Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84087
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅楸善zh_TW
dc.contributor.advisorChiou-Shann Fuhen
dc.contributor.author孫譽zh_TW
dc.contributor.authorYu Sunen
dc.date.accessioned2023-03-19T22:04:37Z-
dc.date.available2023-12-26-
dc.date.copyright2022-08-02-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[Chiu 2020] Y. C. Chiu, C. Y. Tsai et al., "Mobilenet-SSDv2: An Improved Object Detection Model for Embedded Systems," Proceedings of International Conference on System Science and Engineering, Kagawa, Japan, pp. 1-5, 2020.
[Hannun 2017] Hannun, "Sequence Modeling with CTC," Distill, https://distill.pub/2017/ctc/, 2017.
[Howard 2017] A. G. Howard, M. L. Zhu et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” https://arxiv.org/pdf/1704.04861.pdf, 2017.
[Huang 2021] X. Huang, X. Wang, W. Lv, et al., “PP-YOLOv2: A Practical Object Detector,” https://arxiv.org/pdf/2104.10419.pdf, 2021.
[Iandola 2016] F. N. Iandola, S. Han, et al., “SqueezeNet: AlexNet-Level Accuracy with 50x Fewer Parameters and <0.5MB Model Size,” https://arxiv.org/pdf/1602.07360.pdf, 2016.
[Intel 2022] Intel, “Intel Distribution of OpenVINO Toolkit,” https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html, 2022.
[Liu 2016] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and A. C. Berg, “SSD: Single Shot MultiBox Detector,” Proceedings of European Conference on Computer Vision, Amsterdam, Netherlands, LNCS, Vol. 9905, pp. 21-37, 2016.
[Sandler 2018] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Utah, pp. 4510-4520, 2018.
[Silva 2017] S. M. Silva and C. R. Jung, “Real-Time Brazilian License Plate Detection and Recognition Using Deep Convolutional Neural Networks,” Proceedings of Conference on Graphics, Patterns, and Images, Niterói, Brazil, pp. 55–62, 2017.
[Silva 2018] S. M. Silva and C. R. Jung, “License Plate Detection and Recognition in Unconstrained Scenarios,” Proceedings of European Conference on Computer Vision, Munich, Germany, LNCS, Vol. 11216, pp. 593-609, 2018.
[Simonyan 2014] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” https://arxiv.org/pdf/1409.1556.pdf, 2014.
[Szegedy 2016] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning,” https://arxiv.org/pdf/1602.07261.pdf, 2016.
[Wang 2021] Y. Wang and Z. P. Bian et al., “Rethinking and Designing a High-Performing Automatic License Plate Recognition Approach,” https://arxiv.org/pdf/2011.14936.pdf, 2021.
[Zherzdev 2018] S. Zherzdev and A. Gruzdev, “LPRNet: License Plate Recognition via Deep Neural Networks,” https://arxiv.org/pdf/1806.10447.pdf, 2018.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84087-
dc.description.abstract本論文提出一個專用於機車上的車牌辨識(License Plate Recognition)系統解決方案。搭載工業電腦以及人工智慧(AI: Artificial Intelligence)加速卡,可在載具行進期間,同時進行實時的車牌辨識。本篇論文透過自行改良的深度學習網路架構,提高機車在行駛途中攝影機所拍下的影像辨識準確率。此外,本研究更提出整個系統安裝至機車時的配置以及設計參考。為了更好的使用者體驗,本篇研究將車牌辨識程式整合成一系列應用程式介面(API: Application Programming Interface),實際開發出一套完整的「AI人工智能警用機車影像識別偵查系統」。配合應用程式介面的開發,此系統可以實時處理兩部攝影機的影像輸入,同時對前方車道以及右側路邊停車區域進行車牌辨識。zh_TW
dc.description.abstractWe propose SunLPR, a license plate recognition system solution dedicated to common scooter. Equipped with IPC (Industrial Personal Computer) and AI (Artificial Intelligence) acceleration card (Mustang V-100 Movidius Mx8). Our SunLPR can perform real-time license plate inference tasks when scooter is moving. A modified deep learning network also implicitly improves the accuracy of plate number recognition. And a brief design of the AI scooter was introduced, including cameras and battery. In this thesis, SunLPR was merged into an API (Application Programming Interface) for a better user experience. This AI system can deal with two camera’s video input in real-time and tracking the license plates in front and on the right.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:04:37Z (GMT). No. of bitstreams: 1
U0001-1307202219444500.pdf: 5326798 bytes, checksum: 8df66a50f93ea1cfc6cb3992ebe53f83 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 Overview 1
1.2 License Plates in Natural Scene 4
1.3 Thesis Organization 8
Chapter 2 Related Works 9
Chapter 3 Background 11
3.1 MobileNet-SSD 11
3.2 LPRNet: License Plate Recognition via Deep Neural Networks 16
3.3 OpenVINO: Open Visual Inference and Neural Network Optimization 20
3.3.1 Overview 20
3.3.2 Deployment Workflow 22
Chapter 4 Methodology 23
4.1 Overview 23
4.2 System Components 24
4.3 GUI (Graphical User Interface) and API (Application Programming Interface) 37
4.4 License Plate Recognition 44
Chapter 5 Experimental Results 52
5.1 Overview 52
5.2 Datasets 53
5.2.1 Scene Dataset 53
5.2.2 License Plate Dataset 54
5.3 Experiment Method 55
5.4 Results 57
Chapter 6 Conclusion and Future Works 62
References 65
-
dc.language.isoen-
dc.subject電腦視覺zh_TW
dc.subject應用程式介面zh_TW
dc.subject人工智慧zh_TW
dc.subject電腦視覺zh_TW
dc.subject深度學習zh_TW
dc.subject車牌辨識zh_TW
dc.subject車牌辨識zh_TW
dc.subject機車zh_TW
dc.subject應用程式介面zh_TW
dc.subject機車zh_TW
dc.subject人工智慧zh_TW
dc.subject深度學習zh_TW
dc.subjectComputer Visionen
dc.subjectScooteren
dc.subjectApplication Programming Interfaceen
dc.subjectArtificial Intelligenceen
dc.subjectComputer Visionen
dc.subjectDeep Learningen
dc.subjectLicense Plate Recognitionen
dc.subjectScooteren
dc.subjectApplication Programming Interfaceen
dc.subjectLicense Plate Recognitionen
dc.subjectDeep Learningen
dc.subjectArtificial Intelligenceen
dc.title孫車牌: 基於深度學習之車牌辨識系統zh_TW
dc.titleSunLPR: Vehicle License Plate Recognition System with Deep Learningen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee沈浴池;詹志康zh_TW
dc.contributor.oralexamcommitteeYu-Chi Shen;Zhi-Kang Zhanen
dc.subject.keyword車牌辨識,深度學習,電腦視覺,人工智慧,應用程式介面,機車,zh_TW
dc.subject.keywordLicense Plate Recognition,Deep Learning,Computer Vision,Artificial Intelligence,Application Programming Interface,Scooter,en
dc.relation.page67-
dc.identifier.doi10.6342/NTU202201454-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2022-07-20-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊網路與多媒體研究所-
dc.date.embargo-lift2027-07-13-
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  未授權公開取用
5.2 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved