Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資料科學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84106
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor古倫維(Lun-Wei Ku)
dc.contributor.authorChih-Yao Chenen
dc.contributor.author陳知遙zh_TW
dc.date.accessioned2023-03-19T22:04:50Z-
dc.date.copyright2022-07-26
dc.date.issued2022
dc.date.submitted2022-07-18
dc.identifier.citation[1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Association for Computational Linguistics, Jun. 2019, pp. 4171–4186. [2] R. Oshikawa, J. Qian, and W. Y. Wang, “A survey on natural language processing for fake news detection,” in Proceedings of the 12th Language Resources and Evaluation Conference. Marseille, France: European Language Resources Association, May 2020, pp. 6086–6093. [Online]. Available: https://www.aclweb.org/anthology/2020.lrec-1.747 [3] M. D. Vicario, W. Quattrociocchi, A. Scala, and F. Zollo, “Polarization and fake news: Early warning of potential misinformation targets,” ACM Trans. Web, vol. 13, no. 2, Mar. 2019. [Online]. Available: https://doi.org/10.1145/3316809 [4] D. Jin, Z. Jin, J. T. Zhou, L. Orii, and P. Szolovits, “Hooks in the headline: Learning to generate headlines with controlled styles,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online: Association 35 for Computational Linguistics, Jul. 2020, pp. 5082–5093. [Online]. Available: https://www.aclweb.org/anthology/2020.acl-main.456 [5] P. Xu, C.-S. Wu, A. Madotto, and P. Fung, “Clickbait? sensational headline generation with auto-tuned reinforcement learning,” in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP- IJCNLP). Hong Kong, China: Association for Computational Linguistics, Nov. 2019, pp. 3065–3075. [Online]. Available: https://www.aclweb.org/anthology/D19-1303 [6] J. N. Blom and K. R. Hansen, “Click bait: Forward-reference as lure in online news headlines,” Journal of Pragmatics, vol. 76, pp. 87–100, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378216614002410 [7] G. Loewenstein, “The psychology of curiosity: A review and reinterpretation,” Psychological Bulletin, vol. 116, pp. 75–98, 07 1994. [8] Y. Yang, “A cognitive interpretation of discourse deixis,” Theory and Practice in Language Studies, vol. 1, pp. 128–135, 2011. [9] A. Baicchi, The Cataphoric Indexicality of Titles, 01 2004, pp. 17–38. [10] M. A. K. Halliday and R. Hasan, Cohesion in English. London: Longman, 1976. [11] J. Kuiken, A. Schuth, M. Spitters, and M. Marx, “Effective headlines of newspaper articles in a digital environment,” Digital Journalism, vol. 5, no. 10, pp. 1300–1314, 2017. [Online]. Available: https://doi.org/10.1080/21670811.2017.127997836 [12] R. Zhang, J. Guo, Y. Fan, Y. Lan, J. Xu, H. Cao, and X. Cheng, “Question headline generation for news articles,” in Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018, pp. 617–626. [13] W. Qi, Y. Yan, Y. Gong, D. Liu, N. Duan, J. Chen, R. Zhang, and M. Zhou,“ProphetNet: Predicting future n-gram for sequence-to-sequence pre-training,”in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings, 2020, pp. 2401–2410. [14] Y. Liu, “Fine-tune bert for extractive summarization,” 2019. [15] A. See, P. J. Liu, and C. D. Manning, “Get to the point: Summarization with pointer-generator networks,” in Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Vancouver, Canada: Association for Computational Linguistics, Jul. 2017, pp. 1073–1083. [Online]. Available: https://www.aclweb.org/anthology/P17-1099 [16] K. Matsumaru, S. Takase, and N. Okazaki, “Improving truthfulness of headline generation,” in ACL, 2020. [17] J. Maynez, S. Narayan, B. Bohnet, and R. McDonald, “On faithfulness and factuality in abstractive summarization,” 01 2020, pp. 1906–1919. [18] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,” in Text Summarization Branches Out. Barcelona, Spain: Association for Computational Linguistics, Jul. 2004, pp. 74–81. [Online]. Available: https://www.aclweb.org/anthology/W04-1013 [19] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method for automatic evaluation of machine translation,” in Proceedings of the 40th Annual Meeting 37 on Association for Computational Linguistics, ser. ACL ’02. USA: Association for Computational Linguistics, 2002, p. 311–318. [Online]. Available: https://doi.org/10.3115/1073083.1073135 [20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9, no. 8, p. 1735–1780, Nov. 1997. [Online]. Available: https://doi.org/10.1162/neco.1997.9.8.1735 [21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf [22] K. Shu, D. Mahudeswaran, S. Wang, D. Lee, and H. Liu, “Fakenewsnet: A data repository with news content, social context and dynamic information for studying fake news on social media,” arXiv preprint arXiv:1809.01286, 2018. [23] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence embeddings using Siamese BERT-networks,” in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association for Computational Linguistics, Nov. 2019, pp. 3982–3992. [Online]. Available: https://aclanthology.org/D19-1410 [24] K. Crowston, “Amazon mechanical turk: A research tool for organizations and in- formation systems scholars,” in Shaping the Future of ICT Research. Methods and 38 Approaches, A. Bhattacherjee and B. Fitzgerald, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 210–221. [25] S. Li, Z. Zhao, R. Hu, W. Li, T. Liu, and X. Du, “Analogical reasoning on chinese morphological and semantic relations,” in Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Association for Computational Linguistics, 2018, pp. 138–143. [Online]. Available: http://aclweb.org/anthology/P18-2023 [26] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based neural machine translation,” in Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon, Portugal: Association for Computational Linguistics, Sep. 2015, pp. 1412–1421. [Online]. Available: https://www.aclweb.org/anthology/D15-1166 [27] R. Speer, J. Chin, and C. Havasi, “Conceptnet 5.5: An open multilingual graph of general knowledge,” in Proceedings of the AAAI Conference on Artificial Intelli- gence, vol. 31, no. 1, 2017. [28] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov, and M. Welling, “Modeling relational data with graph convolutional networks,” in European seman- tic web conference. Springer, 2018, pp. 593–607. [29] W. Kryscinski, B. McCann, C. Xiong, and R. Socher, “Evaluating the factual consistency of abstractive text summarization,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Online: Association for Computational Linguistics, Nov. 2020, pp. 9332–399346. [Online]. Available: https://www.aclweb.org/anthology/2020.emnlp-main.750 [30] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes, “Supervised learning of universal sentence representations from natural language inference data,” in Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen, Denmark: Association for Computational Linguistics, Sep. 2017, pp. 670–680. [Online]. Available: https://aclanthology.org/D17-1070 [31] A. Naik, A. Ravichander, N. Sadeh, C. Rose, and G. Neubig, “Stress test evaluation for natural language inference,” in Proceedings of the 27th International Conference on Computational Linguistics. Santa Fe, New Mexico, USA: Association for Computational Linguistics, Aug. 2018, pp. 2340–2353. [Online]. Available:https://aclanthology.org/C18-1198 [32] X. Zhou and M. Bansal, “Towards robustifying nli models against lexical dataset biases,” 01 2020, pp. 8759–8771. [33] H. Wang, Z. He, Z. L. Lipton, and E. P. Xing, “Learning robust representations by projecting superficial statistics out,” in International Conference on Learning Representations, 2019. [Online]. Available: https://openreview.net/forum?id=rJEjjoR9K7 [34] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforcement learning.” Machine Learning, 8(3–4):229–256, 1992. [35] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba, “Sequence level training with recurrent neural networks,” arXiv preprint arXiv:1511.06732, 2015.40 [36] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text transformer,” Journal of Machine Learning Research, vol. 21, no. 140, pp. 1–67,2020. [Online]. Available: http://jmlr.org/papers/v21/20-074.html [37] J. Zhang, Y. Zhao, M. Saleh, and P. J. Liu, “Pegasus: Pre-training with extracted gap-sentences for abstractive summarization,” 2020. [38] W. Qi, Y. Gong, Y. Yan, C. Xu, B. Yao, B. Zhou, B. Cheng, D. Jiang, J. Chen, R. Zhang et al., “Prophetnet-x: Large-scale pre-training models for english, chinese, multi-lingual, dialog, and code generation,” arXiv preprint arXiv:2104.08006, 2021. [39] B. Hu, Q. Chen, and F. Zhu, “LCSTS: A large scale Chinese short text summarization dataset,” in Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon, Portugal: Association for Computational Linguistics, Sep. 2015, pp. 1967–1972. [Online]. Available: https://www.aclweb.org/anthology/D15-1229 [40] T. Zhang*, V. Kishore*, F. Wu*, K. Q. Weinberger, and Y. Artzi, “Bertscore: Evaluating text generation with bert,” in International Conference on Learning Representations, 2020. [Online]. Available: https://openreview.net/forum?id=SkeHuCVFDr [41] E. Sulem, O. Abend, and A. Rappoport, “BLEU is not suitable for the evaluation of text simplification,” in Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels, Belgium: Association for Computational Linguistics, Oct.-Nov. 2018, pp. 738–744. [Online]. Available: https://aclanthology.org/D18-108141 [42] C. Callison-Burch, M. Osborne, and P. Koehn, “Re-evaluating the role of BLEU in machine translation research,” in 11th Conference of the European Chapter of the Association for Computational Linguistics. Trento, Italy: Association for Computational Linguistics, Apr. 2006. [Online]. Available: https://aclanthology.org/E06-1032 [43] N. Schluter, “The limits of automatic summarisation according to ROUGE,” in Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers. Valencia, Spain: Association for Computational Linguistics, Apr. 2017, pp. 41–45. [Online]. Available: https://aclanthology.org/E17-2007 [44] C. Zhao, M. Walker, and S. Chaturvedi, “Bridging the structural gap between encoding and decoding for data-to-text generation,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online: Association for Computational Linguistics, Jul. 2020, pp. 2481–2491. [Online]. Available: https://www.aclweb.org/anthology/2020.acl-main.224
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84106-
dc.description.abstract隨著網際網路與社群媒體的興起,資訊產生及傳播的速度也不停的在增長。假新聞儼然成為了這個世代重要的議題之一,而其中一種對抗假新聞的方法,就是撰寫澄清新聞來核實不正確的資訊。然而澄清新聞的主要目的在於闢謠,使用的口吻時常過於平淡,容易導致讀者喪失興趣,而使點閱率與假新聞相比較低。 與此同時,深度學習的發展不斷的在縮小諸多任務中機器與人之間的距離,語言模型的成熟使得自動生成文章的摘要或標題變得可能,許多研究也以此為方向,希望能夠讓機器來幫助人們撰寫文案。過去的研究主要以點擊率為依據,也是判斷一個新聞是否具有吸引力的唯一指標,卻可能忽略了新聞事件本身也可能是造成點擊率高的原因之一,因此若以這樣的標準收集資料並訓練模型,反而可能使得真正具有吸引力的標題成為噪音而影響模型的表現。 在這個研究中,我們先透過讀者研究,分析具吸引力的標題所具備的風格,及其在真假新聞之間的差異;接著我們讓模型透過假新聞資料學習出產生具吸引力標題的能力,再計算產生標題的聳動程度及真實程度,並以強化式學習的方法來更新整個框架。實驗結果顯示我們的方法能夠在吸引力、真實性取得顯著的進步,並在不損失流暢性的情況下擊敗多個過去最優的語言生成模型。zh_TW
dc.description.abstractThe dissemination of fake news has already become a major issue in this century, thanks to the rapid growth of the internet and social media platforms. One typical strategy for combating fake news is to release verified news. However, most verified news uses a monotonic tone to point out the fact, which loses readers interest and thus being less effective. Current methods for generating attractive headlines often learn directly from data, which bases attractiveness on the number of user clicks and views. Although clicks or views do reflect user interest, they can fail to reveal how much interest is raised by the writing style and how much is caused by the event or topic itself. Also, such approaches can lead to harmful hallucinations by over-exaggerating the content, aggravating the spread of false information. In this work, we propose HonestBait, a novel framework for solving these issues from another aspect: generating headlines using forward references(FRs), a writing technique often used in clickbait. A self-verification process is also included to avoid harmful hallucinations. Automatic metrics and human evaluations show our framework yields better results in attractiveness while maintaining high veracity.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:04:50Z (GMT). No. of bitstreams: 1
U0001-1407202223212600.pdf: 1122399 bytes, checksum: e306b1829d2d36178b24804647b9ab27 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsAcknowledgements i 摘要 ii Abstract iii Contents iv List of Figures vi List of Tables vii Chapter 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Main Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Chapter 2 Background 5 2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Forward Referencing as a Lure . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Headline Generation . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.3 Faithful Summarization . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 Pointer Genertor Network . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.2 BERT Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Chapter 3 Preliminaries 11 3.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Chapter 4 Methodology 14 4.1 Overall Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.2 Sequence Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.3 Attribute Graph Attention Network . . . . . . . . . . . . . . . . . . 16 4.4 Forward Reference Type Classifier . . . . . . . . . . . . . . . . . . 18 4.5 Forward Reference Reward . . . . . . . . . . . . . . . . . . . . . . 18 4.6 Faithfulness Scorer . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.6.1 Lexical Debiasing Network . . . . . . . . . . . . . . . . . . . . . . 20 4.7 Sensationalism Scorer . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.8 Hybrid Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Chapter 5 Experiment 24 5.1 PANCO Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.2 Baselines and Experimental Settings . . . . . . . . . . . . . . . . . . 26 5.3 Automatic Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.4 Human Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.5 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.6 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Chapter 6 Conclusion 34 References 35
dc.language.isoen
dc.subject文本生成zh_TW
dc.subject標題生成zh_TW
dc.subject強化式學習zh_TW
dc.subjectHeadline Generationen
dc.subjectReinforcement Learningen
dc.subjectText Generationen
dc.title誠實標題黨:具吸引力且忠於事實的新聞標題產生器zh_TW
dc.titleHonestBait: Generating Attractive Headlines via Faithful Forward-Referencingen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.coadvisor陳信希(Hsin-Hsi Chen)
dc.contributor.oralexamcommittee李政德(Cheng-Te Li),陳縕儂(Yun-Nung Chen),帥宏翰(Hong-Han Shuai)
dc.subject.keyword文本生成,標題生成,強化式學習,zh_TW
dc.subject.keywordText Generation,Headline Generation,Reinforcement Learning,en
dc.relation.page42
dc.identifier.doi10.6342/NTU202201473
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-07-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資料科學學位學程zh_TW
dc.date.embargo-lift2022-07-26-
顯示於系所單位:資料科學學位學程

文件中的檔案:
檔案 大小格式 
U0001-1407202223212600.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
1.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved