Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84081
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊東漢zh_TW
dc.contributor.advisorTung-Han Chuangen
dc.contributor.author葉于禎zh_TW
dc.contributor.authorYu-Chen Yehen
dc.date.accessioned2023-03-19T22:04:34Z-
dc.date.available2023-12-26-
dc.date.copyright2022-08-10-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] Transistor counts
[2] K. Michael, "Moore's Law to roll on for another decade," 2003.
[3] R. W. Keyes, "The impact of Moore's Law," IEEE solid-state circuits society newsletter, vol. 11, no. 3, pp. 25-27, 2006.
[4] W. Arden, M. Brillouët, P. Cogez, M. Graef, B. Huizing, and R. Mahnkopf, "“ More-than-Moore ” White Paper," 2010.
[5] 楊啟鑫, "半導體小晶片(Chiplet)模式暨異質整合封裝發展趨勢 [趨勢新知]," ed: 經濟部技術處, 2021.
[6] Chiplet
[7] D. Medhat, Dessouky, Mohamed, Khalil, DiaaEldin, "A programmable checker for automated 2.5D/3D IC latch-up verification and hot junctions detection," Microelectronics Reliability, vol. 124, 2021, doi: https://doi.org/10.1016/j.microrel.2021.114310.
[8] 侯冠州. (2020) 先進封裝正夯,2.5D、3D和Chiplets 技術有何特點(中 ).
[9] M. Ahmad. (2020, 26 Nov.) 10個不可不知的先進IC封裝基本術語. EDN Taiwan.
[10] I. 100. "Copper Interconnects: The Evolution of Microprocessors." https://www.ibm.com/ibm/history/ibm100/us/en/icons/copperchip/ (accessed.
[11] R. Rosenberg, D. C. Edelstein, a. C.-K. Hu, and K. P. Rodbell, "Copper Metallization for High Performance Silicon Technology," Annual Review of Materials Science, vol. 30, no. 1, pp. 229-262, 2000, doi: 10.1146/annurev.matsci.30.1.229.
[12] D. Xu et al., "Nanotwin formation and its physical properties and effect on reliability of copper interconnects," Microelectronic Engineering, vol. 85, no. 10, pp. 2155-2158, 2008.
[13] K.-C. Chen, W.-W. Wu, C.-N. Liao, L.-J. Chen, and K.-N. Tu, "Observation of atomic diffusion at twin-modified grain boundaries in copper," Science, vol. 321, no. 5892, pp. 1066-1069, 2008.
[14] T.-C. Liu, C.-M. Liu, Y.-S. Huang, C. Chen, and K.-N. Tu, "Eliminate Kirkendall voids in solder reactions on nanotwinned copper," Scripta Materialia, vol. 68, no. 5, pp. 241-244, 2013.
[15] L. Lu, X. Chen, X. Huang, and K. Lu, "Revealing the maximum strength in nanotwinned copper," Science, vol. 323, no. 5914, pp. 607-610, 2009.
[16] K. Lu, L. Lu, and S. Suresh, "Strengthening materials by engineering coherent internal boundaries at the nanoscale," science, vol. 324, no. 5925, pp. 349-352, 2009.
[17] H. Conrad and J. Narayan, "On the grain size softening in nanocrystalline materials," Scripta materialia, vol. 42, no. 11, pp. 1025-1030, 2000.
[18] H.-S. Park et al., "Grain-size-independent plastic flow at ultrahigh pressures and strain rates," Physical review letters, vol. 114, no. 6, p. 065502, 2015.
[19] A. Jaatinen, C. Achim, K. Elder, and T. Ala-Nissila, "Thermodynamics of bcc metals in phase-field-crystal models," Physical Review E, vol. 80, no. 3, p. 031602, 2009.
[20] N. Takata, T. Mizuguchi, K.-i. Ikeda, and H. Nakashima, "Atomic and Electronic Structure of‹ 110› Symmetric Tilt Boundaries in Palladium," Materials transactions, vol. 45, no. 7, pp. 2099-2105, 2004.
[21] V. Randle, "Twinning-related grain boundary engineering," Acta materialia, vol. 52, no. 14, pp. 4067-4081, 2004.
[22] M. Bettayeb, V. Maurice, L. H. Klein, L. Lapeire, K. Verbeken, and P. Marcus, "Nanoscale intergranular corrosion and relation with grain boundary character as studied in situ on copper," Journal of The Electrochemical Society, vol. 165, no. 11, p. C835, 2018.
[23] L. E. Murr, "Interfacial phenomena in metals and alloys," 1975.
[24] P. Paufler, "Th. H. Courtney. Mechanical Behavior of Materials. McGraw‐Hill Publ. Co., Singapore 1990. 710 Seiten, DM 55.00. ISBN 0‐07‐100680‐X," ed: Wiley Online Library, 1992.
[25] J. Chen, L. Lu, and K. Lu, "Hardness and strain rate sensitivity of nanocrystalline Cu," Scripta Materialia, vol. 54, no. 11, pp. 1913-1918, 2006.
[26] Y.-S. Huang, C.-M. Liu, W.-L. Chiu, and C. Chen, "Grain growth in electroplated (111)-oriented nanotwinned Cu," Scripta Materialia, vol. 89, pp. 5-8, 2014.
[27] O. Anderoglu, A. Misra, H. Wang, and X. Zhang, "Thermal stability of sputtered Cu films with nanoscale growth twins," Journal of Applied Physics, vol. 103, no. 9, p. 094322, 2008.
[28] C.-M. Liu, H.-W. Lin, C.-L. Lu, and C. Chen, "Effect of grain orientations of Cu seed layers on the growth of< 111>-oriented nanotwinned Cu," Scientific reports, vol. 4, no. 1, pp. 1-4, 2014.
[29] O. Anderoglu, A. Misra, H. Wang, F. Ronning, M. Hundley, and X. Zhang, "Epitaxial nanotwinned Cu films with high strength and high conductivity," Applied Physics Letters, vol. 93, no. 8, p. 083108, 2008.
[30] Y. Shen, L. Lu, Q. Lu, Z. Jin, and K. Lu, "Tensile properties of copper with nano-scale twins," Scripta Materialia, vol. 52, no. 10, pp. 989-994, 2005.
[31] D. Xu, W. L. Kwan, K. Chen, X. Zhang, V. Ozoliņš, and K.-N. Tu, "Nanotwin formation in copper thin films by stress/strain relaxation in pulse electrodeposition," Applied Physics Letters, vol. 91, no. 25, p. 254105, 2007.
[32] S. P. Adiga et al., "Nanoporous materials for biomedical devices," Jom, vol. 60, no. 3, pp. 26-32, 2008.
[33] L. T, S. Y, Chang, F. Y, Ouyang, "Effect of substrate bias on properties and microstructure of nanotwinned Copper thin films deposited by magnetron sputtering system ".
[34] V. Weihnacht and W. Brückner, "Abnormal grain growth in {111} textured Cu thin films," Thin solid films, vol. 418, no. 2, pp. 136-144, 2002.
[35] J. Gupta, J. Harper, J. M. IV, P. Blauner, and D. Smith, "Focused ion beam imaging of grain growth in copper thin films," Applied physics letters, vol. 61, no. 6, pp. 663-665, 1992.
[36] E. Zielinski, R. Vinci, and J. Bravman, "Effects of barrier layer and annealing on abnormal grain growth in copper thin films," Journal of Applied Physics, vol. 76, no. 8, pp. 4516-4523, 1994.
[37] C.-M. Liu et al., "Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu," Scientific reports, vol. 5, no. 1, pp. 1-11, 2015.
[38] C.-H. Tseng et al., "Kinetic study of grain growth in highly (111)-preferred nanotwinned copper films," Materials Characterization, vol. 168, p. 110545, 2020.
[39] J. Haisma and G. Spierings, "Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry: historical review in a broader scope and comparative outlook," Materials Science and Engineering: R: Reports, vol. 37, no. 1-2, pp. 1-60, 2002.
[40] C.-T. Ko and K.-N. Chen, "Low temperature bonding technology for 3D integration," Microelectronics reliability, vol. 52, no. 2, pp. 302-311, 2012.
[41] 陳慧娟, "3D IC晶圓接合製程技術與設備概述," in "2007我國製造業現況與趨勢," 2007.
[42] F. a. K. Niklaus, R and Mcmahon, J and Yu, J and Matthias, Thorsten and Wimplinger, M. and Lindner, Paul and Lu, J.-Q and Cale, Timothy and Gutmann, R.J, "Effects of Bonding Process Parameters on Wafer-to-Wafer Alignment Accuracy in Benzocyclobutene (BCB) Dielectric Wafer Bonding," MRS Proceedings, vol. 863, 2005, doi: 10.1557/PROC-863-B10.8.
[43] T. Mizumoto, Y. Shoji, and R. Takei, "Direct Wafer Bonding and Its Application to Waveguide Optical Isolators," Materials, vol. 5, no. 5, pp. 985-1004, 2012. [Online]. Available: https://www.mdpi.com/1996-1944/5/5/985.
[44] 高木秀樹. "表面活性化常温接合." (accessed.
[45] 蘇珍誼, "電漿活化及退火處理對直接接合矽晶圓對接合性質之影響," 清華大學材料科學工程學系學位論文, 2006. [Online]. Available: http://www.naipo.com/Portals/1/web_tw/Knowledge_Center/Research_Development/publish-54.htm
[46] S. Mack, Eine vergleichende Untersuchung der physikalisch-chemischen Prozesse an der Grenzschicht direkt und anodisch verbundener Festkörper. VDI-Verlag, 1997.
[47] M. U. T. Shimatsu, "Atomic diffusion bonding of wafers with thin nanocrystalline metal films," Journal of Vacuum Science & Technology B, vol. 28, no. 4, 2010, doi: 10.1116/1.3437515.
[48] A. I. Oliva and J. Lugo, "The physical properties of nanomaterials: A challenge in materials science," in 2015 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 2015: IEEE, pp. 1-6.
[49] G. Gerlach and W. Dotzel, Introduction to microsystem technology: a guide for students. John Wiley & Sons, 2008.
[50] Harteck, "Diffusion in Solids, Liquids, Gases," ed. New York: W. Jost. Academic Press Inc., 1953.
[51] Y.-C. Lin et al., "Development and evaluation of AuSi eutectic wafer bonding," in TRANSDUCERS 2009-2009 International Solid-State Sensors, Actuators and Microsystems Conference, 2009: IEEE, pp. 244-247.
[52] 王家俊、謝凱程、陳智邱、韋嵐、張香鈜. 次世代先進封裝技術:銅-銅異質接合機制 [Online] Available: https://www.materialsnet.com.tw/DocView.aspx?id=48681
[53] Y.-S. Tang, Y.-J. Chang, and K.-N. Chen, "Wafer-level Cu–Cu bonding technology," Microelectronics Reliability, vol. 52, no. 2, pp. 312-320, 2012.
[54] T. Kim, M. Howlader, T. Itoh, and T. Suga, "Room temperature Cu–Cu direct bonding using surface activated bonding method," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 21, no. 2, pp. 449-453, 2003.
[55] C. S. Tan, L. Peng, J. Fan, H. Li, and S. Gao, "Three-dimensional wafer stacking using Cu–Cu bonding for simultaneous formation of electrical, mechanical, and hermetic bonds," IEEE Transactions on Device and Materials Reliability, vol. 12, no. 2, pp. 194-200, 2012.
[56] J. Lee, D. M. Fernandez, M. Paing, Y. C. Yeo, and S. Gao, "Electroless Ni plating to compensate for bump height variation in Cu–Cu 3-D packaging," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 2, no. 6, pp. 964-970, 2012.
[57] International Electron Devices Meeting, 2006 : IEDM '06 ; 11 - 13 Dec. 2006, [San Francisco, CA ; technical digest]
[58] J.-Y. Juang et al., "A solid state process to obtain high mechanical strength in Cu-to-Cu joints by surface creep on (111)-oriented nanotwins Cu," Journal of Materials Research and Technology, vol. 14, pp. 719-730, 2021.
[59] M. M. R. Howlader, T. Suga, A. Takahashi, K. Saijo, S. Ozawa, and K. Nanbu, "Surface activated bonding of LCP/Cu for electronic packaging," Journal of Materials Science, vol. 40, no. 12, pp. 3177-3174, 2005, doi: https://doi.org/10.1007/s10853-005-2681-5.
[60] 國立中山大學貴重儀器中心. FIB NX2000.
[61] MA-teck. "材料分析(MA)." https://www.ma-tek.com/zh-TW/services/index/FIB (accessed.
[62] Nordson, "4000 Multipurpose Bondtester," ed.
[63] M. Gonon, "Case studies in the X-ray diffraction of ceramics," Encyclopedia of Materials: Technical Ceramics and Glasses, vol. 1, pp. 560-577, 2021.
[64] S. Rohde, W. Sproul, and J. Rohde, "Correlations of plasma properties and magnetic field characteristics to TiN film properties formed using a dual unbalanced magnetron system," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 9, no. 3, pp. 1178-1183, 1991.
[65] R. Wuhrer and W. Yeung, "A study on the microstructure and property development of dc magnetron cosputtered ternary titanium aluminium nitride coatings Part III effect of substrate bias voltage and temperature," Journal of materials science, vol. 37, no. 10, pp. 1993-2004, 2002.
[66] 天聖金屬科技. "金屬表面處理藥劑資訊網." (accessed.
[67] Y. C. Lai, "Studies on low temperature direct bonding of silver nanotwinned chips and thermal stability," National Taiwan University, 2022.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84081-
dc.description.abstract電子產品的微縮化為製程帶來了精密度的考驗,例如奈米尺寸下銅應用於內連線的可靠度,而透過奈米孿晶銅膜的優勢能提升機械強度、抗電遷移與熱穩定度,因此成為重視的研究之一。
奈米孿晶擁有非常良好的熱穩定性與機械性質,而且強化時晶體並不會失去延展性,因此含有越多奈米孿晶比例的銅膜為本研究的目標。本研究透過改變基板的濺鍍偏壓與基板種類,以能期找到良好品質的銅奈米孿晶薄膜,並透過熱處理以觀察微結構變化,證實其穩定性。銅為面心立方金屬(FCC),最密堆積平面族為{111},由於擁有最小的表面能而促使奈米孿晶以平行於表面的{111}平面生長,因此{111}被視為奈米孿晶多寡的衡量指標,藉由X射線繞射分析、電子背向式散射繞射技術(EBSD)、聚焦離子束影像分析(FIB),可以間接與直接得到奈米孿晶銅膜的機械性質與微結構變化。
優良的奈米孿晶薄膜可以應用在輔助銅-銅的低溫接合,奈米孿晶薄膜高比例的<111>優選方向其擴散速率較快,意即降低接合溫度,較低的溫度能降低預算,或是應用於對溫度敏感的晶片時,大幅提升良率。本研究針對不同試片作低溫接合,觀察接合溫度和接合壓力對孔隙率之影響,並以推力測試測其接合強度。
zh_TW
dc.description.abstractWith the shrinkage of the electric device, there is also a challenge come to the reliability of the process such as applying Cu on interconnects in nanoscale. Today, it’s popular for elevating mechanical strength, great resistivity of migration, and excellent thermal stability.
Film with nanotwins have great thermal stability and excellent mechanical property yet not losing great ductility. In this study, we changed the substrates and the sputtering bias to obtain densely nano-twinned film, annealing the thin film to confirm the microstructure of nanotwins would not change at high temperature. Cu belongs to Face Centered Cubic metal, which possess closest packing plane {111}. Due to the smallest surface energy, the nanotwins grow in the {111} plane parallel to the surface, {111} is regarded as a measure of the amount of nanotwins. X-Ray Diffraction (XRD), Electron Back-Scattered Diffraction (EBSD), and Focused Ion Beam image analysis (FIB) can indirectly and directly obtain the mechanical properties and microstructural changes of nanotwinned copper films.
Excellent nano-twinned films can be used to assist low-temperature bonding of copper-copper. The high proportion of nano-twinned films in the preferred direction of <111> has a faster diffusion rate, which means lower bonding temperature. Lower temperature can reduce the budget, or when applied to temperature-sensitive chips, the yield can be greatly improved. In this study, different test pieces were bonded at low temperature, the effects of bonding temperature and bonding pressure on porosity were observed, and the bonding strength was measured by thrust test.
en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:04:34Z (GMT). No. of bitstreams: 1
U0001-1707202223011000.pdf: 8220507 bytes, checksum: 080a0a783da432721a374204e94725e8 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents目錄 I
圖目錄 IV
表目錄 IX
第一章 前言 1
1.1 研究背景 1
1.1.1 電子構裝的重要性 1
1.1.2 先進封裝-3D 封裝 3
1.1.3 異質整合 3
1.1.4 2D、2.5D 封裝、3D 封裝以及 3D FabricTM 5
1.2 研究動機與目的 7
第二章 文獻回顧 9
2.1 晶界與孿晶界 9
2.1.1 強化機械性質之方法 9
2.1.2 共位晶格晶界 10
2.1.3 孿晶 13
2.1.4 奈米孿晶之特性 14
2.1.5 奈米孿晶的形成機制 15
2.1.6 奈米孿晶退火微結構變化 16
2.2 晶圓接合 19
2.2.1 直接接合 22
2.2.2 間接接合 27
2.3 用於3D IC 的接合技術 29
2.3.1 銅-銅熱壓接合 29
2.3.2 銅-銅表面活化接合 30
第三章 實驗方法與步驟 32
3.1 實驗流程圖 32
3.1.1 奈米孿晶銅薄膜 32
3.1.2 直接接合 33
3.2 材料種類及其預處理 34
3.2.1 基板與基板清潔 34
3.2.2 鍍膜材料 34
3.3 薄膜製備及真空熱壓熱處理 35
3.3.1 四槍磁控濺鍍系統 35
3.3.2 真空熱壓設備 36
3.3.3 真空熱處理設備 37
3.4 材料性質分析 39
3.4.1 聚焦離子束顯微鏡(FIB) 39
3.4.2 電子背向散射繞射技術(EBSD) 41
3.4.3 X射線繞射分析(XRD) 42
3.5 材料機械性質 43
3.5.1 推力測試(Dage 4000 die shear test) 43
第四章 結果與討論 44
4.1 單晶銅及多晶銅濺鍍銅奈米孿晶薄膜之特性 44
4.1.1 不同偏壓之奈米孿晶銅薄膜 44
4.1.2 不同基板優選方向之奈米孿晶銅薄膜 49
4.1.3 稀硝酸預處理 59
4.1.4 熱穩定性及微結構變化 65
4.2 銅奈米孿晶薄膜輔助低溫接合 71
4.2.1 銅奈米孿晶薄膜輔助單晶銅-銅低溫接合 73
4.2.2 銅奈米孿晶薄膜輔助多晶銅-銅低溫接合 76
4.2.3 銅-銅直接接合 81
第五章 結論 83
參考文獻 85
-
dc.language.isozh_TW-
dc.subject內連線zh_TW
dc.subject表面能zh_TW
dc.subject奈米孿晶銅膜zh_TW
dc.subject低溫接合zh_TW
dc.subject表面能zh_TW
dc.subject內連線zh_TW
dc.subject奈米孿晶銅膜zh_TW
dc.subject低溫接合zh_TW
dc.subjectlow temperature bondingen
dc.subjectnanotwinned copper filmen
dc.subjectInterconnecten
dc.subjectInterconnecten
dc.subjectnanotwinned copper filmen
dc.subjectlow temperature bondingen
dc.title銅單晶與多晶濺鍍銅奈米孿晶薄膜及其低溫接合研究zh_TW
dc.titleStudy On Sputtering Nano-twinned Cu Thin Film On Single / Polycrystalline Cu And Low Temperature Bondingen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張世穎;林惠娟;曹龍泉;王彰盟zh_TW
dc.contributor.oralexamcommitteeShi-Ying Zang;Hui-Juan Lin;Long-Quan Cao;Zhang-Meng Wangen
dc.subject.keyword奈米孿晶銅膜,內連線,表面能,低溫接合,zh_TW
dc.subject.keywordlow temperature bonding,nanotwinned copper film,Interconnect,en
dc.relation.page90-
dc.identifier.doi10.6342/NTU202201515-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2022-07-20-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-lift2027-06-30-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  未授權公開取用
8.03 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved