rev., 1921, 17, 273. 23 J. Rafiee, X. Mi, H. Gullapalli, A. VThomas, F. Yavari, Y. Shi, P. M. Ajayan and N. A. Koratkar, Nat. Mater., 2012, 11, 217–222. 24 F. Taherian, V. Marcon, N. F. A. van derVegt and F.Leroy, Langmuir, 2013, 29, 1457–1465. 25 L. J. Cote, R. Cruz-Silva and J. Huang, J. Am. Chem. Soc., 2009, 131, 11027–11032. 26 S. A. Hasan, J. L. Rigueur, R. R. Harl, A. J. Krejci, I. Gonzalo-Juan, B. R. Rogers and J. H. Dickerson, ACS Nano, 2010, 4, 7367–7372. 27 I. K. Moon, J. Lee, R. S. Ruoff and H. Lee, Nat. Commun., 2010, 1, 1–6. 28 Y. Chen, F. Guo, A. Jachak, S.-P. Kim, D. Datta, J. Liu, I. Kulaots, C. Vaslet, H. D. Jang and J. Huang, Nano Lett., 2012, 12, 1996–2002. 29 P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Z. Xu and H. Zhu, ACS Nano, 2013, 7, 428–437. 30 N. Wei, C. Lv and Z. Xu, Langmuir, 2014, 30, 3572–3578. 31 B. Qi, X. He, G. Zeng, Y. Pan, G. Li, G. Liu, Y. Zhang, W. Chen and Y. Sun, Nat. Commun., 2017, 8, 1–10. 32 T.-Y. Wang, H.-Y. Chang, G.-Y. He, H.-K. Tsao and Y.-J. Sheng, J. Mol. Liq., 2022, 352, 118701. 33 M. Shankla and A. Aksimentiev, Nat. Nanotechnol., 2019, 14, 858–865. 34 Y. Yang, D.-M. Tang, C. Zhang, Y. Zhang, Q. Liang, S. Chen, Q. Weng, M. Zhou, Y. Xue and J. Liu, Energy Environ. Sci., 2017, 10, 979–986. 35 J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé and K. Schulten, J. Comput. Chem., 2005, 26, 1781–1802. 36 J. C. Phillips, D. J. Hardy, J. D. C. Maia, J. E. Stone, J. VRibeiro, R. C. Bernardi, R. Buch, G. Fiorin, J. Hénin, W. Jiang, R. McGreevy, M. C. R. Melo, B. K. Radak, R. D. Skeel, A. Singharoy, Y. Wang, B. Roux, A. Aksimentiev, Z. Luthey-Schulten, L. VKalé, K. Schulten, C. Chipot and E. Tajkhorshid, J. Chem. Phys., 2020, 153, 44130. 37 L. Wang, Y. Zhu, L. Xu, W. Chen, H. Kuang, L. Liu, A. Agarwal, C. Xu and N. A. Kotov, Angew. Chemie, 2010, 122, 5604–5607. 38 J. L. F. Abascal and C. Vega, J. Chem. Phys., 2005, 123, 234505. 39 M. A. González and J. L. F. Abascal, J. Chem. Phys., 2010, 132, 96101. 40 W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 1996, 14, 33–38. 41 S. Muraru, J. S. Burns and M. Ionita, SoftwareX, 2020, 12, 100586. 42 J. D. Bernal, Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. Character, 1924, 106, 749–773. 43 O. Hod, J. Chem. Theory Comput., 2012, 8, 1360–1369. 44 M. Khalkhali, N. Kazemi, H. Zhang and Q. Liu, J. Chem. Phys., 2017, 146, 114704. 45 J. Włoch, A. P. Terzyk and P. Kowalczyk, Chem. Phys. Lett., 2017, 674, 98–102. 46 H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones and M. S. Dresselhaus, Sci. Rep., 2013, 3, 2714. 47 V. VNeklyudov, N. R. Khafizov, I. A. Sedov and A. M. Dimiev, Phys. Chem. Chem. Phys., 2017, 19, 17000–17008. 48 N. Wei, X. Peng and Z. Xu, Phys. Rev. E, 2014, 89, 12113. 49 W. Xiong, J. Z. Liu, M. Ma, Z. Xu, J. Sheridan and Q. Zheng, Phys. Rev. E, 2011, 84, 56329. 50 R. S. Voronov, D. VPapavassiliou and L. L. Lee, J. Chem. Phys., 2006, 124, 204701. 51 D. M. Huang, C. Sendner, D. Horinek, R. R. Netz and L. Bocquet, Phys. Rev. Lett., 2008, 101, 226101. 52 P. S. H. Forsberg, C. Priest, M. Brinkmann, R. Sedev and J. Ralston, Langmuir, 2010, 26, 860–865. 53 S.-J. Hong, F.-M. Chang, T.-H. Chou, S. H. Chan, Y.-J. Sheng and H.-K. Tsao, Langmuir, 2011, 27, 6890–6896. 54 Y. F. Li, Y. J. Sheng and H. K. Tsao, Langmuir, 2013, 29, 7802–7811. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84119 | - |
| dc.description.abstract | 在奈米流體學的應用中,幾何和化學缺陷時常在光滑石墨烯表面被發現或是創造。本研究使用分子動力學模擬來探索水在附有微量缺陷石墨烯奈米管道中的浸潤動力學與穩流。首先,幾何缺陷(孔洞和突起)略微提高了水接觸角,但化學缺陷(羥基和環氧基團)顯著降低了水接觸角。在穩態流動中,平均速度和滑移長度總是會因微量缺陷而減小,並且化學缺陷的影響相較幾何缺陷的影響更顯著。然而,有趣的是,無論滑移長度如何,幾何缺陷的速度分布都呈柱狀流,而化學缺陷則總是拋物線。再來,石墨烯奈米狹縫上的微量缺陷也顯著影響著浸潤動力學,且通常遵循帶有滑移長度的 Washburn 方程。對於化學缺陷,表面摩擦(滑移長度)相較表面潤濕性(接觸角)驅使的驅動力來說更佔優勢。儘管如此,對於突起缺陷,可以觀察到由接觸線遲滯和熱擾動引起的滯滑行為。我們的模擬結果表明,缺陷性質在奈米級流動和浸潤過程中至關重要,且傳統流體力學理論無法描述。 | zh_TW |
| dc.description.abstract | Geometric and chemical defects are frequently found or created on smooth graphene for applications of nanofluidics. In this work, imbibition dynamics and steady flow of water in graphene nanochannels with sparse defects are explored by molecular dynamics. The water contact angle is raised slightly by geometric defects (hole and protrusion) but lowered significantly by chemical defects (hydroxyl and epoxide groups). In steady flows, the mean velocity and slip length are always reduced by sparse defects and the effect of chemical defects is more significant than that of geometric defects. However, it is interesting to find that the velocity profile is plug-like for geometric defects but becomes parabolic for chemical defects, regardless of the slip length. Sparse defects on graphene nanoslits also affect the imbibition dynamics remarkably, which generally follows Washburn’s equation with the slip length. For chemical defects, surface friction (slip length) dominates over the driving force associated with surface wettability (contact angle). Nonetheless, for protrusion defects, the stick-slip behavior caused by contact line pinning and thermal fluctuations can be observed. Our simulation results indicate that the defect nature is crucial in nanoscale flows and imbibition processes, which the conventional hydrodynamic theory fails to depict. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:05:00Z (GMT). No. of bitstreams: 1 U0001-1307202218394600.pdf: 2418791 bytes, checksum: 8f97973d009d05ccf14c59b1c44ef17f (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 序言與謝辭 ii 摘要 iii ABSTRACT iv CONTENT vi LIST OF FIGURES vii LIST OF TABLES ix Chapter 1 Introduction 1 1.1 Nanofluidics 1 1.2 Graphite Oxide 1 1.3 Slip Length 2 1.4 Washburn’s Equation 3 Chapter 2 Model and Simulation Method 6 2.1 Simulation Model and Parameters 6 2.2 Simulation System: Equilibrium Contact Angles 9 2.3 Simulation System: Slip Length 12 2.4 Simulation System: Imbibition Dynamics 12 Chapter 3 Result and Discussion 14 3.1 Surface Wettability of Graphene-based Substrates 14 3.2 Velocity Profiles and Slip Lengths on Graphene-based Substrates 16 3.3 Imbibition dynamics 26 Chapter 4 Conclusion 39 REFERENCE 41 | |
| dc.language.iso | en | |
| dc.subject | 滯滑 | zh_TW |
| dc.subject | 奈米毛細流動 | zh_TW |
| dc.subject | Washburn’s 方程式 | zh_TW |
| dc.subject | 滑移長度 | zh_TW |
| dc.subject | 石墨烯奈米管道 | zh_TW |
| dc.subject | 幾何缺陷 | zh_TW |
| dc.subject | 化學缺陷 | zh_TW |
| dc.subject | Washburn’s equation | en |
| dc.subject | stick-slip | en |
| dc.subject | chemical defects | en |
| dc.subject | geometric defects | en |
| dc.subject | graphene nanochannels | en |
| dc.subject | slip length | en |
| dc.subject | nanocapillary flow | en |
| dc.title | 在少量幾何與化學缺陷石墨烯奈米管道中的毛細現象與穩流 | zh_TW |
| dc.title | Imbibition dynamics and steady flow in graphene nanochannels with sparse geometric and chemical defects | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0002-1670-9933 | |
| dc.contributor.oralexamcommittee | 曹恆光(Heng-Kwong Tsao),陳儀帆(Yi-Fan Chen),魏憲宏(Hsien-Hung Wei) | |
| dc.subject.keyword | 奈米毛細流動,Washburn’s 方程式,滑移長度,石墨烯奈米管道,幾何缺陷,化學缺陷,滯滑, | zh_TW |
| dc.subject.keyword | nanocapillary flow,Washburn’s equation,slip length,graphene nanochannels,geometric defects,chemical defects,stick-slip, | en |
| dc.relation.page | 45 | |
| dc.identifier.doi | 10.6342/NTU202201453 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-07-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-29 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1307202218394600.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
