Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 食品安全與健康研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84088
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王如邦
dc.contributor.authorRuo Fan Wangen
dc.contributor.author王若凡zh_TW
dc.date.accessioned2023-03-19T22:04:38Z-
dc.date.copyright2022-10-03
dc.date.issued2022
dc.date.submitted2022-07-18
dc.identifier.citationAbutaleb, A., Lolla, D., Aljuhani, A., Shin, H. U., Rajala, J. W., & Chase, G. G. (2017). Effects of surfactants on the morphology and properties of electrospun polyetherimide fibers. Fibers, 5(3), 33. Adabi, M., Saber, R., Faridi-Majidi, R., & Faridbod, F. (2015). Performance of electrodes synthesized with polyacrylonitrile-based carbon nanofibers for application in electrochemical sensors and biosensors. Materials science and engineering: C, 48, 673-678. Ahmadi, Z., Ravandi, S. A. H., Haghighat, F., & Dabirian, F. (2020). Enhancement of the Mechanical Properties of PAN Nanofiber/Carbon Nanotube Composite Mats Produced via Needleless Electrospinning System. Fibers and Polymers, 21(6), 1200-1211. Ali, A., Slawig, D., Schlosser, A., Koch, J., Bigall, N., Renz, F., Tegenkamp, C., & Sindelar, R. (2021). Polyacrylonitrile (PAN) based electrospun carbon nanofibers (ECNFs): Probing the synergistic effects of creep assisted stabilization and CNTs addition on graphitization and low dimensional electrical transport. Carbon, 172, 283-295. Ali, A. A., Altemimi, A. B., Alhelfi, N., & Ibrahim, S. A. (2020). Application of biosensors for detection of pathogenic food bacteria: a review. Biosensors, 10(6), 58. Aliakbar Ahovan, Z., Hashemi, A., De Plano, L. M., Gholipourmalekabadi, M., & Seifalian, A. (2020). Bacteriophage based biosensors: trends, outcomes and challenges. Nanomaterials, 10(3), 501. Anastas, P., & Eghbali, N. (2010). Green chemistry: principles and practice. Chemical Society Reviews, 39(1), 301-312. Ayankojo, A. G., Reut, J., Öpik, A., & Syritski, V. (2020). Sulfamethizole-imprinted polymer on screen-printed electrodes: Towards the design of a portable environmental sensor. Sensors and Actuators B: Chemical, 320, 128600. Bagotsky, V. S. (2005). Fundamentals of electrochemistry (Vol. 44). John Wiley & Sons. Batinovic, S., Wassef, F., Knowler, S. A., Rice, D. T., Stanton, C. R., Rose, J., Tucci, J., Nittami, T., Vinh, A., & Drummond, G. R. (2019). Bacteriophages in natural and artificial environments. Pathogens, 8(3), 100. Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: a fascinating fiber fabrication technique. Biotechnology advances, 28(3), 325-347. Brownlee, B. J., Claussen, J. C., & Iverson, B. D. (2020). 3D Interdigitated Vertically Aligned Carbon Nanotube Electrodes for Electrochemical Impedimetric Biosensing. ACS Applied Nano Materials, 3(10), 10166-10175. Castro-Mejía, J. L., Muhammed, M. K., Kot, W., Neve, H., Franz, C. M., Hansen, L. H., Vogensen, F. K., & Nielsen, D. S. (2015). Optimizing protocols for extraction of bacteriophages prior to metagenomic analyses of phage communities in the human gut. Microbiome, 3(1), 1-14. Chambers, J. P., Arulanandam, B. P., Matta, L. L., Weis, A., & Valdes, J. J. (2008). Biosensor recognition elements. Chen, L., Shen, Z., Liu, J., Liang, J., & Wang, X. (2020). Effects of oxygen on the structural evolution of polyacrylonitrile fibers during rapid thermal treatment. RSC Advances, 10(11), 6356-6361. Chen, Q., Huang, F., Cai, G., Wang, M., & Lin, J. (2018). An optical biosensor using immunomagnetic separation, urease catalysis and pH indication for rapid and sensitive detection of Listeria monocytogenes. Sensors and Actuators B: Chemical, 258, 447-453. Crowther, J. R. (1995). ELISA: theory and practice (Vol. 42). Springer Science & Business Media. Cui, F., Xu, Y., Wang, R., Liu, H., Chen, L., Zhang, Q., & Mu, X. (2018). Label-free impedimetric glycan biosensor for quantitative evaluation interactions between pathogenic bacteria and mannose. Biosensors and Bioelectronics, 103, 94-98. De Vrieze, S., Van Camp, T., Nelvig, A., Hagström, B., Westbroek, P., & De Clerck, K. (2009). The effect of temperature and humidity on electrospinning. Journal of materials science, 44(5), 1357-1362. Deng, Y., Wang, L., Chen, Y., & Long, Y. (2020). Optimization of staining with SYTO 9/propidium iodide: Interplay, kinetics and impact on Brevibacillus brevis. BioTechniques, 69(2), 88-98. Dickinson, E. J., & Wain, A. J. (2020). The Butler-Volmer equation in electrochemical theory: Origins, value, and practical application. Journal of Electroanalytical Chemistry, 872, 114145. Ding, R., Cong, W.-w., Jiang, J.-m., & Gui, T.-j. (2016). Study of impedance model and water transport behavior of modified solvent-free epoxy anti-corrosion coating by EIS II. Journal of Coatings Technology and Research, 13(6), 981-997. Edwards, K., Johnstone, C., & Thompson, C. (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic acids research, 19(6), 1349. Ekabutr, P., Chailapakul, O., & Supaphol, P. (2013). Modification of disposable screen‐printed carbon electrode surfaces with conductive electrospun nanofibers for biosensor applications. Journal of Applied Polymer Science, 130(6), 3885-3893. Farooq, U., Ullah, M. W., Yang, Q., Aziz, A., Xu, J., Zhou, L., & Wang, S. (2020). High-density phage particles immobilization in surface-modified bacterial cellulose for ultra-sensitive and selective electrochemical detection of Staphylococcus aureus. Biosensors and Bioelectronics, 157, 112163. Fathi, S., Saber, R., Adabi, M., Rasouli, R., Douraghi, M., Morshedi, M., & Farid-Majidi, R. (2021). Novel competitive voltammetric aptasensor based on electrospun carbon nanofibers-gold nanoparticles modified graphite electrode for Salmonella enterica serovar detection. Biointerface Res. Appl. Chem, 11, 8702-8715. Gallet, R., Kannoly, S., & Wang, N. (2011). Effects of bacteriophage traits on plaque formation. BMC microbiology, 11(1), 1-16. Gamero, M., Pariente, F., Lorenzo, E., & Alonso, C. (2010). Nanostructured rough gold electrodes for the development of lactate oxidase-based biosensors. Biosensors and Bioelectronics, 25(9), 2038-2044. Gamero, M., Sosna, M., Pariente, F., Lorenzo, E., Bartlett, P., & Alonso, C. (2012). Influence of macroporous gold support and its functionalization on lactate oxidase-based biosensors response. Talanta, 94, 328-334. Habekost, A. (2021). Fundamentals and Applications of Electrochemical Impedance Spectroscopy-A Didactic Perspective. World, 9(1), 14-21. Hou, H., Ge, J. J., Zeng, J., Li, Q., Reneker, D. H., Greiner, A., & Cheng, S. Z. (2005). Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chemistry of Materials, 17(5), 967-973. Huang, J. (2018). Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: Warburg impedance and beyond. Electrochimica Acta, 281, 170-188. Hussain, W., Ullah, M. W., Farooq, U., Aziz, A., & Wang, S. (2021). Bacteriophage-based advanced bacterial detection: Concept, mechanisms, and applications. Biosensors and Bioelectronics, 112973. Instruments, G. (2007). Basics of electrochemical impedance spectroscopy. G. Instruments, Complex impedance in Corrosion, 1-30. João, J., Lampreia, J., Prazeres, D. M. F., & Azevedo, A. M. (2021). Manufacturing of bacteriophages for therapeutic applications. Biotechnology advances, 49, 107758. Ju, Y.-W., Choi, G.-R., Jung, H.-R., & Lee, W.-J. (2008). Electrochemical properties of electrospun PAN/MWCNT carbon nanofibers electrodes coated with polypyrrole. Electrochimica Acta, 53(19), 5796-5803. Jun, L. Y., Mubarak, N., Yon, L. S., Bing, C. H., Khalid, M., & Abdullah, E. (2018). Comparative study of acid functionalization of carbon nanotube via ultrasonic and reflux mechanism. Journal of environmental chemical engineering, 6(5), 5889-5896. Kissinger, P. T., & Heineman, W. R. (1983). Cyclic voltammetry. Journal of Chemical Education, 60(9), 702. Käferstein, F., & Abdussalam, M. (1999). Food safety in the 21st century. Bulletin of the World Health Organization, 77(4), 347. Li, J., Huckleby, A. B., & Zhang, M. (2021). The enhanced power factor of multi-walled carbon nanotube/stabilized polyacrylonitrile composites due to the partially conjugated structure. Journal of Materiomics, 7(1), 51-58. Li, P., Tan, T., & Lee, J. Y. (1997). Corrosion protection of mild steel by electroactive polyaniline coatings. Synthetic Metals, 88(3), 237-242. Lin, D., Pillai, R. G., Lee, W. E., & Jemere, A. B. (2019). An impedimetric biosensor for E. coli O157: H7 based on the use of self-assembled gold nanoparticles and protein G. Microchimica Acta, 186(3), 1-9. Lisdat, F., & Schäfer, D. (2008). The use of electrochemical impedance spectroscopy for biosensing. Analytical and bioanalytical chemistry, 391(5), 1555-1567. Liu, F., Wang, H., Xue, L., Fan, L., & Zhu, Z. (2008). Effect of microstructure on the mechanical properties of PAN-based carbon fibers during high-temperature graphitization. Journal of materials science, 43(12), 4316-4322. Liu, Y., Hao, M., Chen, Z., Liu, L., Liu, Y., Yang, W., & Ramakrishna, S. (2020). A review on recent advances in application of electrospun nanofiber materials as biosensors. Current Opinion in Biomedical Engineering, 13, 174-189. Loessner, M. J. (2005). Bacteriophage endolysins—current state of research and applications. Current opinion in microbiology, 8(4), 480-487. Lu, Z., Zhang, J., Dai, W., Lin, X., Ye, J., & Ye, J. (2017). A screen-printed carbon electrode modified with a bismuth film and gold nanoparticles for simultaneous stripping voltammetric determination of Zn (II), Pb (II) and Cu (II). Microchimica Acta, 184(12), 4731-4740. Maduraiveeran, G., Sasidharan, M., & Ganesan, V. (2018). Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosensors and Bioelectronics, 103, 113-129. McConnell, E. M., Nguyen, J., & Li, Y. (2020). Aptamer-based biosensors for environmental monitoring. Frontiers in chemistry, 8, 434. Mesquita, M., Stimson, J., Chae, G.-T., Tufenkji, N., Ptacek, C., Blowes, D., & Emelko, M. (2010). Optimal preparation and purification of PRD1-like bacteriophages for use in environmental fate and transport studies. Water research, 44(4), 1114-1125. Mishra, G. K., Barfidokht, A., Tehrani, F., & Mishra, R. K. (2018). Food safety analysis using electrochemical biosensors. Foods, 7(9), 141. Mittal, J., Konno, H., Inagaki, M., & Bahl, O. (1998). Denitrogenation behavior and tensile strength increase during carbonization of stabilized PAN fibers. Carbon, 36(9), 1327-1330. Moreira, L. F. P. P., Buffon, E., de Sá, A. C., & Stradiotto, N. R. (2021). Fructose determination in fruit juices using an electrosynthesized molecularly imprinted polymer on reduced graphene oxide modified electrode. Food chemistry, 352, 129430. Mutreja, R., Jariyal, M., Pathania, P., Sharma, A., Sahoo, D. K., & Suri, C. R. (2016). Novel surface antigen based impedimetric immunosensor for detection of Salmonella typhimurium in water and juice samples. Biosensors and Bioelectronics, 85, 707-713. Najafi, R., Mukherjee, S., Hudson Jr, J., Sharma, A., & Banerjee, P. (2014). Development of a rapid capture-cum-detection method for Escherichia coli O157 from apple juice comprising nano-immunomagnetic separation in tandem with surface enhanced Raman scattering. International journal of food microbiology, 189, 89-97. Nataro, J. P., & Kaper, J. B. (1998). Diarrheagenic escherichia coli. Clinical microbiology reviews, 11(1), 142-201. Nyachuba, D. G. (2010). Foodborne illness: is it on the rise? Nutrition reviews, 68(5), 257-269. O’connell, L., Marcoux, P. R., & Roupioz, Y. (2021). Strategies for surface immobilization of whole bacteriophages: A review. ACS Biomaterials Science & Engineering, 7(6), 1987-2014. Patel, D., Zhou, Y., & Ramasamy, R. P. (2021). A Bacteriophage-Based Electrochemical Biosensor for Detection of Methicillin-Resistant Staphylococcus aureus. Journal of The Electrochemical Society. Pilehrood, M. K., Heikkilä, P., & Harlin, A. (2012). Preparation of carbon nanotube embedded in polyacrylonitrile (pan) nanofibre composites by electrospinning process. AUTEX Research Journal, 12(1), 1-6. Ra, E. J., An, K. H., Kim, K. K., Jeong, S. Y., & Lee, Y. H. (2005). Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper. Chemical Physics Letters, 413(1-3), 188-193. Rahaman, M. S. A., Ismail, A. F., & Mustafa, A. (2007). A review of heat treatment on polyacrylonitrile fiber. Polymer degradation and Stability, 92(8), 1421-1432. Ribeiro, D., & Abrantes, J. (2016). Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: A new approach. Construction and Building Materials, 111, 98-104. Richter, Ł., Janczuk-Richter, M., Niedziółka-Jönsson, J., Paczesny, J., & Hołyst, R. (2018). Recent advances in bacteriophage-based methods for bacteria detection. Drug discovery today, 23(2), 448-455. Richter, Ł., Matuła, K., Leśniewski, A., Kwaśnicka, K., Łoś, J., Łoś, M., Paczesny, J., & Hołyst, R. (2016). Ordering of bacteriophages in the electric field: Application for bacteria detection. Sensors and Actuators B: Chemical, 224, 233-240. Riu, J., & Giussani, B. (2020). Electrochemical biosensors for the detection of pathogenic bacteria in food. TrAC Trends in Analytical Chemistry, 126, 115863. Saha, B., & Schatz, G. C. (2012). Carbonization in polyacrylonitrile (PAN) based carbon fibers studied by ReaxFF molecular dynamics simulations. The Journal of Physical Chemistry B, 116(15), 4684-4692. Schmelcher, M., & Loessner, M. J. (2016). Bacteriophage endolysins: applications for food safety. Current opinion in biotechnology, 37, 76-87. Sedki, M., Chen, X., Chen, C., Ge, X., & Mulchandani, A. (2020). Non-lytic M13 phage-based highly sensitive impedimetric cytosensor for detection of coliforms. Biosensors and Bioelectronics, 148, 111794. Serwer, P., Hunter, B., & Wright, E. T. (2020). Electron microscopy of in-plaque phage T3 assembly: Proposed analogs of neurodegenerative disease triggers. Pharmaceuticals, 13(1), 18. Setnescu, R., Jipa, S., Setnescu, T., Kappel, W., Kobayashi, S., & Osawa, Z. (1999). IR and X-ray characterization of the ferromagnetic phase of pyrolysed polyacrylonitrile. Carbon, 37(1), 1-6. Shitanda, I., Nakafuji, H., Tsujimura, S., Hoshi, Y., & Itagaki, M. (2015). Electrochemical impedance study of screen-printed branch structure porous carbon electrode using MgO-templated carbon and MgO particle and its application for bilirubin oxidase-immobilized biocathode. Electrochemistry, 83(5), 329-331. Szot-Karpińska, K., Kudła, P., Szarota, A., Narajczyk, M., Marken, F., & Niedziółka-Jönsson, J. (2020). CRP-binding bacteriophage as a new element of layer-by-layer assembly carbon nanofiber modified electrodes. Bioelectrochemistry, 136, 107629. Taj, M., Ling, J., Bing, L., Qi, Z., Taj, I., Hassani, T., Samreen, Z., & Yunlin, W. (2014). Effect of dilution, temperature and pH on the lysis activity of T4 phage against E. coli bl21. J. Anim. Plant Sci, 24(4), 1252-1255. Teo, W. E., & Ramakrishna, S. (2006). A review on electrospinning design and nanofibre assemblies. Nanotechnology, 17(14), R89. Tsierkezos, N. G. (2007). Cyclic voltammetric studies of ferrocene in nonaqueous solvents in the temperature range from 248.15 to 298.15 K. Journal of Solution Chemistry, 36(3), 289-302. Turner, A., Karube, I., & Wilson, G. S. (1987). Biosensors: fundamentals and applications. Oxford university press. van Charante, F., Holtappels, D., Blasdel, B., & Burrowes, B. H. (2021). Isolation of Bacteriophages. Bacteriophages: Biology, Technology, Therapy, 433-464. Wang, D., Chen, Q., Huo, H., Bai, S., Cai, G., Lai, W., & Lin, J. (2017). Efficient separation and quantitative detection of Listeria monocytogenes based on screen-printed interdigitated electrode, urease and magnetic nanoparticles. Food control, 73, 555-561. Weidenthaler, C., Lu, A.-H., Schmidt, W., & Schüth, F. (2006). X-ray photoelectron spectroscopic studies of PAN-based ordered mesoporous carbons (OMC). Microporous and mesoporous materials, 88(1-3), 238-243. Wu, M., Wang, Q., Li, K., Wu, Y., & Liu, H. (2012). Optimization of stabilization conditions for electrospun polyacrylonitrile nanofibers. Polymer degradation and Stability, 97(8), 1511-1519. Xu, J., Zhao, C., Chau, Y., & Lee, Y.-K. (2020). The synergy of chemical immobilization and electrical orientation of T4 bacteriophage on a micro electrochemical sensor for low-level viable bacteria detection via Differential Pulse Voltammetry. Biosensors and Bioelectronics, 151, 111914. Xu, W., Xin, B., & Yang, X. (2020). Carbonization of electrospun polyacrylonitrile (PAN)/cellulose nanofibril (CNF) hybrid membranes and its mechanism. Cellulose, 27(7), 3789-3804. Zeng, L., Li, Y., Liu, J., Guo, L., Wang, Z., Xu, X., Song, S., Hao, C., Liu, L., & Xin, M. (2020). Rapid, ultrasensitive and highly specific biosensor for the diagnosis of SARS-CoV-2 in clinical blood samples. Materials Chemistry Frontiers, 4(7), 2000-2005. Zeng, L., Peng, L., Wu, D., Yang, B., Mózsik, G., & Figler, M. (2018). Electrochemical sensors for food safety. Nutrition in Health and Disease–Our Challenges Now and Forthcoming Times. Zhang, M., Zhao, X., Zhang, G., Wei, G., & Su, Z. (2017). Electrospinning design of functional nanostructures for biosensor applications. Journal of Materials Chemistry B, 5(9), 1699-1711. Zhang, Y., Jiang, X., Zhang, J., Zhang, H., & Li, Y. (2019). Simultaneous voltammetric determination of acetaminophen and isoniazid using MXene modified screen-printed electrode. Biosensors and Bioelectronics, 130, 315-321. Zheng, L., Cai, G., Wang, S., Liao, M., Li, Y., & Lin, J. (2019). A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157: H7 using gold nanoparticle aggregation and smart phone imaging. Biosensors and Bioelectronics, 124, 143-149. Zhou, Y., Marar, A., Kner, P., & Ramasamy, R. P. (2017). Charge-directed immobilization of bacteriophage on nanostructured electrode for whole-cell electrochemical biosensors. Analytical Chemistry, 89(11), 5734-5741. Zhou, Z., Zhang, Y., Guo, M., Huang, K., & Xu, W. (2020). Ultrasensitive magnetic DNAzyme-copper nanoclusters fluorescent biosensor with triple amplification for the visual detection of E. coli O157: H7. Biosensors and Bioelectronics, 167, 112475. Zhu, D., Xu, C., Nakura, N., & Matsuo, M. (2002). Study of carbon films from PAN/VGCF composites by gelation/crystallization from solution. Carbon, 40(3), 363-373.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84088-
dc.description.abstract本篇研究嘗試開發一種電化學生物感測器(Electrochemical-based biosensor),用於快速且準確檢測食品中常見的大腸桿菌(Escherichia coli, E. coli)。此生物感測器以網版印刷碳電極(Screen-printed electrode, SPE)為基礎,利用滴附沉積法(Drop-casting)結合靜電紡絲聚丙烯腈(Polyacrylonitrile, PAN)經過高溫鍛燒所產生的奈米碳纖維(PAN-derived electrospun carbon nanofibers, CNF)以及大腸桿菌噬菌體(E. coli bacteriophage)。能量射散X射線光譜(Energy-dispersive X-ray spectroscopy, EDS)、X光繞射分析(X-ray diffraction, XRD)以及掃描式電子顯微鏡(Scanning electron microscopy, SEM)用於分析靜電紡絲纖維以及網版印刷碳電極的化學特徵與結構。循環伏安法(Cyclic voltammetry, CV)和電化學阻抗圖譜(Electrochemical impedance spectroscopy, EIS)則用於研究各階段的電子轉移速率與電荷轉移電阻(Charge transfer resistance, Rct)。此外為了提升阻抗數值計算之準確性,在套用等效電路(Equivalent circuit)時嘗試調整傳統蘭德斯電路(Randles circuit)之半無限擴散元件(Semi-infinite Warburg impedance, W)為有限擴散元件(Finite Warburg impedance, O)。 SEM的結果顯示高溫鍛燒能夠有效地降低CNF的平均直徑,EDS與XRD也分別驗證了CNF中碳元素的比例以及石墨烯晶體結構的存在。除此之外,CV的波峰電流以及EIS的電荷轉移電阻數值改變也指出CNF與噬菌體的成功修飾。定量結果顯示此生物感測器可以在10分鐘內有效檢測102 -106 CFU/mL的大腸桿菌,同時具有很低的偵測極限(Limit of detection, LOD) 36 CFU/mL。方法確效的部分,也針對生物感測器和檢測溶液的穩定性、真實樣品(蘋果汁)中的選擇性與其相關的應用進行探討。此研究所設計的生物感測器可以在室溫下保存至少一個月,同時對於目標宿主細菌具有良好的選擇性。在使用真實樣品(蘋果汁)檢測的部分,可接受的回收率也驗證了此生物感測器的準確性。zh_TW
dc.description.abstractThis study aims to introduce a facile method for fabricating a novel electrochemical-based biosensor for the detection of Escherichia coli. The bare screen-printed electrode (SPE) was modified by a two-step drop-casting method, in which the polyacrylonitrile (PAN) derived electrospun carbon nanofibers (CNF) were deposited followed by E. coli bacteriophage immobilization. The deposition of PAN-derived electrospun CNF significantly increased the rate of electron transfer and the surface area of the bare SPE. Energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and scanning electron microscopy (SEM) confirmed the hexagonal graphite structure of the CNF and the presence of bacteriophage on CNF. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to study the rate of electron transfer and the value of charge transfer resistance (Rct) for bare SPE, CNF/SPE, phage/CNF/SPE, and E. coli/phage/CNF/SPE. Besides, a new circuit (R(C(RO)) instead of (R(C(RW)) was fitted to the Nyquist plot of the EIS data to obtain better fitting accuracy. According to the SEM images of nanofiber, the average diameter of CNF significantly decreases after the thermal treatment. Besides, EDS and XRD confirm the proportion of carbon atoms and crystallographic structure of CNF, respectively. In addition, the change in peak current of CV and the value of Rct also ensure the success of CNF and bacteriophages modification. Moreover, the developed biosensor exhibited a low LOD of 36 CFU/mL in PBS buffer within 10 min, which also showed great stability for 1 month and high selectivity to the host bacteria. In the least, acceptable recoveries also confirmed the accuracy of the biosensor in real sample (apple juice).en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:04:38Z (GMT). No. of bitstreams: 1
U0001-1107202221331100.pdf: 10832628 bytes, checksum: 9ff08febea6ea35e26a5497a37c3c85f (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsAcknowledgements i Chinese abstract ii Abstract iv Table of Contents vi List of Figures x List of Tables xiv List of Supplementary xv Abbreviation xvii 1. Introduction 1 1.1 The background of food safety 1 1.2 The introduction of this study 2 2. Literature review 3 2.1 Biosensor 3 2.1.1 Bioreceptor 4 2.1.2 Transducer 4 2.2 Bacteriophage 5 2.2.1 Introduction of bacteriophage 5 2.2.2 Lytic and lysogenic cycle 6 2.2.3 Application in biosensor 8 2.3 Electrochemistry 9 2.3.1 Introduction of Electrochemistry 9 2.3.2 Cyclic voltammetry (CV) 10 2.3.3 Electrochemical impedance spectroscopy (EIS) 13 2.4 Electrospinning 17 2.4.1 The principle of Electrospinning 17 2.4.2 Application in electrochemical-based biosensor 18 2.5 Polyacrylonitrile (PAN) 19 2.5.1 The property of PAN 19 2.5.2 Fabrication of carbon nanofiber (CNF) 19 3. Research objective and experimental design 21 3.1 Research objective 21 3.2 Experimental design 21 4. Materials and methods 22 4.1 Materials 22 4.2 Instruments 24 4.2.1 Electrospinning 24 4.2.2 High temperature calcination 24 4.2.3 Scanning electron microscopy (SEM) 24 4.2.4 Energy-dispersive X-ray spectroscopy (EDS) 24 4.2.5 Transmission electron microscope (TEM) 24 4.2.6 X-ray diffraction (XRD) 25 4.2.7 X-ray photoelectron spectroscopy (XPS) 25 4.2.8 Zeta potential 25 4.2.9 Fluorescence microscope image 25 4.2.10 Electrochemical characterization 26 4.3 Software 27 4.3.1 ImageJ 27 4.3.2 CasaXPS 27 4.3.3 ElectroChemical Analyzer (ECA) 27 4.3.4 ZsimDemo 27 4.4 Methods 28 4.4.1 Preparation of bacteria and bacteriophage 28 4.4.2 Electrospinning parameters 28 4.4.3 Fabrication of carbon nanofiber (CNF) 29 4.4.4 Preparation of the biosensor 30 4.4.5 Infectivity of bacteriophage 31 4.4.6 Electrochemical characterization 32 4.4.7 Real sample testing 33 5. Results and discussion 34 5.1 Characterization of nanofibers and SPE 34 5.1.1 Scanning electron microscopy (SEM) 34 5.1.2 Transmission electron microscope (TEM) 38 5.1.3 Fiber diameter 39 5.1.4 X-ray diffraction (XRD) 41 5.1.5 Energy-dispersive X-ray spectroscopy (EDS) 43 5.1.6 The X-ray photoelectron spectroscopy (XPS) 46 5.1.7 The morphology of PAN nanofiber 53 5.1.8 SEM for the surface of the electrode 55 5.1.9 EIS for PAN/SPE 57 5.2 Electrochemical characterization 58 5.2.1 Selection of electrical circuit 58 5.2.2 Different modification stages of biosensor 65 5.3 Performance of the biosensor 70 5.3.1 SEM 70 5.3.2 Zeta potential 71 5.3.3 Infectivity of phage on CNF/SPE 72 5.3.4 Fluorescence microscope image 73 5.3.5 Calibration curve for CV 79 5.3.6 Calibration curve for EIS 81 5.3.7 Stability 84 5.3.8 Selectivity 87 5.3.9 Comparison with previous studies 89 5.3.10 Real sample testing 91 5.3.11 Other applications 96 5.4 Future perspective 105 5.4.1 The SPE compared to traditional three-electrode system 105 5.4.2 The addition of MWCNT to PAN for electrospinning 106 5.4.3 Bacteriophage acting as the bioreceptor 114 6. Conclusion 118 7. Reference 119 8. Supplementary 127 8.1 Tables of supplementary 127 8.2 Figures of supplementary 129 8.3 Electrochemical characterization 132 8.3.1 Testing solution 132 8.3.2 CV parameters 138 8.3.3 EIS parameters 142 8.3.4 Question and answer 151
dc.language.isoen
dc.subject網版印刷碳電極zh_TW
dc.subject電化學生物感測器zh_TW
dc.subject噬菌體zh_TW
dc.subject大腸桿菌zh_TW
dc.subject靜電紡絲zh_TW
dc.subjectBacteriophageen
dc.subjectElectrochemical-based biosensoren
dc.subjectElectrospinningen
dc.subjectScreen-printed electrode (SPE)en
dc.subjectEscherichia colien
dc.title結合靜電紡絲聚丙烯腈奈米碳纖維與噬菌體的電化學阻抗式生物感測器zh_TW
dc.titleElectrospun polyacrylonitrile derived carbon nanofiber and bacteriophage decorated electrochemical impedance spectroscopic biosensoren
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0002-7570-4614
dc.contributor.oralexamcommittee羅翊禎,謝博全,葉伊純
dc.subject.keyword電化學生物感測器,靜電紡絲,網版印刷碳電極,大腸桿菌,噬菌體,zh_TW
dc.subject.keywordElectrochemical-based biosensor,Electrospinning,Screen-printed electrode (SPE),Escherichia coli,Bacteriophage,en
dc.relation.page159
dc.identifier.doi10.6342/NTU202201413
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-07-19
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept食品安全與健康研究所zh_TW
dc.date.embargo-lift2022-10-03-
顯示於系所單位:食品安全與健康研究所

文件中的檔案:
檔案 大小格式 
U0001-1107202221331100.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
10.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved